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1. INTRODUCTION 

The widespread occurrence of boson-like features in nuc­
lear collective spectra has stimulated a great deal of inte­
rest in various kinds of boson descriptions 11-10/, both at 
the phenomenological lI, 21 and microscopic /3-101 LeveLs , AlI 
attempts to derive microscopically the boson description of 
the underlying fermion system are centered around the so­
called mapping procedure / 4 / who~e crucial point is the tran­
sition from the fermion space to the boson space. 

There exist several mapping procedures /3-101 , among whí.ch 
the Dyson transformation / 31 seems to be the most attractive 
one. The main advantage of the Dyson mapping is its finite­
neSSe The imag.es of the fermion operators -are express-ed as 
finite series in the boson operators, so that there is no 
need to neglect the higher-order interaction terms whose sig­
nificance is often hard to assess 14/. This attractive property 
is achieved at the expense of allowing the boson Hamiltonian 
to be nonhermitian. In spite of this fact, the Dyson mapping 
has become very popular in recent years 111-18/, the main as­
sertion being that the nonhermiticity of the boson Hamíltonian 
is in fact not serious drawback/16-181 • However, when calcula­
ting the electromagnetic transition probabilities in this 
approach, the correct normalization factors of the boson wave 
functions require an explicit knowledge of ~he fermion norm 
matrices 112.131. This is rather inconvenient because one is 
tempted to believe / 14 1 that once the boson images of fermion 
operato~s are found, any sensible microscopic boson theory 
must be able to provide alI the desired physical information 
within the bason space only; i.e. with no additional recourse. 
to the original fermion space. For this reason we consider 
it preferable to map the fermion Hamiltonian in such a way 
that the resulting boson Hamiltonian is both finite and her­
mitian. This is accomplished by transcribing the fermion 
Hamiltonian -into the particle-hole (ph) form and exploiting 
the fact that the ph-operators c:c~are mapped exactly onto 
one-body boson operators, maintaining at the same time their 
original propertie~~lLJJHmJ~~_.Qtjf,êt'ij1Ítianconj ugat í.on, 

~:, 
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In order for the derived boson Hamiltonian to make practi­
cal sense,it must be treated within a suitable approximationo 
We propose to use the mean field (MF) approach/ 2/ which has 
proved to be very successful in dealing with many-boson sys­
tems /19-21/. As will be seen, the results of our work indicate 
that this choice is indeed reasonableo Since any calculation 
in the boson space may in general be accompanied by the occur­
rence of nonphysical (spurious) solutions/14,15/,we present a 
brief discussion of this problem as wello 

20 BOZONIZATION OF' THE FERMION SYSTEM 

We consider a system of n 11 protons and U neutrons (n 11 = v 
n = even) o The nuclear Hamiltonian is taken to have thev 

general forro 

" ""'T + 1 "'" V ++ ( 1) HF = "" a C c Q + - "" Q Ô C c aC ~ c ,
a{3 at: a t-J 4 a{3yô at-Jy a t-J U Y 

where the indices a, (3, y, ô run t hrough a suí nab l e complete 
set of single-particle states and c~(ca) are the correspon­
ding creation (annihilation) operators of nucleonso The quan­
tities Ta~ stand for the matrix elements of a one-body opera­
tor, such as the.. kinetic energy, while the Va{3yô represent 
the matrix elements of an effective nucleon-nucleon interac­
tiono These matrix' elements are assumed·to be real and to 
satisfy 

Va{3 yô = -V{3ay8 = -Va{38y (antisymmetry) (2) 

Va {3yô = Vy8a{3' T a{3= T{3a (hermiticity) o (3) 

Using the relation 

+ + + + + 
ca C {3 CÔ C Y = o{3ô C a C y - C a C ô C f3 c y , (4) 

we càn rewrite (1) as 

HF 
(5a)= Ho + H,int ' 

'\ 

where 

" 1 + (5b)H = ~ (T a + - 2 V (3 ) C C {3'
O a ats 4 ay y a

at: y 

(Sc)fI = - .1.. L V c" C C + C • 
in t 4 a{3yD a{3yô e:t Ô (3 'y 

If we choose tne single-particle states to form the Hartree­
Fock ~HF) basis, the one-body term (5b) is clearly diagonal 
because 

T a + ...1 L V = 8 a (6)Eaat» 4 y aYtJy a ai: 

by definition of the HF basiso However, in cases when the 
single-particle states are restricted to those taken from 
neighbouring shells only,H o may be diagonai in the harmonic 
oscillator basis as well/5/. We make this choice here, so that
H acquires the formF 

