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| . INTRODUCTION

The widespread occurrence of boson-like features in nuc-
lear collective spectra has stimulated a great deal of inte-
rest in various kinds of boson descriptions ‘¥ 19/ | both at
the phenomenological/! 2/ and microscopic ’3-19/ levels. All
attempts to derive microscopically the boson description of
the underlying fermion system are centered around the so-
called mapping procedure’%’ whose crucial point is the tran-
sition from the fermion space to the boson space.

There exist several mapping procedures /3-19/ | among which
the Dyson transformation’/3/ seems to be the most attractive
one. The main advantage of the Dyson mapping is its finite-
ness. The images of the fermion operators are expressed as
finite series in the boson operators, so that there is no
need to neglect the higher~order interaction terms whose sig-
nificance is often hard to assess ‘4/. This attractive property
is achieved at the expense of allowing the boson Hamiltonian
to be nonhermitian. In spite of this fact, the Dyson mapping
has become very popular in recent years /1118’ the main as-
sertion being that the nonhermiticity of the boson Hamiltonian
is in fact not serious drawback/l&ls/,ﬁowever, when calcula-
ting the electromagnetic transition probabilities in this
approach, the correct normalization factors of the boson wave
functions require an explicit knowledge of the fermZon norm
matrices 712:13/ This is rather inconvenient because one is
tempted to believe/14/ that once the boson images of fermion
operators are found, any sensible microscopic boson theory
must be able to provide all the desired physical information
within the boson space only; i.e. with no additional recourse,
to the original fermion space. For this reason we consider
it preferable to map the fermion Hamiltonian in such a way
that the resulting boson Hamiltonian is both finite and her-
mitian. This is accomplished by transcribing the fermion
Hamiltonian ‘into the particle-hole (ph) form and exploiting
the fact that the ph-operators c+c are mapped exactly onto
one-body boson operators, ma1nta1n1ng at the same tlme their
original propertiesryitir: “THET
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In order for the derived boson Hamiltonian to make practi-
cal sense,it must be treated within a suitable approximation.
We propase to use the mean field (MF) approach’?/ which has
proved to be very successful in dealing with many-boson sys—
tems /19-21/ | As will be seen, the results of our work indicate
that this choice is indeed reasonable. Since any calculation
in the boson space may in general be accompanied by the occur-
rence of nonphysical (spurious) solutions’14:1%/ ye present a
brief discussion of this problem as well.

2. BOZONIZATION OF THE FERMION SYSTEM

We consider a system of n, protons and n, neutrons (n, =
=n, = even). The nuclear Hamiltonian is taken to have the
general form

=3 T (1)

~ 1 + .+

HF > chacB+_—a§y8 VaBy(Scachacy,
where the indices @, 8, y, § run through a suitable complete
set of single-particle states and cz(ca) are the correspon-
ding creation (annihilation) operators of nucleons. The quan-
tities Tqg stand for the matrix elements of a one-body opera-
tor, such as the kinetic energy, while the VapBy$ represent
the matrix elements of an effective nucleon-nucleon interac-
tion. These matrix elements are assumed‘to be real and to
satisfy

VaBy5 = ‘VBayS = "VGBSY (antisymmetry) (2)
VaByB = Vy3aB’ TaB= TBa (hermiticity). (3)
Using the relation

+ + + + + .
caCBCSCy:ZBBSCacy 'caCSCch’ (4)

we can rewrite (1) as

Hp Hg +Hy, o (5a)
where

i 1 + (5b)
H, GEB (TaB g 5 VayBy)cac,B’

31 —-—1— ¢t e c+c . (5¢)

int aﬁyS aBy3 a 5B

If we choose the single-particle states to form the Hartree—
Fock (HF) basis, the one-body term (5b) is clearly diagonal
because

d - 6
TGB&L}%,V = € & (6)

by definition of the HF basis. However, in cases when the
single-particle states are restricted to those taken from
neighbouring shells only,H o may be diagonal in the harmonic
oscillator basis as well’5 We make this choice here, so that
Hp acquires the form

-~ - 1 + + (7)
H_=3 ecle - 3 V ctesche
F~ 0 aa’a A aByb aByd “a 8 "By
and the single-particle states g, 8, . are characterized

by the oscillator quantum numbers in the isospin formalism’?2/:

. 1 1
= (na; Ea s Ja, _%, ma, Ta), where Ta=+_.2_(7a = __2__) fOr

neutrons (protons). We will also use the letter a to denote

the same set except mg and 7, N
Now, corresponding to the fermion pair operators c c

c £ , we introduce a set of boson operators b} aB B Wthh

obey the following antisymmetry and commutation relations:

+ _ + 8
baB_-bBa, (8)

[baB’ba'B’]:[bt:E' b:»B/] =0, (9)
[baﬁ,b;,ﬁ,‘] =8 8[33’-8aﬁ'8[)’a' .

