
17 KOll. 

t ____ 

J S~O E4-87-880 

V.K.Ignatovich 

TOE REMARKABLE CAPABILITIES 

OF RECURSIVE RELATIONS 

Submitted to "American Journal of Physics" 

Peaaxrop :3. B•MBamKeBH'I. MaxeT P .):l. Cl>OMHHOH • 

Ha60p J1.M.KameXJIe~OBoH. 
Ilonrracaac B neqa1t. 06. o1.88. 

CZ»0pMa16Ox90/16. O<pceTH8R ne'l."•. )'4.-H3,n.nHCTOB 1, 13. 
TMpa>K 425 • 3aKEl3 40064 • 

").Q.aten.cJ(HA 9T,uen Q61»énHHeHHOr()HHCTHTym IUlepHblX Hccneaosamdt .' 1987....;;..;;. _ 

ofi beAMHeHHbl M 
MHCTMTYT 
RAe pHbl x 

MccneADB8HMM 
'I AYfiH8 

~ 

. ..uy6Ha MocKoeCKoA o6naCTH. 



I 
I 

\ 
l 
I
i 

1. INTRODUCTION 

The recursive relation approach helps one to solve many 
physical problems. The realisation of this fact is reflected 
in the appearing of conference proceedings '1/ devoted totally 
to the recursive relation applications. Here we touch only 
one aspect of these relations, not considered in!l!. 

It was long known, that the recursive relations make it 
very easy to handle a stepwise potential in wave mechanics or 
in optics. But it occurs that they are very useful for an 
analytical solution of such problems as wave propagation in 
periodic potentials and even in the case of a molecular gas 
or ultracold neutron diffusion in tuhes. 

~ I1 r I 

To remind how recursive relations work we first consider 
the reflection of a particle from a rne-dimensional rectangu
lar potential in quantum mechanics. Then we shall consider 
d more general stepwise potential and a periodic potential. 
After that we shall go to diffusion problems and show how to 
solve them for the case of particle diffusion in linear and 
branched guides. And in the last section we shall consider 
wave problems with a three dimensional spherically syrnmetric 
potential. 

2. SCATTERING OF A SCALAR PARTICLE FROM 
STEP POTENTIAL IN QUANTUM MECHANICS 

A ONE-DIMENSIONAL 

Let us consider a step potential 

U = tio O(x :: O) , (1) 

where ~ is the height of the potential, and 8-function is 
equal to 1, when its argument inequality is satisfied, and to 
O in the opposite case. Consider a particle with a wave vec
tor k, incident on this step from the l e f t . It is described 
by the wave exp (ikX) . This particle can enter the region 
x> O wi th the ampI i tude t+, or i t can be reflec ted back to 
x <O with the amplitude r+. The total wave function can be 
represented by the ~es.siQJ1 

Ib'htanI1N-U1~fi r:»CnrfJT I 
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'11 = e(x.~O) [ exp(ikX) +r +exp( - íkx ) 1+ t +e(x~O) exp(ik "x) , (2) 

where k' is the wave-vector inside the potential: 

(3)
k'=vl k 2 - U O • 

Here we take h 2/2m =1, where t is the Plank constant anei 
m - is the mass of the particle. Amplitudes t+ and r+ must 
be determined from the matching of the wave function (2) and 
its first derivative at the point x = O. The match i n8 gives 
two equations 

b ) k(l-r+)=k't+, (4)a) 1 + r += t+ , 

whose solution lS 

2k/(k + k ") (5)a) r+=(k-k')/(k+k'), b ) t+ = . 