(7)H = S E c+ C - --1 
~ V + + 

F a a a 4 a{3y8 a{3yô C a Cô C (Se y
a 

and the single-particle states a, {3, '00 are characterized 
by the oscillator quantum numbers in the isospin formalism/ 22 / : 

a = ja' i, ma' Ta)' 'a=+ 1('a=-;) for(na' f a , where 

neutrons (protons)o We will also use the letter a to denote 
the same set except ma and t a o 

Now, corresponding to the fermion pa i r operators C ~c ~ 
ctf ' we introduce a set of bosou operators b~{3' ba{3 which 
ooey the following antisymmetry and commutation relations: 

+ + (8)
b a{3 = - b {3a , 

[ b a13' b a ' b : ; f3'] = O,Ir] = [b:/3' (9) 

[ Da{3 ' b;'{3,-J = Daa' Ô{3{3' - 8 a{3 ' Ô $a' . 

The boson vacuum !O)B is defined by the condition 

ba{3fO)B =0. (10) 

In the Dyson representation, the boson images of the bifer­
mion operators c~ C {3 can be exp-ressed as /3/ 

+ + ( 1 1) (c a C f3 ) B = ~ b ay b {3y . 

3 



The boson Bamiltonian HB, corresponding to the fermion Hamil­
tonian (7), is then simply 

A + 1	 + +) (12)H B :;:	 ~ Ea,( C a C a. ) B - - ~ Va /3y8 (C a C 8 ) B (C f3 C Y B o 

a 4 a/3y8 . 

By substituting (11) into (12) and arr~nging the boson opera­
tors in the interaction term into the normal order with res­
pect to the boson vacuum (10), we obtain 

H =	 ~ f Q !:' b +/3 ti !:' - 1.. ~ ~ V /3 !:' b + b ~~ b ~ b <13)B Q ç:. ápvo a yu 4. Q!:' a yu ap fJJ up ya
atsvo	 a pvo pu 

where 

f Q ~ = aar, [e 8 - 1.. ~ V ] + 1.. V • ( 14)Q!:' 
apvo fJU a ay 4 p apyp 4 ativo 

With the help of (2), (3) and (8) it can easily be verified 
that the boson Hamiltonian (13) is hermitian. 

As is well known/2 2 , 14 , 15/ , any boson image of a fermion 
Hamiltonian has not only the'solutions corresponding to actual 
states Of the underlying fermion system but also the spurious 
ones which are associated with the overtompleteness of the 
boson basis. However, since the operators (11) cbrnrnute 'with 
the projector onto tue physical boson subspace /3.~2/, it is 
seen from (12) that H does not mix the physic~l and spuriousB 
boson states. Consequently, t~~se two types of boson states 
are strictly separated from each other, 

As a next step, we introduce a unitary transformation to 
bosons with good angular momentum and isospin 

+ 1	 .1. 1 + 
BJTMr(ab)= -=. ~ <jaffiaJbffiI3IJM><2ra"2r/3ITr>bam 1" bm{3'{3'

\/2 maml3	 a a 

'a r{3	 , (15) 

where the quantity <•••• I •• > is the usual Clebsch-Gordan coef­
ficient. The operators (15) with T = 1, r = 1, -1 correspond 
to the neutron-neutron (vv)and proton-proton (rrrr) bosons, 
respectively, those with r= O represent two types (T = O, 
T = 1) of proton-neutron (rrv) bosons, Inverting the expression 
(15) ano substituting into (13), we obtain after some angular­
momentnm algebra 

A JT +
 
H B = 2: ~ Eabcd B .JTM r (ab) B JTMr (cd) +
 

JTM r a bcd
 

4 

... 

+..l ~ ~ Vi JT 
J J J abade! J 1 TIJ2T2J3TaJ4T4 (abcdef) x2 

1J2 3 4 

1'1 T2T aT4 JT (16) 

+ . + JT - ~ JT 
x ([B T(ae) x B T (bf)] (B T (de) x B J T (cf)] )0

J J 
o 

J11 22 . 33 44.
 

