

объединенный ИНСТитут
ядерных
исследований
дубна
$K 89^{-} \quad$ E4-87-745
R.Kuchta

DYNAMICAL INEQUIVALENGE
OF THE STRUCTURE
OF THE COLLECTIVE SUBSPACE
IN THE FERMION
AND BOSON REPRESENTATIONS

Submitted to "Zeitschrift für Physik A"

Recent years have witnessed a consicerable revival of igterest in the bosonic description of nuclei [1], especially due to the success of the Interacting Boson Mociel(IBM) [2]. In order for such a description to be useful in practice, there must exist a relatively simple boson subspace (hereafter referred to as the boson collective subspace) which is to a large extent decoupled from the rest of the whole boson space [3]. A typical example of the boson collective subspace is the IBM-space consisting of bosons with angular momenta $J=0(s)$ and $J=2(d)$.

In view of the fact that nuclei are basically fermion systems, it is highly desirable to find a microscopic interpretation of the relevant bosons, as well as to derive the IBM-Hamiltonian from the underlying shell-model Hamiltonian. Nost of the suggested microscopic approaches [4] have pictured the s - and d-bosons of the IEM as representing pairs of icentical nucleons coupled to angular momentum $J=0(S$-pair $)$ and $J=2(D$-pair), respectively. This interpretation is certainly justifiable in spherical nuclei [5] where the ground state is built to a large extent by correlated S-pairs and the low-lying excited states contain at most two (one proton- and one neutron-) D-pairs. In transitional and deformed nuclei, however, the situation is much more complicated. Recently, a large number of investigations have been carried out[6] which sugeest that for a microscopic understanding of the properties of such nuclei one has to take into account not only the S and D-pairs but also the higher-multipole ($J>2$) ones, among which the G-pair ($J=4$) seems to play the most essential role. Nevertheless, this fact does not necessarily mean the incapability of the IBM to explain the same physics in terms of s - and d-bosons only. Indeed, it is well knowr that the IRM works well even in deformed nuclei [2]. The above discrepancy between the fermion

and boson descriptions merely indicates that a straightforward identification of the IBR:-states with the corresponding shell-model states built of S - and D-pairs is oversimplified. In fact, the bosons may in general represent rather complicatea fermion configurations [7], and therefore, there is no a priori reason why the fermion collective subspace should have the sawe structure as the boson collective subspace. The main purpose of the present paper is to shed some light on this subject.

2. The Theoretical Background

Z. 1 TEE EOSON IMAGL OF THD FERTION EAPIILTCAIAN

We consider a system öf n identical nucleons moving in several non-degenerate j-shells and interacting through the pairing plus quadrupole-quadrupole ($P+Q Q$) Interaction. The Hamiltonian of such a system has the form
$\hat{H}_{F}=\sum_{a m a} \varepsilon_{a} \mathbb{C}_{a m a}^{+} \mathbb{C}_{a-a}-G P^{+} P-\frac{1}{2} x \sum_{n}(-)^{M} Q_{2 M} \mathbb{Q}_{1-M}$,
where $\mathbb{C}_{\text {ama }}^{+}\left(C_{a m s}\right.$) is the creation (anninilation) operator of a nucleon in the single-particle state ($a m_{a}$), $a=\left(n_{a}, l_{a}, j_{a}\right)$;
ε_{a}, is the corresponaine single-particle energy, G unc χ are the strengths of the pairing and cuadrupole-cuadrupole interactions, respectively, and the operators $\mathbb{D}^{+}, \mathbb{Q}_{2 M}$ are defined as
$P^{+}=\frac{1}{2} \sum_{a} \sqrt{2 j+1}\left[c_{1}^{t} \times e_{a}^{+}\right]_{0}^{0}$,
$\mathbb{Q}_{2 n}=5^{-1 \mid} \sum_{a_{6}} q_{a b}\left[\tilde{c}_{a}^{+} \times \tilde{c}_{b}\right]_{n}^{2}$,
$q_{a b}=\left\langle a\left\|r^{2} Y_{2}\right\| b\right\rangle, \quad \widetilde{c}_{b m_{2}}=(-)^{d b+m_{b}} \mathbb{C}_{b-m_{b}}$.
The symbol $[\times]_{M}^{L}$ in (2) mieans the standard angular momentum