The boson vacuum [0); is defined by the condition

bgl0)y =0. (10)

In the Dyson representation, the boson images of the bifer-
mion operators chBcan be expressed as /37

+
(heg)y = zy by, - (i)



The boson Hamiltonian Hg, corresponding to the fermion Hamil-
tonian (7), is then simply

T 1 . + +
HB—EE,(C ca)B '—Z- b VGB)/B (Ca08)B (CBCY)B. (12)
By substituting (11) into (12) and arranging the boson opera-
tors in the interaction term into the normal order with res-
pect to the boson vacuum (10), we obtain

~ 1 + _+

H = = -= = 3V b b, bsb , (13)

B Byd €aByd aB }'5 4 4By po aByd “ap Pobp yo

where ’
- . 1 14

6(13)’8 = 838 [!a Bay 4 %Vapypl'f' 4VGB)’3 . ( )

With the help of (2), (3) and (8) it can easily be verified
that the boson Hamiltonian (13) is hermitian.

As is well known /22,14,15/ | any boson image of a fermion
Hamiltonian has not only the-solutions corresponding to actual
states of the underlying fermion system but also the spurious
ones which are associated with the overcompleteness of the
boson basis. However, since the operators (11) commute with
the projector onto the physical boson subspace /3:.22/, it is
seen from (12) that H_, does not mix the physical and spurious
boson states. Consequently, these two types of boson states
are strictly separated from each other,

As a next step, we introduce a unitary transformation to
bosons with good angular momentum and isospin

1
(@b = — 3 < m mgl JM> <—L Lo iTebt ,
JTMr \/2 mamﬂj j 3‘ Ta TBI am merB

rarB N (15)
where the quantity <....|..> is the usual Clebsch—-Gordan coef-
ficient. The operators (15) with T =1, 7 = 1, -1 correspond
to the neutron-neutron (wv)and proton-proton (mr) bosons,
respectively, those with r= 0 represent two types (T = O,

T = 1) of proton-neutron (#v) bosons., Inverting the expression
(15) and substituting into (13), we obtain after some angular-
momentum algebra

fip- = 3 EJ (@b) B |, (cd) +

a.bcd JTM r
JTM 7 abed

1

o JT
p3 DI
3,35353, abeder J1T1I2TatsT3leTy
TyToTgTy JIT (16)

+ % (abedef) x

x (B 4 @0 x B* . 01’ (B, (de) x B

I, T

JT
ToTs (c.f)]

JgTy
Here,

~ J+T-M-r
Bypyr (8D = (9 Byp.y-r a0,

denotes the standard angular momen-—

JT
the symbol [ ... x ...ly
y PPLL 1'Tstands for the scalar

tum and isospin coupling,({
product of tensor operators and

E -=8 8 [(e +¢ ) -

JT (23 + 12T +1) a.fa,’lf‘ l+~1—Van];d§‘7a)
abed ac bd a b 1T 4(2j3-+1) 2
—JT JT J3+J4+T3+T4+T+J JT
Wisgs = Wiogq + () Wieas
(17b)
IE(JLTI). 2E(JQ.T2),
T jetigtK+ J3+J4+S+T3+T4
1234 (abedef) = 3 (=) °
J'T'KS
(17¢)
P N L L o 1 1 7
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In (17), 3 =2y +1, {... } is the 9] symbol and v’ b q is

the angular momentum— and isospin—coupled version of the mat-
rix elements V,g.s.
Summarizing this section, we have constructed a boson
Hamiltonian [eq.(16)] which
i) is an exact image of the original shell-model Hamiltoni-
an (1);



i) preserves its hermiticity;

iii) contains at most two—-body boson interactions;

iv) does not mix the physical and unphysical (spurious) bo-
son states;

v) has the isospin invariant form, which enables one to
include two types of mv—bosons in addition to the usual
mr— and vv -bosons.

To our knowledge, no use of the boson Hamiltonian with all

the five properties has been reported in the literature thus

far.

