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1. INTRODUCTION

The recursive relation approach helps one to solve many
physical problems. The realisation of this fact is reflected
in the appearing of conference proceedings !’ devoted totally
to the recursive relation applications. Here we touch only
one aspect of these relations, not considered in /1.

It was long known, that the recursive relations make it
very easy to handle a stepwise potential in wave mechanics or
in optics. But it occurs that they are very useful for am
analytical solution of such problems as wave propagation in
periodic potentials and even in the case of a molecular gas
or ultracold neutron diffusion in tubes.

To remind how recursive relations work we first consider
the reflection of a particle from a cne-dimensional rectangu-
lar potential in quantum mechanics. Then we shall consider
d more general stepwise potential and a periodic potential.
After that we shall go to diffusion problems and show how to
solve them for the case of particle diffusion in linear and
branched guides. And in the last section we shall consider
wave problems with a three dimensional spherically symmetric
potential.

2. SCATTERING OF A SCALAR PARTICLE FROM A ONE-DIMENSIONAL
STEP POTENTIAL IN QUANTUM MECHANICS

Let us consider a step potential
U=-u,60(x>0), (1)

where u, is the height of the potential, and 6-function is
equal to 1, when its argument inequality is satisfied, and to
0 1in the opposite case. Consider a particle with a wave vec-
tor k, incident on this step from the left. It is described
by the wave exp (ikx) . This particle can enter the region
x>0 with the amplitude tt , or it can be reflected back to
x <0 with the amplitude rt+ . The total wave function can be
represented by the gxpression .
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Y- §(x<0) [ exp(ikx) +r Texp (-ikx) ]+ t76(x20) exp(ik %) , (2)
where k’ 1is the wave-vector inside the potential:
k' =vVE® —u. , (3)

Here we take hZ%/2m =1, where ﬁ is the Plank constant and
m - is the mass of the particle, Amplitudes tt and rt must
be determined from the matching of the wave function (2) and
its first derivative at the point x = 0. The matching gives
two equations

a) 1srt=t*, b) k(l-t") =kt (4)
whose solution is
a) rt=(k-k’)/(k+k’), b) tT=2k/(k+k’). (5)

The sign + over amplitudes r and t means, that the inci-
dent wave propagates from left to right. Of course we can
consider the opposite propagation as well, when the 1nc1d?nt
wave comes from the potential region x>0 . But to obtain
the amplitudes r~ and t~ in that case, it is not necessary
to solve the equations again. It is enough to replace k with
k’ and vice versa. So:

a) rm=(k’-k)/(k’+k), b) t7=2k"/(k'+k) . (6)

3. SCATTERING OF A PARTICLE ON A RECTANGULAR POTENTIAL

Now we are ready to consider the scattering from a rect-
angular potential U= u00(0<Xs<1) Of course we can write
down the total wave function with four unknown coefficients:

Y- 0(x<0) [ exp(ikx) +a, exp(-ikx) ] + 7

+0(0<x<1) [azexp(ik’x) +a, exp(~ikx)] +a49(x21) exp (ikx) ,

and match the wave function and its derivative at two points
X, =0 and x, =l. Then we shall have four equations with fogr
unknowns, and it is a very tedious work to solve them. Bgt it
is possible to find the reflection and transmiss}on amplltuT
des for a rectangular potential much more intelligently. IF is
just here where we meet the recursive relations for the first
time.
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Let us suppose that the part of the wave function inside
the potential, describing the wave going to the right, just
before the point x,, is equal to ¢, . It is reflected from
the right edge of the potential with the amplitude r} (which
is evidently equal to r  in (6a)) and spreads to the left
with the phase factor exp[ik’(1-x)]. When it reaches the
left side of the potential this phase factor becomes
exp (ik"f) . Here the wave is reflected again with the amp-
litude r{ (which is again equal to r~ (6a)) and spreads to
the right acquiring the phase factor exp (ik'x) . Near the
right edge of the potential this additional phase factor
becomes equal again to exp(ik’f) . Now after two reflec-
tions the wave y, is transformed to r]ryexp (2k’0) vy, .