- coupling. The Hamiltonian (1) is conveniently rewritten in the form $\hat{H}_{F}=\sum_{a i} \tilde{\varepsilon}_{a} \sqrt{2 j_{a}+1} U_{\infty}(a a)-\frac{1}{4} \sum_{a b e d} \sum_{k} V_{a b e d}^{k}\left[U_{k}(a b) \times U_{k}(a d)\right]_{0}^{0}, \quad$ (3)
where
$\widetilde{\varepsilon}_{a}=\varepsilon_{a}-\frac{1}{4} G$
$V_{a b c a ́ d}^{K}=\sqrt{2 K+1}\left\{\frac{2}{5} x q_{a b} q_{c d} \delta_{k 2}-G \delta_{a c} \delta_{b d}\right\}$,
$\mathbf{U}_{K M}(a b)=\left[\mathbb{C}_{a}^{+} \times \widetilde{\mathbb{C}_{b}}\right]_{M}^{K}$.

Now we introauce the spherical boson crestion end anninilation cperators $B_{J M}^{+}(a b), B_{J M}(a b)$ whick sstisfy the followine relations
$\left[B_{J H}(a b) ; B_{J^{\prime} M^{\prime}\left(a^{\prime} b^{\prime}\right)}\right]=\left[B_{J M}^{+}(a b), B_{J^{\prime \prime}}^{+}\left(a^{\prime} b^{\prime}\right)\right]=0$,

$\left[B_{J M}(a b), B_{d^{\prime} M^{\prime}}^{+}\left(a^{\prime} b^{\prime}\right)\right]=\frac{1}{2} \delta_{d J^{\prime}} \delta_{M M^{\prime}}\left\{\delta_{a a^{\prime}} \delta_{b b^{\prime}}-(-)^{j a+j b+J} \delta_{a b^{\prime}} \delta_{b a^{\prime}}\right\}$.
We also define the boson vacuum $\mid 0)_{B}$ by the condition $\left.B_{J H}(a b) \mid 0\right)_{B}=0$.
In the Belyaev-Zelevinsky-Marshalek (BZM) mapping scheme [8] , the boson images $\mathscr{U}_{K M}(a b)$ of the fermion operators $\mathbb{U}_{K M}(a b)$ given by (6) can be expressed as [9]
$\mathscr{U}_{K H}(a b)=-2 \sum_{d_{1} J_{2}}(-)^{J_{1}+J_{2}+K} \hat{J}_{1} \hat{j}_{2}\left\{\begin{array}{ll}J_{1} & J_{2} K \\ j_{b} & j_{a} j_{c}\end{array}\right\}\left[B_{J_{1}}^{+}(c a) \times \tilde{B}_{J_{2}}(b c)\right]_{H}^{K}$,
where $\hat{J}=\sqrt{2 J+1}, \widetilde{B}_{J H}(a b)=(-)^{j-M} B_{j-H}(a b) \quad$ and $\left\{\begin{array}{l}\cdots \\ \cdots\end{array}\right\}$ stands for
the usual $6 j$-symbol. The boson image \mathscr{H}_{B} of the fermion Hamiltonian (3) is then simply
$\mathscr{H}_{B}=\sum_{a} \tilde{\varepsilon}_{a} \sqrt{2 j_{a}+1} \mathscr{U}_{\infty}(a a)-\frac{1}{4} \sum_{a b e d} \sum_{k} V_{a b c d}^{K}\left[\mathscr{U}_{k}(a b) \times \boldsymbol{U}_{k}(c d)\right]_{0}^{0} \quad$ (10)
Since the physical tosons are associated with certain kina of collectivity, we introduce a unitary transformation to new bosons, $B_{\sigma J M}^{+}=\sum_{a b} \beta_{a b J}^{\sigma} B_{J H}^{+}(a b)$,
where the index σ labels different tosons with the same JM.
Unitarity of the transformation (11) means that the coefficients $\beta_{a b j}^{\sigma}$ satisfy
$\sum_{a b} \beta_{a b J}^{6} \beta_{a b j}^{\sigma^{\prime}}=\delta_{\sigma \sigma^{\prime}}$,