The sign + over amplitudes r and t means, that th~ inci
dent wave propagates from left to right. Of course we can 
consider the opposite propagation as well, when the incident 
wave comes from the potential region x ~ O • But to obtain 
the amplitudes r - and t - in that case, it is not necessary 
to solve the equations again. It is enough to replace k with 
k' and vice versa. So: 

b ) t-=2k'/(k'+k). (6)a) r-=(k'-k)/(k'+k), 

3. SCATTERING OF A PARTICLE ON A RECTANGULAR POTENTIAL 

Now we are ready to consider the scattering from a rect
angular potential U = uo8 ( O-c x x I ) • Of course we can write 
down the total wave function with four unknown coefficients: 

'I'=e(X.~O) [exp(ikX) +a1 eXp(-ikx)1 + 
(7) 

+8(O.$x$1) [a exp( ik 'X) +a3exp(-ik'x)1+a4e(x~1) exp(ikx),
2 

and match the wave function and its derivative at two points 
xl =~ and x2 =1. Then we shall have four equations with four 
unknowns, and it is a very tedious work to solve them. But it 
is possible to find the reflection and transmission amplitu
de s for a rectangular potential much more intelligently. It is 
just here where we meet the recursive relations for the first 
time.
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Let us suppose that the part of the wave function inside 
the potential, describing the wave joing to the right, just 
before the point x ' is equal to l/J 2 • It is reflected from

2 
the right edge of the potential with the amplitude r~ (which 
is evidently equal to r- in (6a)) and spreads to the left 
with the phase factor exp[ik'(l-x)]. Hhen it reaches the 
left side of the potential this phase factor becomes 
exp (ík "O . Here the wave is reflec ted again wi th the amp
litude r 1- (which is again equal to r - (6a)) and spreads to 
t he right acquiring the phase factor exp(ik'x) • Near the 
right edge of the potential this additional phase factor 
becomes equal again to exp (ik'f) • Now after two reflec
tions the wave :(,2 is transformed to rlrteXp~2ik'el;2 . 
This makes a part of the original function ~2' The other 
part is given by the incident wave, which enters the poten
tial region from the left side vacuum with the amplitude tt 
equal to (5b) and then spreads to the right edge of the po
tential, acquiring the phase factor exp(ik'x) ,which be
comes exp (lk' f) near the point x 2 • If we put the value of 
the incident wave ~ in the vacuum near the point x 1 to be 

O -+ • d .equa I to 1, then for t/J we can wr i t e own the equa t i.on : 
2 

-+ 2-+ 
rf;2 = exp (i k ' f) t + + (r- ) exp (2 i k ' f) l/J2 • ( 8 ) 

The solution of this equation lS 

~ =t+exp(ik'f)/[ l-r 2exp(2ik'O]. (9) 

(Rere for brevity we abolished the - sign over r). Now we 
have everything to calculate transmission and reflection for 
the rectangula~ barrier potential. Indeed the transmitted 
wave has an amplitude equal to T = t~~-+2 . But t ~ evidently 
is equal to (6b), so, using (9) we have 

T = t - t + exp (i k ' e)/[ 1 - r 2 exp(2 i k ' O1. (10) 

To find the reflection amplitude R it is necessary to add 
the amplitude r- of the incident wave reflected from the 
left edge of the potential and the contribution of the wave 
l/J~ , that after reflection r; reaches with the additional 
phase factor exp (ik'f) the left side of the potential and 
with the amplitude t 2 goes over the left side into the 
vacuum, Since t2 is equal to (6b); and r~ , to (6a), we 
easily obtain: 

R = r + + r - t - t + exp (2 i k' f) / [ 1 - r 2 exp( 2 i k ' e)] • ( 11 ) 
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For the rectangular potential ir Í9 possible 
expression. From (5) and (6) it follows, that 
and r- =-r+= -r , so we insert these relations 
obtain 

R = f [ 1 - exp (2 i k 'i) 1I [ 1 - r 2 exp (2 i k ' f )] . 

4. A MORE COMPLICATED RECTANGULAR POTENTIAL 

to simplify this 
t-t+ = (1- r 2) 

into (11) and 

( 12) 

e" 

Now,1et us consider the potential,shown in the figure.Again 
we can write down the total wave function with six unknown 
coefficients and find them from the system of six equations. 