This makes a part of the original function ¢_ . The other
part is given by the incident wave, which enters the poten-
tial region from the left side vacuum with the amplitude tY
equal to (5b) and then spreads to the right edge of the po-
tential, acquiring the phase factor exp(ik’x) , which be-
comes exp (ik’f) near the point X, . If we put the value of
the incident wave ¢_ in the vacuum near the point x; to be
equal to 1, then for ¢é we can write down the equation:

-

g =exp (ik’f) t++(r")2 exp(2ik'?)’d% . (8)
The solution of this equation is
g, =tTexp (ik’0) /[ 1-r2exp (k)] (9)

(Here for brevity we abolished the — sign over ). Now we
have everything to calculate transmission and reflection for
the rectangular barrier potential. Indeed the transmitted
wave has an amplitude equal to T = tt ¢ . But t; evidently

is equal to (6b), so, using (9) we have
T-t"t exp(ik’0) /[ 1-r°esp (2ik°0)]. (10)

To find the reflection amplitude R it is necessary to add
the amplitude r~ of the incident wave reflected from the
left edge of the potential and the contribution of the wave
Yy , that after reflection r; reaches with the additional
phase factor exp(ik’f) the left side of the potential and
with the amplitude t; goes over the left side into the
vacuum. Since t; is equal to (6b); and r} , to (6a), we
easily obtain:

R=r"+17t7t" exp (2ik’f) /[ 1 -r2exp(2ik’f)]. . (11)



For the rectangular potential it is possible to siPplify tgis
expression. From (5) and (6) it follows, that t°t° = (1-r%)

and T =-r=-1, so we insert these relations into (11) and
obtain
R=r[1-exp(2ik’0)]/[1-r%exp(2ik’0)]. (12)

4. A MORE COMPLICATED RECTANGULAR POTENTIAL

Now,let us consider the potential,shown in the figure.Again
we can write down the total wave function with six unknown
coefficients and find them from the system of six equationms.

\ But we can proceed more in-
U telligently.Let us introduce
an infinitely narrow gap
between two rectangular po-
tentials with a zero poten-
tial inside it. Such a modi-
fication will not lead to any
: physical cansequences, but
' drastically simplifies mathe—
¥ L matics. Indeed, we know the

Q c b X transmission and reflection

. amplitudes T1,2 , R1,2

for partial rectangular potentials. Now let us imagine our-
selves to be inside the narrow gap. Since the width of the
gap is.infinitesimal, the phase factor for the wave spreading
in it from left to right and vice versa is always equal to
unity. So for the wave ¢, incident on the right wall of the
gap we can write down by analogy with (8) the -equation:

I
|
|
|
1
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U =T, +R R V.. (13)

whose solution is ¢;= Ty /[1-RyRy) . To find total
transmission and reflection amplitudes we proceed by analogy
with (10), (11) and this leads to:

a) Typ =T, T, /[1-RyR,], b) Ryp=Ry+RgTi/[1-R Ryl. (14)
It is easy to see, that T,, 1is symmetric with respect to
the indices permutation, that is, it does not depend on the
direction of incidence of a primary wave. But Ry, does
depend on this direction. It is not difficult to prove that
for the real potential Ry, differs from Ry only by a
phase factor. We shall not do that here (see for
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instance 2/ ), but in the considered
fact is easy to verify.

simple case this

5. A PERIODIC POTENTIAL

Now, let us consider a sypmetric half infinite one-dimen-
sional periodic potential and introduce infinitesimal gaps
with zero potential between the periods. We suppose that the
transmission t and reflection ! amplitudes for one period
are somehow known and find a reflection amplitude R~ of
the whole potential.

To do that let us look at the relation (13). It can be
written here also for the first gap with the replacements:
r, t for Ry, Ty , and R_, for Ry . Then, to get the
reflection amplitude for the whole potential it is only
necessary to make the same replacements in (14b):

R_=r+t°R_/[1-rR_]. (15)

But now it is not the final expression. It is an equation,
which is obtained due to the fact, that the reflection from
the whole infinitely long potential and the potential (also
infinitely long) without one period is the same. The equation
(15) is of the type:

x22px+1-0,

and its solutions can be represented in the form

X9 =lyp+1 2yp-11/[yp+1 Fyp-1].

So the solution of the equation (15) looks like Fresnel coef-
ficients for the reflection of electromagnetic waves from a
plane surface:

R =[V(e+ D) 8y (=P -1 Ly () Pt Py ()P -7 (16)

The signs are chosen in such a way, that R_
zero for a fictive potential (r = 0).