The relation (12) guarantees that the proper boson commutator

[$\left.B_{\sigma J H}, B_{\sigma^{\prime}, T^{\prime \prime}}\right]$] $\delta_{\sigma \sigma} \delta_{n^{\prime}} \delta_{m m^{\prime}}$

holds. The most important consequence of (13) is that the relation (11) can be inverted to yield
$B_{j H}^{+}(a b)=\sum_{\sigma} \beta_{a b J}^{\sigma} B_{\sigma J H}^{+}$.
The coefficients $\beta_{a b J}^{\sigma}$ are determined by the requirement that
the one-bospon states $\left.B_{\sigma J M}^{+} \mid 0\right)_{B}$, where $\left.\mid 0\right)_{B}$ is the boson vacuum defined py (8), be ei eenstates of the boson Hamiltonian (10) with the corresponding eigenvalues E_{J}^{6}. This leads to the following system of linear ei£envalue equations for $\beta_{a b J}^{\sigma}$:
$\sum_{a^{\prime} b^{\prime}} h_{a b a^{\prime} b^{\prime}}^{J} \beta_{a^{\prime} b^{\prime} J}^{\sigma}=E_{j}^{\sigma} \beta_{a b j}^{\sigma}$,
$h_{a b a^{\prime} b^{\prime}}=\left\{\varepsilon_{a}+\varepsilon_{b}-\frac{1}{2} x\left[\left(2 j_{a}+1\right)^{-1} \sum_{c}\left(q_{a c}\right)^{2}+\left(2 j_{b}+1\right)^{-1} \sum_{c}\left(q_{b c}\right)^{2}\right]\right\} \delta_{a a^{\prime}} \delta_{b b^{\prime}}$

$$
+(-)^{j b+j a^{\prime}+J} \cdot x \cdot q_{a a^{\prime}} q_{b b^{\prime}}\left\{\begin{array}{l}
j_{a^{\prime}} j_{b^{\prime}} J \tag{16}\\
j_{b} j_{a} 2
\end{array}\right\}
$$

$$
-\frac{1}{2} G \delta_{a b} \delta_{a^{\prime} b^{\prime}} \delta_{j o} \sqrt{\left(2 j_{a}+1\right)\left(2 j a^{\prime}+1\right)}
$$

where the relation (5) was explicitly introaced. The procedure for determining the coefficients $\beta_{a b j}^{6}$ is essentially the two-particle Tamm-Dancoff approximation (TDA) . We shall thererore refer to these coefficients as TDA-amplitudes and to the associated eigenvalues E_{j}^{σ} as TDA-energies. Correspondingly, the objects created by the operators $B_{\sigma J M}^{\dagger}$ will be called TDA-bosons. The different TDA-energies E_{j}^{σ} for a given J can be used for ordering the set $\{\sigma=0,1,2, \ldots$.$\} in such a way that E_{j}^{\sigma}$ increases with σ. The bosons $B_{\sigma J M}^{+}$with $\sigma=0$ will then have the lowest energy (for a given J), and therefore, they will be called "collective", while those with $\sigma=1,2, \ldots$, having a higher energy, will be identified with the "noncollective" bosons.

Having fixed the TDA-amplitudes $\beta_{a b y}^{6}$ and the TDA-energies E_{J}^{G}, we use (9), (10) and (15) to express the boson Hamiltonian \mathcal{H}_{B} in terms of the TDA-bosons,

$\mathscr{H}_{B}=\sum_{\sigma J M} E_{J}^{\sigma} B_{\sigma J M}^{+} B_{\text {OJM }}$