But we can proceed more in
telligently.Let us introduce u 1 an infinitely narrow gap 

I 
I I 
I I 
I I 
I I 

between two rectangular po
tentials with a zero poten
tial inside it. Such a rnodi
fication will not lead to any 
physicai cansequences, but 
drastically simplifies mathe
matics. Indeed, we know the 

a E b X transmission and reflection 
. ampl i tudes T 1,2 ,R 1,2 

for partia1 rectangular potentials. Now let us imagine our
se1ves to be inside the narrow gap. Since the width of the 
gap is.infinitesimal, the phase factor for the wave spreading 
in it from left to right and vice" versa is always equal to 
unity. So for the wave ;$2 incident on the right wall of the 
gap we can write down by analogy with (8) the 'equation: 

-t -t 

t/J2 =T1 +R1R2tP2' (13) 

whose so Lu t i on is t/J~ = T1 I[ 1 - R1 R2] • To find total 
transmission and reflection ampl i tudes we proceed by analogy 
with (10), (11) and this leads to: 

2 
a) T12 = T1T2 I [ 1 - R1R2 1 , b) R12 =R 1+R 2T 1/ [ 1-R1R21. (14) 

It is easy to see, that T 12 is synnnetric wi th respec t to 
the indices permutation, that is, it does not depend on the 
direction of incidence of a primary wave. But doesR12 
depend on this direction. It is not difficult to prove that 
for the real potential differs from only by aR 12 R 21 
phase factor. We shall not do that here (see for 
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instance /2/ ), but in the considered simple case this 
fact is easy to verify. 

5. A PERIODIC POTENTIAL 

Now, let us consider a sy~etric half infinite one-dimen
sional periodic potential and introduce infinitesimal gaps 
with zero potential between the periods. We suppose that the 
transmission t and reflection f amplitudes for one period 
are somehow known and find a reflection amplitude R of 
the whole potential. 

oo 

To do that let us look at the relation (13). It can be 
written here also for the first gap with the replacernents: 
r , t for R 1 , T1 ,and R oo for R 2 • Then, to get the 
reflection amplitude for the whole potential it is only 
necessary to make the same replacements in (14b): 

Roo=f+t 2 
R oo / [ l - rR oo ]. (15 ) 

But now it is not the final expression. It is an equation, 
which is obtained due to the fact, that the reflection from 
the whole infinitely long potential and the potential (also 
infinitely long) without one period is the same. The equation 
(15) is of the type: 

2 
x - 2px + 1 = O , 

and its solutions can be represented in the form 

X 1,2 =[v'P+1 ·±vp-l1/[Vp+l +Vp-l]. 

So the solution of the equation (15) looks like Fresnel coef
ficients for the reflection of electromagnetic waves from a 
plane surface :. 

2 2' 2 2 2 2 2 2
R =[V(f+l) -t -v(r-1) -t ]/[v(r+l) -t +V(r-l) -t ]. ( 16)00 

\ 

The signs are c ho sen in such a way, that R 
oo 

goes over to 
zero for a fictive potential (r = O). 

Not only the reflection amplitude is of interest for a 
periodic potential but the Bloch wave vector also. It is well 
known, that the wave function t/J(x) inside a periodic poten
tial can be represented as t/J (x) = cP (x ) exp (iqx) , where 
~(x) is a periodic function with the same period as the 
potential, and q is the Bloch wave vector. Ta known the 
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function ~(x) it is necessary to solve the Shrodinger a) r==-pexp(ikf) I(p-ik), b ) t = - i k exp (i kf ) .I (p - i k ) . ( 21) 
equation and specify the potential of a period. But here 
only the reflection and transmission amplitudes of one period 
are supposed to be known, so we do not pretend to find the 
total function ~(x) , nevertheless we can easily find the 
Bloch.wave vector, and infinitesimal gaps, introduced between 
periods, are very useful for this purpose. Indeed, in the 
gaps the potential is known - i t 'is equal to zero, so the 
wave function is also known - it is a superposition of two 
plane waves, going in opposite directions. But due to peri
odicity this wave function is almost the same in alI gaps, 
differing only by a phase factor exp I í qf n) , where nf = 
= xl-x2 is a distance between two gaps, e - is a period; 
and n , a number of them. 