Not only the reflection amplitude is of interest for a
periodic potential but the Bloch wave vector also. It is well
known, that the wave function ¢(x) inside a periodic poten-
tial can be represented as y(x) = ¢(x) exp (igx) , Where
¢(x) 1is a periodic function with the same period as the
potential, and q is the Bloch wave vector. To known the

goes over to



function ¢(x) it is necessary to solve the Shrddinger
equation and specify the potential of a period. But here
only the reflection and transmission amplitudes of one period
are supposed to be known, so we do not pretend to find the
total function (%) , nevertheless we can easily find the
Bloch .wave vector, and infinitesimal gaps, introduced between
periods, are very useful for this purpose. Indeed, in the
gaps the potential is known -~ it is equal to zero, so the
wave function is also known - it is a superposition of two
plane waves, going in opposite directions. But due to peri-
odicity this wave function is almost the same in all gaps,
differing only by a phase factor exp(igfn) , where nf =
= %;-%Xo is a distance between two gaps, f{ — is a period;
and n, a number of them.

Now let us find an equation for the phase factor exp(iqf).
In the n-th gap let us denote the wave, going to the right,
by :p and the wave, going to the left, by '%1' 0f course,
from per10d1c1ty it comes, that

g, =ew (ial) b a7
But y, =ty vt » and w = r¢+t¢rn+1 Using the

relatlons 657) we obtaln the system of two equations for ¢%
and w

g, =rd +texp(-ial) 4 ,

o o . (18)
wn=n'/fn+texv(1qf)¢n

This system has a solution only when

[1-texp(-iqf)][1-texp(iqf)]-r2=0. 219)

This is an equation we wished to have. Its solution can be
represented in the same form, as (16):

exp (1) = [ v(t+1)2r?ey(t-1) 22 /Ly (e 1DE-r Py (-1 1. (20)
From two solutions of (19) we have chosen the one, which
for the fictive potential (r =06, t = exp(ik{)) goes over
to exp(ikf).

It is very easy to check these formulas by applying them
to the Kronig-Penney potential., But first it is necessary to
decide how to locate the period. If we want to have a sym-
metric period, its potential must be chosen to be U =
= 2p&(x-1/2) 6(0<x<1). . The reflection and transmission
amplitudes for this potential are: .

6

a) r=-pexp(ikf) /(p-ik), b) t=-ikexp (ikf)./(p~ik) . (21)
It is not difficult to put (21) in (16) and (20), and we
leave it to the reader. We would likeé only to note, that if
we choose asymmetric period, i.e. U = 2p-8(x)-0(0<x<1), ,
then it is necessary to discriminate between reflection r =
= exp(-ik€)r and T = exp (ikf) r for a wave incident on
this potential from the left and the right, respectively. For
an asymmetric period the total reflection will also be asym-
metric, but the phase relatlgp between ch and R is the
same as that between T and T.

Till now we have considered the half infinite potential.
What can we say about a potential with a finite number of
periods? The answer to this question is amusingly simple.
Indeed, suppose, our potential has only N periods, then
reflection and transmission amplitudes can be written in full
analogy with (10) and (12):

2
Ty=(1-R2) exp (iaL) /[ 1-RZexp (21aL)],

9 (22)
Ry=R [ 1-exp(RiqL)]/[1-R_exp(RikL)],

where L = N¢ To obtain these relations it is only neces-
sary to note that half infinite potential with period f is
also periodic with period Nf, so we can write down the ex-
pressions (16) and (20) in terms Ry and Ty instead of r

and t . After that we can resolve them with respect to Ry
and Ty and thus come to expressions (22). For an asymmetric
potential the phase relation between RN and Ry is the same
as between T and T , and transmission amplltudes are identi-
cal.

6. DIFFUSION EQUATION

In the case of wave problem it is very natural to discuss
waves that are going back and forth, are reflected and trans-
mitted. In diffusion problems there are no waves, neverthe-
less, it is possible to apply to them the same terminology.
Indeed, let us go back to the wave reflectlon, and consider
a high rectangular potential, so high, that k® <uy (3). In
that case the phase factor becomes a decreasing exponential
function. Nevertheless, we can follow the same way, and we
come to the correct expressions for reflection and transmis-
sion amplitudes.



Let's, for example, consider a molecular gas propagation
along pipes (see, for instance’® chapter 4). It is describ-
ed by the one dimensional diffusion equation
Ddn/ds’ =n/r, (23)
whose solution is n = exp (+x/f) , where D is diffusion
coefficient; n, linear density of a gas; r , life time of an
atom if it can decay or be captured by a wall of the pipe;
and {, diffusion length: £? = Dr. To find transmission of a
pipe with length L, it is necessary to find reflection and
transmission at one end of a half-infinite pipe. Now we shall
do that.