$+\sum_{\substack{\sigma_{1} \sigma_{2} \sigma_{2} \sigma_{3}, J_{3} \\ J_{1} J_{2}}} \sum_{K} W_{\left.\left.\sigma_{1} J_{1}, \sigma_{2}\right]_{2} \sigma_{3}\right]_{3} \sigma_{1} J_{3}}^{K}\left[\left[B_{\sigma_{1} J_{1}}^{+} \times B_{\sigma_{2} J_{2}}^{+}\right]^{K} \times\left[\widetilde{B}_{\left.\sigma_{3}\right]_{3}} \times \widetilde{B}_{\left.\sigma_{1}\right]_{3}}\right]^{K}\right]_{0}^{0}$,
$W_{\sigma \sigma_{1} \sigma_{2} J_{2} \sigma_{3} J_{3} \sigma_{2} J_{4}}^{\text {Where }}=(-)^{d_{2}+J_{4}} \cdot \hat{J}_{1} \hat{J}_{2} \hat{J}_{3} \hat{J}_{4} \sum_{a b \in d p q} \sum_{L}(-)^{j_{p}+j_{q}+j_{a}+j_{b}}(2 L+1) \nabla_{a d e b}^{K}$

In ottainine (17), the comrutation relations (14) have been used to arrange \mathscr{H}_{B} into the normal order with respect to the boson vacuum $(0)_{B}$. Using (18) and (5), one can easily verify that $W_{\sigma_{1}, \sigma_{2} J_{2} \sigma_{3} J_{3} \sigma_{4} J_{4}}^{K}=(-)^{J_{1}+J_{2}+J_{3}+J_{4}} W_{\sigma_{4}, \sigma_{3} J_{3} \sigma_{2} J_{2} \sigma_{4} J_{1}}^{K}$,
which means that \mathcal{H}_{B} is hermitian. It is also worthwhile to point out that provided all the TDA-bosons are included in (17), the boson Hamiltonian \mathscr{H}_{B} is an exact image of the original fermion Hamiltonian \hat{H}_{F}.

2.2 REMOVAL OF SFURICUS EOSCN STATĖS

It is well known that the diafonalization of any boson image of a fermion Hamiltonian in the boson basis generated by the states $\left.\left.|N ; \lambda\rangle_{B}=\frac{1}{\sqrt{N!}} B_{\alpha_{1}}^{+} B_{\mu_{2}}^{+} \ldots B_{\alpha_{N}}^{+} \right\rvert\, 0\right)_{B}$,
$l_{i} \equiv\left(\sigma_{i} J_{i} M_{i}\right) ; \lambda=\left\{\lambda_{1}, l_{2} \ldots, \lambda_{N}\right\}, N=\frac{n}{2}$
produces not only the eigenvectors corresponcing to actual states of the underlying nucleon system, but also the spurious ones which have no physical meaning and are associated with the overcompleteness of the basis (19) . Since the operators (9) commute with the projector onto the physical subspace $[10,11]$, it is easily seen from (10) that the present form of \mathcal{l}_{B} does not mix the physical and spurious states. Consequently, these two types of boson states are strictly separated from each other and the only task one is left with is to identify which states are physical and which are spurious. This can most easily be aone by means of the method first proposed by Janssen et al. [11] and recently elaborated by Park [12]. This method exploits the non-unitary character of the Dyson mapping [13], namely the fact that the images of fermion operators have, in genersl, different properties in the physical and non-physical subspaces. The starting point of the method is the fermion operator $\hat{K}=\hat{N}_{I}^{2}-\hat{N}_{I}^{2}$,