Here,
 

J+T-fd-r
B JTM r	 (ab) = (-) B JT _ M -r (ab) , 

JT
the symbol [ •.. x • o .lMr denotes the standard angular momerr­
tum and isospin coupling,([ ]JT [ J!) stands for the scalaro ] 

product of tensor operators and 

JT a [(E + e ) _ -c (2J' + 1)(2T ' + 1) J ' T ' 1 J T
E a bd a b k ---------- V I + - V ( 17a)

a bcd ac	 J'T'! 4(2ja + L) arar 2 a bcd i 

WJT _ JT (J3 + J 4 + Ta + T4 + T + J WJT
 
1234 - W12 3 4 + -) 1234 '
 

(17b) 

1 == (J 1 T 1)' 2 == (J2 • T 2)' 0·0. 

. je+Jr+K+ J S+J 4t-S+ T3+T4J T w (- )	 x1234 (abcdef) ~
 
J'T'KS
 

" '" '" " ,.., "" "" " "J'T' 
x J lJ2 J 3	 V (2J' + 1) (2K + 1) (2T' + 1) (28 + 1) xJ4 T 1 T2T3 T 4 abcd 

(17c) 

b a de 22 22i i J ' } j J '} (1- .L	 .1.{j	 T'} r..l T'} 
J 2' J 1 J J 3 J 4 J 1T2 T 1 T ~ Ta '14 T 

{ 
i j K i i K 1.. 1- 8 11.- 1- 8 
r e e! 22 '22 

~ .\ 

r.o 
,.,	 

. h 9 o I d JT .In (1 7), J =,j 2J + 1 , t ...o } 

i.s t e ]-symbo an V i s 
. • abcd 

o •• 

the angular momentum- and isospin-coupled version of the rnat­
rix elements V a {3ya· 

Summarizing this section, we have constructed a boson 
Hamiltonian (eq.(16)] which 
i) is an exact image of the original shell-model Hamiltoni­

an (1); 
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ii) preserves its herrniticity;
 
iii) contains at most two-body boson interactions;
 
iv) does not mix the physical and unphysical (spurious) bo­


son states; 
v) has the isospin invariant forrn, which enables one to 

include two types of nv-bosons in addition to the usual 
1T1T- and vv -bosons. 

To our knowledge, no use of the boson Hamiltonian with al1 
the five properties hasbeen reported in the literature thus 
faro 

3. APPROXlMATE TREATMENT OF THE BOSON HAMILTONIAN 

Although the Hamiltonian (16) has the desirable properties 
given above, its exact diagonalization is 'qu í t e a formidable 
problem which can only be handled in very special situations 
and for a substantially limited number of bosons. Moreover, 
even if an exact treatment is still possible on a computer, 
the underlying physical picture is very obscure due to the 
tremendous amount of terrns arising from the diagonalization 
procedure. A way of circumventing these difficulties consists 
in the -use of approximate mean field (MF) techniques /2,19·22/ 

that are based upon few relevant physical ingredients and at 
the same time include many different degrees of freedom on an 
equal footing. The MF approach in the boson picture starts 
from the Hartree-Bose (HB) approximation to the ground state 
(GS)/2/ • For the present 'sy s t em of n

1T 
pro tons and nv neutrons 

(n 1T = n v = N = even), the GS wave func t í.on is assumed to be 
represented by an axially symmetric condensa~e of the form 

= 1 + NIGS)B --== (B ) I O)	 (18) 
vN! g B ' 

where 

+ (g) +
 
B = s X JT(ab) BJTOO (ab) , (19)
 

g JTab
 

L I (g) 2 (20)
JTabXJT(ab)! =1. 

The coefficients x~~(a~ are deterrnined variationally by mlnl­
mizing the e~pectation value of the boson Hamiltonian (16) in 
the model ground stat~ (18) under the constraint (20). This 
leads_to the following system on nonlinear eigenvalue equa­

,	 --- - -- -.­

tions for X (g) : 
JTab 

L }{(g) (g) (g)
JTab,J'T'cd XJ'T' (cd) =À g xJT(ab),	 (2Ia) 

J 'T' 
cd 
(g) JT 

}{JTab,J'T'Cd =BJJ,DTT,Eabcll +(N-l)D db x (2Ib) 

x L L W (O) (J T J T JT J 'T') X (g)- (eh) X (g) (fh) , 
J T J T e1h a bc e!h 1 1 2 2 J1 T1 J 2T 2 

1 1 2 2 

where 

- LR 
W(bO) fh (J Ti J JTJ'T ') = L WJ T J'T'J T JT (ecathb) x (22)

1 2T2a	 c e RL 1 1 2 2 

x	 (_)L+R<J OJ/0\LO> <J <T 20TO\RO> 
1	 

<T 10T'0\RO>20JO\LO> 

with W given by (17b,c). 
In the second s tep, the MF app roach con s iders the one­

boson excitations of the condensate (18), 

(23)1 B + (B + ) N - 1 \ O) ___ iK g B'
 
\ iK) B = V (N _ 1) l
 

where 

(24)+ (iK) + 
B.	 = L t/J JT (ab) B JTKO (ab) . 

ix JTab 

The coef f í.c í.ent s t/J (}~)(ab) are de t e rmí.ned by the requirement 
that the states (23) be eigenstates of HB , i.e. 