3. APPROXIMATE TREATMENT OF THE BOSON HAMILTONIAN

Although the Hamiltonian (16) has the desirable properties
given above, its exact diagonalization is quite a formidable
problem which can only be handled in very special situations
and for a substantially limited number of bosons. Moreover,
even if an exact treatment is still possible on a computer,
the underlying physical picture is very obscure due to the
tremendous amount of terms arising from the diagonalizatiom
procedure. A way of circumventing these difficulties consists
in the use of approximate mean field (MF) techniques’/% 19-22/
that are based upon few relevant physical ingredients and at

the same time include many different degrees of freedom on an

equal footing. The MF approach in the boson picture starts
from the Hartree-Bose (HB) approximation to the ground state
(GS)/z/. For the present system of n, protons and n, neutrons
(n, = n,= N= even), the GS wave function is assumed to be
represented by an axially symmetric condensate of the form

1 +\N
1G8), =—==(B,)" | 0) , (18)
VN!
where
+ (8) +
Bg= T %@ Bypg, G (19)
S x| ® -1, 20
JTab

.

The coefficients x'¥¥GH» are determined variationally by mini-

mizing the expectation value of the boson Hamiltonian (16) in
the model ground state (18) under the constraint (20). This
. leads_.to the following system on nonlinear eigenvalue equa-

[S

tions for (&

JTab
(8) (8) 3 (8) (21a)
S Kirap,3'17ca Xgrpr @0 =2 X @0,
I’r’
cd
(8) JT _
3Tab, 371 cd = 0737 011 B anea +(N-1)3 gy % (21b)
- (€:9]
© ITI'T) x Bk (eh) Xy (),
) EJT ef'h wabcem(JlTngTz Xnm JoTo
I1TIeTe
where
- LR
(0) ‘T)= 3 W L, (ecafhb) x
Woveem Oy Ty IpTp JTI T S T T T IT (22)
x (AU R <3 03401 LO> <J,070{L0O> <T,0T"0[RO> <T,0TOIRO>
with W given by (17b,c).
In the second step, the MF approach considers the one-
boson excitations of the condensate (18),
N-1 (23)
[iK) =~ B (B )T 100
v (N -1
where
(24)

+ (iK) * b
B.. = S ¢ (ab) BJTKO (ab) .
iK JTab T

The coefficients ¢<}¥Ram are determined by the requirement
that the states (23) be eigenstates of Hg, i.e.

~ . (25)
HB‘IK)B =& iK!IK)B
This leads to
(X) (iK) (iK) (26a)
2 Kiran, 5717%a ¢'J,T,(0d) =6 v, @D,
J'T cd
(X) JT (8) d
KyTen, 3717ca = 853871 Babea +(N-1D = xpq (6D x
ef 26b)
1, T IpTy (
(8 (8) (K) TITIT J"T).
<[ x ; 2(l’b) +xJ2T2(Ia)] waecfbd J IR A



Note that (26) represents a system of linear equations for
¢?¥)(ab) because the matrix K??abJ’T'cdis fully specified
by the quantities arising from the GS calculation (x?@(a@).
In the following we will consider only the lowest (i = 1)
solutions of (26) with K = 0 and K = 2, corresponding to the
so-colled B~ and y-bands, respectively

To proceed further, we must restore the spherical and
isospin symmetries which are obviously broken in the boson
wave functions of the form (18) and (23). This is accompli-

shed by angular momentum- and isospin projection according
/22/
to

LT . _n,G8pJ 5 T 27
lGS.JT,MMT)B-nB PMOPMTO]GS)B, . (27a)
i- JT- pipdprT i , 27
li; JT; MM ) nBPMKPMTO \1K)B (271b)

. . 5 d 5 T
where ngs,né are the normalization constants and Pyy‘, P rp-

stand for the projection operators onto states with definite
angular momentum and isospin, respectively. The energies of
different nuclear states |JT> arg then obtained by simply
taking the expectation value of Hy in the states (27a,b)

4. PHYSICAL BOSON STATES

In order for the procedure described in the preceding sec-—
tion to be reliable, we must be sure that the basic boson
states (18) and (23) are indeed physical,i.e.that they are in
one-to-one correspondence with actual states of the underly-
ing fermion system. We therefore construct the following fer-

mion analogues (not images!) of the above-mentioned boson
states:

N
|G8>p =Ngg (M) 10>, (28)
|iK>F = Wm F;LK (F;)N;1 lo>o (29)

where Ngg ﬂix are the normalization constants, |0>p denotes
the fermion vacuum (¢,| 0>p= 0) and the operators~F;,I}% are
given by

rt - (8) + +13T
Fg —ab?r )(JT(ab) [Ca xcb] 00 . (30a)

8

+

Tg=2 ¥
abJT

(iK)

JT
i @b) [c] xc} (30b)

b] KO

with the same coefficients Xégtam,tﬁggkam as in (19), (24).
At the present stage, it should be emphasized that the fer-
mion states (28) and (29) cannot in general be considered as
counterparts of the boson states (18) and (23), respectively.
This is so because the former may be linearly dependent (as

a consequence of the Paul principle) while the latter are
always linearly independent. It is thus necessary to check
explicitly whether or not the linear dependence among fermion
states occurs. This is done by diagonalizing the norm matrix

<CS|GS>F ; <1F{LGS>F

M - <GS|iK>F

m (X)

. i1

(31)

...............

with m§51= <i’KliK>_ and looking at the eigenvalues. In the
case investigated in this paper (i =1, K=0; i =1, K= 2)
we have found (for parameters of the calculation see sect.5)
that none of the eigenvalues is zero, which implies linear
independence of the fermion states |G8>p, |iK> . Consequently,
the boson states (18) and (23) can be put into one-to-one
correspondence with the fermion states (28) and (29), respec—'
tively, therelby showing that they indeed represent certain
physical states of the fermion system considered.

5. APPLICATION TO 20Ne AND 24Mg

As a first realistic example, the general results of the
previous sections have been applied to calculating the energy
spectra of ®)Ne and 2%*Mg. The calculations were performed
using the oscillator model single-particle space consisting
of th? Opg/?, Opy/p 5 0dg/p 5 18,5 and 0dy,, - shells with
energies/=3/ ¢(Opg,5) = -21.8 MeV, ¢ Op,,5) = -15.65 MeV,
€(0dgs/p) = ~4.15 MeV, e¢(184,5) = 3.28 MeV, €(0dg/e) = 0.93 MeV.

As for the nucleon-nucleon interaction, we combine a phenomeno-
logical form/24/ .

9




B(Ii "rj) - -
Vres (1: J) = VO —_—z YL(I) ° YL (]) x
Lify L (32)

x {1 -7 +no() .o () 5{1—u+u?(i)-:(j)}

with a two-body spin-orbit interaction /2%’
. s gf ind nd - d = - .
Voo () = =10 =) x (@3- p P HoW + o () (33)

to get the correct spin-orbit splitting of the single-particle Jq
levels. The parameters VY, n, u, £p, as well as the oscilla-

tor length parameter b, wer%{getermined so that the diagonal
elements of the HF matrix h - = T+ 174 %VLBaBPr°V1de the

best fit to the above single-particle energies and the GS
energy calculated in the present model reproduces the experi-
mental binding energy of a given nucleus. The resulting va-
lues are listed in the Table.

Table
Caleulated parameters characterizing the nucleon—
nucleon interaction (32), (33) and the single-particle
oscillator wave functions (b=mw/h)

Nucleu$ Vo n u 51 52 b
(MeV fm®) (fm)

20Ne 73.6 0.254 0.509 -1.26 0.16 1.65

24 Mg 74.1 0.257 0.490 =-1.26 0.16 1.68

Since the oscillator basis is not translationally inva-
riant, spurious centre-of-mass (c.m.) excitations may enter
the spectrum. In order to avoid them we use the transformed
shell-hodel Hamiltonian 726/

A
1 B . oo
T R e @DV G DL G0

0 Ne Mg
(T-0) (T-0)
8 [ 0. 12
L — 2 + .

4 L 0‘—‘\- 04, T —— 2'
?%~ '— d—---- 0
z 6 B
> 4
© 5 e —y
Ll + _
=z b — b L —Z
Ll.‘ J+ l’-'—q\‘~-<_____ "“
=
S 3 «
{,_
P
S : ,
: l — 12 P b

1t ]

T exp  cALC EXP  CALC

Positive-parity T = 0 levels of 2°Ne and
24Mg. FExperimental values arve from wef!®7 .

where

i ____1_ 1 - Ind 1 2 >
Vc‘m.(lrj) = A{"é‘;ﬂ‘pi 'pJ +—2'-m'(9 l‘i -l'j }- (35)

This transformation is expected to separate the c.m. excita-
tions from the intrinsic ones and it has indeed proved to be
quite successful in some realistic calculations /5/,