Now let us find an equation for the phase factor ~p(iqE). 

In the n-th gap let us denote the wave, going to the right, 
by t/J.4 and the wave, going to the left, by $n . Of course, 
fromnperiodicity it comes, that 

4 -+
 
+- ....
 

t/J =exp (t qf ) t/; l' (17)
n ·n-

But t/;4 =r~ +trl 1 ' and ~ =rrl+t~n+l . Using the 
n )1 n- n n -+ 

relations ~17) we obtain the system of two equations for t/J 
~ n

and t/J. : 
n 

l/J4 == r ~ + t exp ( - i qf);; ,
n . n n 

<- (18)-+ 
t/; == r t/; + t exp (i qf) t/; • 

n .n n 

This system has a solution only when 

[ 1 - t exp( - i qf) H1 - t exp ( i qn 1- r 2 == O . ( 19) 

This is an equation we wished to have. Its solution can be 
represented in the ~ame form, as (16): 

. ' 2 2 2 2 2 2 2 2]exp (1 qO == [ V( t +1) - r +V( t -1 ) - r 11[ V( t+1) - r -V ( t -1) - r. ( 2O) 

From two solutions of (19) we have chosen the one, which 
for the fictive potential (r = O, t = exp (ike» goes over 
to exp(ikf). 

It is very easy to check these formulas by applying them 
to t~e Kronig-Penney potential. But first it is necessary to 
decide. how to locate the period. If we want to have' a sym

It is not difficult to put (21.) in (16) and (20), and we 
leave it to the reader. We would liké only to note, that if 
we choose asyrrnnetric period, i. e. U = 2p. ô(x) .e(O ~ x ~ 1).' 
then it is necessary to discriminate between reflection r = 
= exp(-ikOr and r = exp(ikOr for a wave incident on 
this potential from the left and the right, respectively. For 

,' an asyrnmetric period the total reflectio~ will alsp be asYm
metric, but the phase relation between R andR is theoo oo 

-+ +I: s ame as tha t between r and r.".
]

Till now we have considered the half infinite potential. 
What can we say ab0ut a potential with a finite number of 
periods? The answer to this question is amusingly simple. 
Indeed, suppose, our potential has only N periods, then 
reflection and transmission amplitudes can be written in full 
analogy with (10) and (12): 

T N == (1 - R:') exp(i qL) 1 [ 1 - R:' exp (2 i qL) ] , 

(22)
RN=R oo[ 1-exp(2iqL)] I[ 1-R~exp(2ikL)]! 

where L = NE . To obtain these relations it is only neces
sary to note that half infinite potential with period f is 
also periodic with period Ne , so we can write down the ex
pressions (16) and (20) in terms RN and TN instead.of r 
and t. After that we can resolve them wi t h respect to R. N 
and TN and thus come to expressions ~22). For an asymmetric 
potential the phase relation between RN and )iN is the same 
as between r and r , and t r ansm i s s.i on ampli tudes are identi
cal. 

6. DIFFUSION EQUATION 

'I

In the case of wave problem it is very natural to disc~ss 

waves that are going back and forth, are reflected and trans
mitted. In diffusiDn problems there are no waves, neverthe
less, it is possibl€ to apply to them the same terminology. 
Indeed, let us go back to the wave reflection, and consider 
a high rectangular potential, so high, that k2 

.< UO (3). In 
that case the phase factor becomes a decreasing exponential 
function. Nevertheless, we can follow the same way, and we 

( 

Come to the correct expressio~s for reflection and transmis
metric period, its potential must be chosen to be U = sion ampli tudes.. 
= 2p 8 (x -1/2) e(0 ..:5 x S 1) . • The reflec tion and .transmission 
amplitudes for this potential are: 
6 7 

I 



Let's, .for example, consider a molecular gas propagation 
along pipes (see, for instance/3/ , chapter 4). It is describ
ed by the one dimensional diffusion equation 

2 2
Dd n/dx =0/7, (23) 

whose .so l.u t i on is n = exp (± x/f) , where D is diffusion 
coefficient; n , linear density of a gas; r, life time of an 
atom if it can decay or be captured by a wall of the pipe; 
and i, diffusion length: f2 = Dr. To find transmission of a 
pipe with length L, it is necessary to find reflectian and 
transmission at one end of a half-infinite pipe. Now we shall 
do that. 