(25)
H \ iK)B = ~ iK \ iK) B .

B
 

This leads to
 

!. K(K) (iK) ~ t/J (iK) (ab)	 (26a) 
JTab, J'T" cd t/J , ,(cd) ik JT '
 

J'T'cd J T
 

(g)(K)	 JT L X T (ed) xKJTab,J'T'Cd =DJJ'BTT'Eabcd +(N-l) J1 1ef 
(26b)J 1T1J 2T 2 

x [X (g) (ib) + X (g) (fa)] w (K) (JTJ T J T J' T') . 
1 1 2 2J 2T 2 J 2T 2 ae crbd 
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Note that (26) represents a system of Zinear equations for 
ljJ}i~) (ab) because the matrix K<f~ b J'T'cd is fully specified 
by the quantities arising from th~ 'GS calculation (xS~(ab». 
In the following we will consider only the lowest (i = 1) 
solutions of (26) with K = O and K = 2, corresponding to the 
so-colled (J- and y - bands, respectively 

To proceed further, we must restore the spherical and 
isospin syrnmetries which are obviously broken in the boson 
wave functions of the form (18) and (23). This is accompli­
shed by angular momentum- and isospin projection according 
to 1221 

lOS' JT' MM ) 
, , T 

I i; JT; MM )
T 

where n~S, n~ are the normalization constants and P r r'PMM " 

stand for the projection operators onto states with definite 
angular momentum and isospin, respectively. The energies of 
different nuclear states lJT> ar~ then obtained by simply 
taking the expectation value of HB in the states (27a,b) 

4. PHYSICAL BDSON STATES 

In order for the procedure described in the preceding sec­
tion to be reliable, we must be sure that the basic boson 
states (18) and (23) are indeed physical,i.e.that they are in 
one-to-one correspondence with actual states of the underly­
ing fermion system. We therefore construct the following fer­
mion analogues (not images!) of the above-mentioned boson 
state~: 

Ias> F = j( os (r;) N Io> F ' (28) 

' 'h • + + N-l 
[IK> F = Jl iK f iK (r g ) I o>F (29) 

where naS' j( iK are the normalization constants, lO> F denotes 
the fermion vacuum (cal O>F= O) and the operators ·r;, ftK are 
given by 

r+ ~ )( (g)(ab) [c+ x c+) JT (30a)s abJT JT a b 00 

8 

. = nOSF>J fi TIOS) (27a)
B B MO MTO B ' • 

= n i PJ fi T I i K) , (27 b ) 
B B MK MTO B 

"J "T 

... 

+ (iK) [+ + 1 J T (30b),r lK = ~ ljJ JT (ab) C a x C b J KO
 
abJT
 

with the same coefficients xj~{ab), ljJ}i~{ab) as in (19), (24). 
At the present stage, it should be emphasized that the fer­
mion states (28) and (29) cannot in general be considered as 
counterparts of the boson states (18) and (23), respectively. 
This is so because the former may be linearly dependent (as 
a consequence of the Paul principIe) while the latter are 
always linearly independente It is thus necessary to check .

l explicitly whether 
states occurs. This 

«GSiGS>F; 
<as I iK >Fm= 

or not the linear dependence among fermion 
is done by diagonalizing the norm matrix 

<i'K IaS>F .... 

., .. .. .. ............. .. .. (3 I) 
m(K) · ). i' ,i · . · . . . . .. . · 

with m~~)i = <i' K IiK >F and looking at the e i genvaLues , In the 
case investigated in this paper (i = I, K = O; i = I, K = 2) 
we have found (for parameters of the calculation see sect.5) 
that none of the eigenvalues is zero, which implies linear 
independence of the fermion states las>F' I iK> F' Consequently, 
the bo~on states (18) and (23) can be put into one-to-one 
correspondence with the fermion states (28) and (29), respec­
tively, thereby showing·that they indeed represent certain 
physical states of the fermion system considered. 