~In the figure we compare the experimental positive-parity
T = 0 levels of ?Ne and ®* Mg with those calculated in the
present boson approach. As is seen, the agreement is quite
good, both for 20Ne and for 24Mg. This suggests the potential
power and utility of our approach, at least for the descrip-
tion of the energy spectra in light nuclei.
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6. SUMMARY AND DISCUSSION

In this paper we have proposed a new method for studying
the energy spectra of some sd-shell nuclei using a second
quantized boson representation of the Hamiltonian. The key
ingredients of our approach are the Dyson boson mapping appli-
ed to the particle-hole form of the fermion Hamiltonian and
the subsequent approximate treatment of the resulting boson
Hamiltonian in the framework of the mean field (MF) techni-
ques. The boson states arising from the calculation were
shown to be free from spurious components due to the viola-
tion of the Pauli principle. The angular momentum and isospin
eigenstates were projected out of them and used to calcula-
ting the spectra. The results obtained in this way agree well
with the experimental data and they indicate that the MF
approach applied to a suitable boson image of the nuclear
Hamiltonian provides a promising tool for the investigation
of nuclear structure. The main advantage of the MF approach
consists in that it is able to include many different degrees
of freedom on an equal footing with no drastic increase in
the numerical work involved, which is certainly not the case
in an exact treatment. Although the MF approach is not new
in nuclear physics, its applications to boson problems have
appeared only recently '2.19-21 455 a reasonable alternative
of approximately solving the Schridinger equation appropriate
to the interacting boson model (IBM)/1/. All these MF calcu-
lationg, however, have been performed at the level of the
pure IBM phenomenology, 1.e. with no direct connection to
the underlying fermion problem. The present study thus appe-
ars to be the first report on the microscopic boson MF Theory,
in the sense that it

i) starts from a shell-model Hamiltonian with realistic
single-particle energies and an effective nucleon-nucleon
interaction,

ii) maps exactly the hermitian one-plus two-body fermion
Hamiltonian onto a hermitian one-plus two-body boson
Hamiltonian,

ii1) solves the resulting boson Hamiltonian approximately

within the MF approach, extracting all the necessary phy-
sical information exclusively from the boson picture,

iv) needs no additional procedure to deal with spurious boson
solutions.
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Kyxta P,

Mukpockonuueckuit H£030HHLIN nogxog k onucanmo agep
sd-o6onouku

Mpeanaraerca Mukpockonuueckmit METOA ANA M3YUEHUA Nerkux ARep C opnHa-
HOBbLIM YMCNOM NPOTOHOB M HENTPOHOB B MOQAENHU MHOI WX B3auMmopencTeyumx 6030HOB .
MocTpoeH TOUHMI GO30HHLI 0o6pa3a PepMHUOHHOrO FaMunNbLTOHMaHa M AnHaMuka depMroH-
HOW CuCTeMb MayuyaeTcsa HenocpeacTBeHHo B 6030HHOM npegcTasnenmn B npubnume -

HUM CpepHero nona. flokasano, 4TO NonyueHHsie 6030HHME COCTOAHMA He copgepwar
AYXOBbIX KOMNOHEHT, CBA3AHHLIX C HAPpYWEHWEeM NpuHYMNa faynn, tak uto He Hapo
CTPOMTEL CnowHete Qnu3nyeckne GO3OHHNE COCTOAHMA. MeToa npumenneTcA K nayue-

HWIO 3HepreTnyeckKmnx CNexKTpos EONE, 24Mg M NONyuyaeTcA xopowee cornacume C
IKCNEPUMEHTANb HbiMK AAHHbIMK

PaBora swnonHeHa 8 Nabopatopum TeopeTuueckor tnankn OUANU,

Coobienne Ob6nenunentoro HHCTHTYTa ALlePHBIX Hecnenobakuin. Jy6na 1987
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A microscopic method is proposed for analyzing the properties of liaht
nuclei with an equal number of protons and neutrons in terms of many inte-
racting bosons. An exact boson image of the underlying shell-model Hamilto-
nian is derived and the dynamical behaviour of the original fermion system
is studied directly in the boson picture using the mean field approximation.
The resulting boson states are shown to be free from spurious components,
so that the cumbersome procedure of constructing the physical boson states
can be avoided. The method is applied to calculating the enerqy spectra
of 20Ne, 24Mg and a satisfactory agreement with experimental data is found.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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