Let us suppose, that from outside on the opening of a 
half-infini te tube, placed a t x ~ O ,is incident a gas iso
tropic in the forward half sphere. The volume density of the 
ga s is no, the velocity of its atoms is v, the area of the 
opening is supposed to be equal to unity, so the incident 
flow is equal to • A part of this current is reflecnov/2
ted back outside. We suppose the reflected particles to be 
isotropic in the backward half sphere. We denote its volume 
de ns i.ty as r+no ,so r" is a reflection coefficient and a 
reflected flow is equal to r+nov12 . 

The solution of the diffusion equation inside the tube can 
+ ' 

be represented in .th e form: t+n Qexp (-xl e). So t plays the 
role of the transmission coefficlent. Since the diffusion 
flow is defined to be -D dn/dx , we can match the flow and 
the density at the opening and thus get two equations to 
deter~ine r+ and t+. 

a) l+r+=t+, b ) l-r+==qt+, where c) q=2DIEv. (24) 

The solution of these equations is 

a) r+ =(l-q) 1(1 + q) , b ) t + = 2 1(1 + q) . (25) 

In the case, when incident flow goes from inside of the tube 
we write down the density of gas atoms inside the tube in the 
forro: 11 = 0o[exp(x/f.) +r-exp(-x/E)] , and outside - t-no' 
Equations analogous to (24) have the solution: 

a) r ~ = ( q - 1) I ( q + 1) • b) t- =2q/(q+l) . (26) 

Now, if we repeat alI the way, which brought us to formula 
(10), but instead of the phase factor use the propagation 
funstion exp(-x/f) ,we come to the expression: 

8 

I' 
li T=t+t-exp(-L/E) I[ l_r 2exp(-2L/f)], (27)
J. 

(
 

which gives the transmission of the t ube with length L.
 
2;1 (Here r = r+ ). Since t+t- = l_r ,the expression (27)

li can be written in the form similar to (22) 

• T = exp ( - k L) (1 - r 2) I [ 1 - r 2 exp (-2k L)] , (28)
I 

f' where k = l/f • The same can be said about the total ref
~ ( 

lection R of the tube:I
II 

I R==r[l _eXp(_2kL)]/[l!.'-r 2 exp ( - 2 kL ) ] . (29). 

i 
! 

7. BRANCHED GUIDES 

Let us suppose, that our guide is composed of two diffe
rent links I and 2 (for simplicity we supp0~e them to have 
the. same cross sections), and imagine a very narrow gap 
introduced between these parts. The density of atoms N in
side the gap can be presented in two ways 

+- ~ (30)
N == T1 No + (I + R 1) N 1 = (1 + R:z> N2 ' 

where N represents the part of t he density, which corres
ponds to 

1 
gas atoms, moving in the gap towards the link I; 

~and N , towards the link 2, Ri and Ti are total reflection 
2and transmission coefficients of two links, and we denote the 

density of primary atoms, incident from the left on the 
begining of the first link, by No' 

The conservation of the current in the gap leads to a 
second equation to determine NI and N2 

+- --+ (31)T 1No = (1 - R 1) N' 1 + (1 - R 2) N 2 . 