5. APPLICATION TO 20Ne AND 24Mg
'J,', 

As a first realistic example,the general results of the 
t. I 

previous sections have been applied to calculating the energy 
spectra of 20Ne and 24Mg. The calculations were pe r fo rmed 
using the oscillator model single-particle space consisting 
of the 0P3/2' Op 1/2 ' Od5/2 ' ls 1/2 and Od 3 / 2 - shells with 
energies 1231 E (OP3/2) = -2 I .8 MeV, E (Op 112) = - I 5.65 MeV, 
E(Od 5 / 2) = -4.15 MeV, e ( 18 11 2 ) = 3.28 HeV, E (Od S / 2) = 0.93 MeV. 

As for the nucleon-nucleon interaction, we combine a phenomeno­
logical form 1241 
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. . Ô(ri-rj) --.' . -+ • 

V res (1, J) = Vo ---- L YL (1) . YL (J) X 
rjr j L (32) 

X { 1 - TI +T/; (i) . ;; (j) I t 1 - Il + IJ. ;(i) . ;(j) } 

with a two-body spin-orbit interaction / 25 / 

o. Çf -> -> ... ... ~ • -+. (33)V s. o. (i, ]) = A t (r j - r j ) X (p i - P j) 1(0-(1) + o (j}) 
-} 

ta get the correct spin-orbit splitting of the single-particle '11leveIs. The parameters VO' TI, Il, Çf, as well as the oscilla­
tor length parameter b, were determined so that the diagonal 
elements of the HF mat r í.x h HF = T + 1/4 L V a_aprovide the 

aa aa {3 a pat» 

best fit to the above single-particle energíes and the GS 
energy calculated in the present model reproduces the experi­
mental binding energy of a given rtucleus. The resulting va­
lues are listed in the Table. 

Table 
Calculated parameters characterizing the nucleon­

nucleon interaction (32)~ (33) and the single-particle
 
oeci.l.l.atiov iaaoe functions (b = IDeu/h)
 

bNucleus Vo TI Il t 1 (2 

01eV fm2 ) (fm) 

20Ne 73.6 0.254 0.509 -] .26 O. ] 6 1. 65 

24 Mg 74. ] 0.257 0.490 -1 .26 0.16 1.68 

.. 

since the oscillator basis is not translationally inva­

riant,spurious centre-of-mass (c.m.) excitations may enter
 
the spectrum. In arder to avoid them we use the transformed
 
shell-model Hamiltonian /26/
 

~	 A I A 1 A
H =	 _-_ í. E OS C + _ L {V (i, j) + V (i, j) + V (i, j) I, (34 )
 

... A i =1 i 2 i=lj res 8.0. c.rn.
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~ 
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W	 4

1 4-t --. ­

:z 
o 
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r-c:r r­- 20 
x f 

1i _____.. --2.,+ 

UJ 

1 
.l-

I	 EXP CALe 

~ 

l"M~ 
(T-O) 

-lo 
2, ------- t 
d ------.-- d 

4+ --------!t+ 

l--------'l 

t 1.­

!t+ ~-------- 4"" 

1:.-lo _---.--1.... 

EXP CALe 

Positive-parity T = o Leuel.e of 20Ne and 
o24Mg. Experimental valuee are from ~~f/27/. 

where 

V	 C') 1 {.l -+ -+ 1 2-+ r.:c m 1, J = - - - P i . P j + -fi] cu r • r. •	 '(35)o . . A 2m 2 - 1 J 

This transformation is expected to separate the c.m. excita­
tions from the intrinsic ones and it has indeed pro~ed to be 
quite successful in some realistic calculations 15/. ' 

In the figure we compare the experiment~l positive-parity 
T -= O leveIs of 20 Ne and 24Mg with those calculated in the 
present boson approach. As is seen, the agreement isquite 
good, both for 20Ne and for 24Mg. This suggests the potential 
power and ~tility of our approach, at 'least for the descrip­
tion of the energy spectra in light nuclei. 