Let us suppose, that from outside on the opening of a
half-infinite tube, placed at x>0 , is incident a gas iso-
tropic in the forward half sphere. The volume density of the
gas is ng, the velocity of its atoms is v, the area of the
opening is supposed to be equal to unity, so the incident
flow is equal to nov/2 . A part of this current is reflec-
ted back outside. We suppose the reflected particles to be
isotropic in the backward half sphere. We denote its volume
density as r*n, , so r" is a reflection coefficient and a
reflected flow is equal to r'nyv/2.

The solution of the diffusion equation inside the tube can
be represented in the form: t¥n_ exp(~x/f). So t' plays the
role of the transmission coefficient. Since the diffusion
flow 1s defined to be -~Ddn/dx , we can match the flow and
the density at the opening and thus get two equations to
determine r* and t%.

a) 1+r+=t+, b) 1-r+=qt+, where c¢) q=2D/Ev.(24)

The solution of these equations is

a) r'=(1-q) /(1+q), b) tT=2/(1+q). (25)
In the case, when incident flow goes from inside of the tube
we write down the density of gas atoms inside the tube in_the
form: n = ng{exp(x/f) +1 exp(-x/)] , and outside - t ng.
Equations analogous to (24) have the solution:

a) r . =(q-1)/(q+1), b) t =2q/(g+1). . (26)
Now, if we repeat all the way, which brought us to formula
(10), but instead of the phase factor use the propagation
function exp(-x/f) , we come to the expression:

8

Tt t”exp(~L/2) /[1-r%exp(-2L/0)], (27)
which gives the transmission of the tube with lengtﬁ L.
(Here r = ™ ). Since the™ = 1-r1 , the expression (27)
can be written in the form similar to (22)
T =exp (=kL) (1 -12)/[1-r®exp (~2kL)], (28)
where k=1/f . The same can be said about the total ref-
lection R of the tube:

R-r[1-exp(~2kL)]/[1-r?em (-2kL)]. (29).

7. BRANCHED GUIDES

Let us suppose, that our guide is composed of two diffe-
rent links 1 and 2 (for simplicity we suppose them to have
the. same cross sections), and imagine a very narrow gap
introduced between these parts. The density of atoms N in-
side the gap can be presented in two ways
N=TyNg+(1+Rp N;=(1+R) Ny, (30)
where &1 represents the part of the density, which'corres~
ponds to gas atoms, moving in the gap towards the link 1;.
and ﬁé, towards the link 2, R, and T, are total reflection
and transmission coefficients of two links, and we denote the
density of primary atoms, incident from the left on the
begining of the first link, by N; .

The conservation of the current in the gap leads to a
second equation to determine N; and Np

« -

T1N0=(1'—-R1)N1+(1—R2)N2. (31)
From (30) and (31) it comes out that

e d — g ,_1

Np—(1-RjRg) ' T,N,, N =R,N,=R,(1-RRp) TNy (32)

From expressions (32) we directly obtain the reflection and
transmission of the two links chain

« -1
RigNg=RNg +TyN; . R12=R1+T1R2(1“R1R2) Ty . (33)

(34)

N -1
T1oNo=TgNe . Tyo=Tp (1-RRp) Ty .



To generalise these expressions to the case of many links
guide is trivial. It is not difficult to include here some
diafragms or a stepwise change of the guide's radius. We
leave this matter to the readers. We would like only to note,
that formulas (33), (34) are written in such a way to be cor-
rect in the case of a nonscalar molecular gas diffusion, when
R and T are not the numbers, but matrices.

Now let us consider the branched guide, i.e. consider a
vertex, connecting, for instance, three links, numbered 1, 2
and 3. To find transmission Ty, in the presence of branch 3
we introduce in the vertex a virtuhl gap, separating all
links. A density N of gas atoms inside this gap can be pre-
sented in a three fold way in full analogy with (30)

N=TNy+(1+R)N; =(1+Ry) Ny=(1+Ry) Nj, (35)

where N, with arrows are the parts of density, giving rise
to currents, entering links 1, 2 and 3 from the side,of the
vertex. (Here for the sake of simplicity we suppose the cross
sections of all the links to be the same). One more equation
is obtained from the requirement of the current conservation
in the gap

TyNo=(1-Ry) Ny +(1-Ry) Ny +(1-Ry) NJ. (36)