From (30) and (31) it comes out that 

--+ -1 +- --+ -1 (32)TtN O' N1 =:R2N2=R2(1-R1R2) TINo'N 2=(1-R IR 2) 

I, From expressions (32) we directly obtain the reflection and 
transmission of the two links chain 

,~: 
+-

R 1R2) 
-1 

(33)R 12 = R 1 + T lR 2 (1 - T1 ,
I RI2No=R1No +T1N1 

-1 (34)
T 12 = rr2 ( I - R 1R 2) T 1T12NO=T2N2 ' 

9 
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To generalise these expressions to the case of many links 
guide is trivial. It is not difficult to include here some 
diafragms or a stepwise change of the .guide's radius. We 
leave this matter to the readers. We would like only to note, 
that formulas (33), (34) are written in such a way to be cor
rect in the case of a nonscalar molecular gas diffusion, when 
R artd T are not the numbers, but matrices. 

Now let us consider the branched guide, i.e. consider a t 
OI 

vertex, connecting, for instance, three links, numbered 1, 2 
and 3. To find transmission T12 in the presence of branch 3 
we introduce in the vertex a virtu~l gap, separating alI 
links. A density N of gas atoms inside this gap can be pre
sented. in a three fold way in full analogy with (30) 

t-- -.. ,J. 

N == TI N 0+ (1 + R I) N I = (1 + R 2) N 2 = (1 + R3 ) N 3" (35) 

where N1 with arrows are the parts of density, giving rise 
to currents, entering links 1, 2 and 3 from the side,of the 
vertex. (Here for the sake of simplicity we suppose the c~oss 
sections of alI the links to be the same). One more equation 
is obtained from the requirement of the current conservation 
in the gap 

t-- -.. ~ 
T1No = ( 1 - R 1) N I +(1-R N +(1-R ) N ,2) 2 3 3 (36) 

To find the three N, from three equations (35), (36) is not 
the problem. For instance, 

N2 =T1 No (l+711)/(1+R2)( 71
1 

+7]2+7]3)' 7]i =(l-Ri)/(l+R i), (37) 

N1 == TI No (1 - 77 - 7] ) / ( 1 + RI) (71 + 71 + 7] ) , (38)
2 3 

To find N~ it is enough to 
(37). Now the transmission 
from the equality: T I2 No 
system from the side of~the 
lity: RI 2NO == nINo + TI N1 . ' 

3 

I 2 a 
transmute indices 2 and 3 in 

,jor instance, is obtainedT 12 
= T2 N2 ,and reflection of the 
first link is given by the equa

8. THREE-DlMENSIONAL SPHERICALLY SYr~TRIC POTENTIAL (. 
l tTill, now al1 the formulas were obtained for the simple 

case when free propagation is described by phase or exponen '\ 

tial function. It is pleasant to find, that the structure of I 

alI the formulas is the same even in a more complicated case. 
Fo~. instance, in the spherically syrnmetric wave equation for 
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free propagation we have two functions: spherical Hankel 
functions of two kinds. (Of course, one of it can be repla
ced with the spherical Bessel function). 

In order not to mix the radial coordinate with reflection 
coefficients we denote the former by z. 

Let's consider a spherically symmetric potential barrier 

U=u e(z <z<z.o) (39)O 1- - '';' 

and a particle, incident on it from the left. First we shall 
put z 2 ~ 00' • For e..;.th harmonics an incident wave is des
cribed by h~I)(kz)/h~)(kzl) ; reflected, by r1ie(kz)/je(kz1); 
the wave func t ion inside the barrier, by tth<p (k z) Ih(P(k "z1) , 
where k' = (k 2 _ U ) I / 2 • The amplitudes rt and tt areO
determined from the matching of the wave function and its 
derivative at the point zl • Now, if the ~ave is incident on 
the step at zl from inside of the barrier, then the wave 
function can be represented as 

f (z) = e(z ~ zl) [j'e(k~z)/ie(k~zl) + rlh~I)(k/Z)/h~I)(k~zl)] + e 

+ e(o'~z ~ zl) t ~ i e ( k z) / j e (k z 1) , 
(40) 

After matching this wave and its deriva tive at point zl we 
find ampli tudes ri' and t 1. The same calculations for the 
potential (39) wíth z2:/= 00 but z1~-00 gives us amplitu
des r~ and t ~ at the point z 2. Now after the same reason
ing th~t led us to expressions (10) and (11) we obtain the 
transmission and reflection from the total nut-shell barrier 
(39). 