11 



6.	 SUMHARY AND DISCUSSION 

In this paper we have proposed a new method for studying 
the energy spectra of some sd-she11 nuc1ei using a second 
quantized boson representation of the Hami1tonian. The key 
ingredients of our approach are the Dyson boson mapping app1i­
ed to the partic1e-ho1e form of the fermion Hami1tonian and 
the subsequent approximate treatment of the resu1ting boson 
Hamiltonian in the framework of the mean fie1d (MF) techni­
ques. The boson states arising from the ca1cu1ation were 
shown to be free from spurious components due to the vio1a~ 

tion of the Pau1i principie. The angular momentum and isospin 
eigenstates were projected out of them and used to ca1cu1a­
ting the spectra. The resu1ts obtained in this way agree we1l 
with the experimental data and they indicate that the MF 

approach app1ied to a suitab1e boson image of the nuclear 
Hami1tonian provides a promising too1 for the investigation 
of nuclear structure. The main advantage of the MF approach 
consists in that it is able to inc1ude many different degrees 
of freedom on an equa1 footing with no drastic increase in 
the numerica1 work invo1ved, which is certainly not the case 
in an exact treatment. A1though the }W approach is not new 
in nuclear physics, its app1ications to boson prob1ems have 
appeared on1y recently '2,19-21 ' as a reasonab1e a1ternative 
of approximate1y solving the Schrodinger equation appropriate 
to the interacting boson mode1 (IBM)!!/. A11 these MF ca1cu­
1ation~, however, have been performed at the 1eve1 of the 
pure IBM phenomeno10gy, i.e. with no direct connection to 
the under1ying fermion prob1em. The present study thus appe­
ars to be the first report on the micposcopic boson MP Theory~ 

in the sense that it 

i)	 starts from a she11-mode1 Hami1tonian with rea1istic 
sing1e-partic1e energies and an effective nuc1eon-nuc1eon 
interaction, 

ii)	 maps exactly th€ hermitian one-plus two-body' fermion
 
Hamiltonian onto a hermitian one-plus two-body boson
 
Hamiltonian,
 

iii) solves the resulting boson Hamiltonian approximately 
wi~hin the MF approach, extracting ali the necessary phy­
sica1 information exclusive1y from the boson picture, 

iv)	 needs no additiona1 procedure to deal with spurious boson 
901utions. 
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KyxTa P. 
M~KPOCKOn~4eCK~H 0030HH~H nOAXOA K on~caH~~ RAep 
sd-o6ono4KH 

~4-87-74 7 

npeAflaraeTCR MHKpOCKOnH4eCKHH MeTOA AflR H3y4eHHR nerKHX RAep C OAHHa­
KOB~M 4HCflOM npOTOHOB H HeHTpOHOB B MOAeflH MHOrHX B3dHMOAeHCTBy~~HX 6030HOB. 
nocTpOeH T04H~H 6030HH~H o6pa3 $epMHOHHOro raMHflbTOHHaHa H A~HdMHKa $epMHOH 
HOH c~cTeM~ ~3y4aeTcR HenocpeACTBeHHo a 6o3oHHOM npeACTaaneHH~ a np~fin~*e­
HHH cpeAHero nonA. noKa3aHo, 4TO nony4eHH~e 6030HH~e COCTORH~R He COAeP*aT 
AYXOB~X KOMnOHeHT, CBR3dHH~X C HapyweH~eM npHH4Hna naynH, TaK 4TO He HaAO 
CTPO~Tb CflO*Hble $~3H4eCKHe 6030HH~e COCTORHHR. MeTOA npHMeHReTCR K H3y4e­
H~~ 3HepreTH4eCKHx cneKTpoa 20 Ne, 24 Mg H nonyYaeTcR xopowee cornacHe c 
3KCnep~MeHTanbH~M~ AaHH~MH 

Pa6oTa a~nonHeHa a fla6opaTop~~ TeopeTH4ecKoH $H3HKH OHRH. 

Coo61Uet!He 06bellHHeHHoro HHCTHTyTa RllepHbiX HCcJJelloBaHHii . .lly6Ha 1987 

Kuchta R. 
Microscopic Boson Approach to the Description 
of sd-Shel l Nuclei 

E4-87-747 

A microscopic method is proposed for analyzing the properties of l ioht 
nuclei with an equal number of protons and neutrons in terms of many inte­
racting bosons. An exact boson image of the underlying shell-model Hamilto­
nian is derived and the dynamical behaviour of the ori~inal fermion system 
is studied directly in the boson picture usin~ the mean field approximation. 
The resulting boson states are shown to be free from spurious components, 
so that the cumbersome procedure of constructinq the physical boson states 
can be avoided. The method is applied to calculatin~ the energy spectra 
of 

20
Ne, 

24
Mg and a satisfactory agreement with experimental data is found. 

The investigation has been performed at the Laboratory of Theoretical 
Physics, J INR. 
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