To find the three N; from three equations (35), (36) is not
" the problem. For instance,

ﬁ2='flf“c> (L+n)/(1+Ro) (n, tn,+n) . 9 =(1-R)/(1+R),  (37)

Ny =T Ng (L=, —n) /(L+Ry) (n +my ) - (38)

To find N; it is enough to transmute indices 2 and 3 in
(37). Now the transmission Ty, , for instance, is obtained
from the equality: TigNg = TyN, , and reflection of the
system from the side of the first link is given by the equa-
lity: R132N0 =RiNg + Ty Ny .-

8. THREE~DIMENSIONAL SPHERICALLY SYMMETRIC POTENTIAL

Ti}l now all the formulas were obtained for the simple
case when free propagation is described by phase or exponen-
tial function. It is pleasant to find, that the structure of
all the formulas is the same even in a more complicated case.
For'instance, in the spherically symmetric wave equation for
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free propagation we have two functions: spherical Hankel
functions of two kinds. (Of course, one of it can be repla-
ced with the spherical Bessel function). .
In order not to mix the radial coordinate with reflection
coefficients we denote the former by z. ‘
Let's consider a spherically symmetric potential barrier

= 39
U—UOG(ZISZSZQ) ‘ (39)

and a particle, incident on it from the left. First.we shall
put zg- . For {~th harmonics an incident wave is des-
cribed by h%)(kz)/h%)(kzl) ; reflecte%fﬂbyTIQ(ES)@QWZQ;
the wave function inside the barrier, by g}{f(kh)/hg(k zy) ,
where k’ = (kz—uo)LQ . The amplitudes r and t] Lare
determined from the matching of the wave function and its
derivative at the point 2z, . Now, if the wave is incident on
the step at z; from inside of the barrier, then the wave

function can be represented as

fg(z) =0(z>z,) [ j‘g(k’z)/jg(k’zl) + rzh%l)(k’z)/h(gl)(k’zl)] + o)

+9(0A_<_z§z1)t (kz)/jg(kzl).

g
After matching this wave and its derivative at point 2z; we
find amplitudes r] and ty . The same calculgtlons for t?e
potential (39) with z, # » but z - gives us amplitu-
des ré and t§ at the point z,. Now after the same reason-
ing that led us to expressions (10) and (11) we obtain th?
transmission and reflection from the total nut-shell barrier
(39).

— - + —
Tp=tieoty/(1-eorgeory), (41)

7 =p+theo re ot Te ot (42)
Rp =to+toegirieqot o/(1-epr,0,1,),
where transmission functions e;, and €g descri@e propa-
gation of the wave from point 2z; to point 2z and.ln oppo-
sit direction, respectively. In the preceding sections they
were exponentials, now they are

@ @
eyp =Jp (kz1)/jp(kzy) , e21=hE (kzg)/hg (kzy) . (43)

With the help of amplitudes (41),.(42) the wave fu?ction in
the region z>z and 0<z<z can be written in the

form

2 1
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fp=0(222,)[jy (k2)/j,(kz,) +R;h§“(kz)/h§1><kz2 ) & .

+0(0gz<2)) Tpjp (kz)/jp(ke,) .

In the above considerations we didn't pay attention to the
fact, that the radial axis is only half infinite, and it is
not necessary since it is taken into account automatically in
the propagation functions.

Now we can easily investigate resonance scattering and the
decay of resonances in the case of a nut-shell potential. For
scattering it is seen, that Ty is the amplitude of the func-
tion inside the nut shell. The position of resonances can be
determined from the maximum of Ty -

9. CONCLUSION

Recursive relations have a wast range of applications.
They give, for instance, a new approach to the solution of
one dimensionalSchrddinger equation in any potential. They
help to solve any second order equation. But they are helpful
not only for calculation. They are very helpful for presenta-
tion and interpretation of the results. We can refer an in-
terested reader to some additional literature "2-5/ , to be
more acquainted with them.

Author 1is very grafeful to V.V.Burov, R.Golub, F.Levcha-

novskii, M.Popov and A.Steyerl who made his work on this paper
so muth pleasant.
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The essence of the recursive relation method is pre-
sented. For illustration of its capabilities it is shown
how to use it to get the one—dimensional Schrddinger
equation solution with stepwise and per%odic potential
(halfinfinite and finite). The application of this method
to such problems as molecular gas flow in pipes and par-
ticle scattering on spherically symmetric potential is
also demonstrated.
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