- - - +-
Te = t 1e 12 t 2 I (1 - e 12r 2e 21rI). , (41 ) 

R'P. = r; + t ~e 21r l'e 12 t ~ / ( 1 - e 12r; e 21r~) (42)
I 

where transmission functions and e 21 describe propa8 12 
gation of the wave from point z2 to point zl and in oppo
sit direction, respectively. In the preceding sections they 
were exponentials, now ,they are 

• ° (1) (1) 
8 12 =Je (kz1)/Je(kz2) (kz1) , (43)I 8 21 =h (kz 2)/h ee 

With the help of amplitudes (41),. (42) the wave function in 
the region z> z 2 and Os,z s.z 1 can be wri t ten in the 
form 

11 
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Cf ==fJ(z~z2)( jr (kz)/j f(kz 2 ) +Reh~1)(kZ)/h?)(kZ2)l c+

(44) 
+ O( OoS z s: z1) T f-:-j f (k z) / j e(k z1 ) 

In the above considerations we didn't pay attention to the
 
fact, that the radial axis is only half infinite, and it is
 
not necessary since it is taken into account automatically in
 
the propagation functions.
 ..,Now we can easily investigate resonance scattering and the ~ 

decay of resonances in the case of a nut-shell potential. For
 
scattering it is seen, that Te is the amplitude of the func

tion inside the nut shell. The position of resonances can be
 
determined from the maximum of
 Te. 

9.	 CONCLUSION 

Recursive relations have a wast range of applications. 
They give, for instance, a new approach to the solution of 
one dimensionalSchrodinger equation in any potential. They 
help to solve any second order equation. But they are helpful 
not only for calculation. They are very helpful for presenta
tion and interpretation of the results. We can refer an in
terested reader to some additional literature ~-5/ , to be 
more acquainted with them. 

Author is very grafe fuI to V.V.Burov, R.Golub, F.Levcha
novskii, M.Popov and A.Steyerl who made his work on this paper 
so mu~h pleasant. 
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HrHaTOBHq B.K. E4-87-88ü 
3aMeqaTe~bHble B03MO~HOCTR peKyppeHTHb~ cooTHomeHHH 

OTIHC~BaeTcH cymHOCTb MeToga peKyppeHTHb~ cOOTHomeHHH 
H HnnrocTpHpyeTcH rrpHMeHeHHe 3Toro MeToga Ha rrpHMepe peme
HHH ogHoMepHoro ypaBHeHHH illpegHHrepa co cTyrreHqaTb~ TIO~ 

TeH~HanOM, c rrony6ecKOHeqHbIM H KOHeqHb~ rrepHogHqeCKHM rro_ 
Te~~HanOM, a TaK~e Ha rrpHMepe MoneKynHpHoro TeqeHHH ra3a 
rro Tpy6aM H pacceHHHH qaCTH~ Ha C~epHqeCKH CHMMeTpHqHOM 
rrOTeH~Hane. 

PaõoTa BbIDonHeHa B ITa6opaTopHH HeHTpoHHOH ~H3HKH OHHH. 

Ilpenpaar 06'he.z:UlHeHHOrO HHCTHTyTa R,lXepHhIX accnenoaaaaã. .uy6Ha 1987 

Ignatovich V.K. E4-87-880 
The Remarkable Capabilities of Recursive Relations 

The essence of the recursive relation method is pre
sented. For illustration of its capabilities it is shown 
how to use it to get the one-dimensional Schrodinger 
equation solution with s~epwise and periodic potential 
(halfinfinite and finite). The application of this method 
to such problems as molecular gas flow in pipes and par
ticle scattering on spherically symmetric potential is 
also demonstrated. 

The investigation has been performed at the Laboratory 
of Neutron Physics, JINR~ 
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