where

The operator \hat{K} is clearly equal to zero because $\hat{N}_{\text {II }}^{2}$ is nothing but \hat{N}_{I}^{2} written in normal ordered form. Using the Dyson transformation [10-13]
$\mathbb{C}_{\alpha}^{+} \mathbb{C}_{\beta}^{+} \rightarrow\left(\mathbb{C}_{\alpha}^{+} \mathbb{C}_{\beta}^{+}\right)_{0}=b_{\alpha \beta}^{+}-\sum_{\gamma^{+}} b_{\alpha \gamma}^{+} b_{\beta \delta}^{+} b_{\gamma \delta}$
$\mathbb{C}_{\beta} \mathbb{C}_{\alpha} \rightarrow\left(\mathbb{C}_{\beta} \mathbb{C}_{\alpha}\right)_{D}=b_{\alpha \beta}$
$\mathbb{C}_{\alpha}^{+} \mathbb{c}_{\beta} \rightarrow\left(\mathbb{C}_{\alpha}^{+} \mathbb{c}_{\beta}\right)_{D}=\sum_{z} b_{\alpha \gamma}^{+} b_{\beta \gamma}$
 we get the dyson image \hat{K}_{D} of (20) in the form
$\hat{K}_{D}=\hat{N}_{D}^{2}-\hat{N}_{D}-\hat{F}_{D}$,
where
$\hat{N}_{D}=2 \sum_{\sigma J H} B_{\sigma J H}^{+} B_{\sigma J M}$,
$\hat{F}_{D}={ }^{-} \sum_{\sigma \rightarrow 4} A_{\sigma J M}^{+} \cdot B_{\sigma J H}$

The quantity $\left\{\begin{array}{l}\cdots \\ \cdots\end{array}\right\}$ in (22e) is the usual $9 j$-symbol. As is shown in [12], \hat{K}_{D} has zero expectation value in all the physical boson states but positive expectation value in all the spurious boson states. This property allows one to distinguish between the physical and spurious eigenstates of the boson Hamiltonian.

Of course, in cases when some truncation of \mathcal{H}_{B} is made, the described procedure cannot be used because the physical and spurious boson states are no longer well separated (i.e. all eigenstates of the truncated boson Hamiltonian may contain botb physical and spurious components). It is therefore necessary to exclude the 'occurrence of spurious states'a priori, e.g. by constructing a suitable boson basis which can be put into one-to-one correspon-
aence with the fermion basis. To this end, lat us consider the following fermion, states
$|N ; 1\rangle_{F}=\frac{1}{\sqrt{N^{!}}} \Gamma_{l_{1}}^{+} \Gamma_{l_{2}}^{+} \ldots \Gamma_{l_{N}}^{+}|0\rangle_{F}$,
where $|0\rangle_{F}$ is the fermion vacuum $\left(\mathbb{C}_{\alpha}|0\rangle_{F}=0\right)$ and
$\Pi_{d_{i}}^{+} \equiv \Gamma_{\sigma_{i} J_{i} \mu_{i}}^{+}=\frac{1}{\sqrt{2}} \sum_{a b} \beta_{a \bar{b} J_{i}}^{\sigma_{i}}\left[\mathbb{C}_{*}^{+} \times \mathbb{C}_{b}^{+}\right]_{M_{i}}^{J_{i}}$
with the $\beta_{a b J_{i}}^{\sigma_{i}}$ determined from (16). The states (23) form an overcomplete non-orthogonal basia in the fermion space. By diagonalizing the norm matrix $\left\langle N ; \mu \mid N_{;} u^{\prime}\right\rangle_{F}$,
$\sum_{\alpha^{\prime}}\left\langle N_{j} \mu \mid N_{i} u^{\prime}\right\rangle_{F} u_{\alpha^{\prime}}^{(\alpha)}=\mathcal{N}_{\alpha} u_{\Lambda}^{(\alpha)} ; \sum_{\lambda} u_{\lambda}^{(\alpha)} u_{\mu}^{\left(\alpha^{\prime}\right)}=\bar{\delta}_{\alpha \alpha^{\prime}}$
and excluding the zero-eigenvalue solutions $u_{d}^{\left(\alpha_{0}\right)}, \mathcal{N}_{\alpha_{0}}=0$,
we construct a complete orthonormal basis in the fermion space
$|N ; \alpha\rangle\rangle_{F}=\frac{1}{\sqrt{\mathcal{N}_{\alpha}}} \sum_{u} u_{\alpha}^{(\alpha)}|N ; \alpha\rangle_{F} ; \quad \alpha \neq \alpha_{0}$.
The corresponding boson basis in which the actual calculations have to be carried out in order to avoid spurious solutions is then given by
$|N ; \alpha\rangle\rangle_{B}=\sum_{\alpha^{\prime}} u_{\lambda}^{(\alpha)}\left|N_{j} \mu\right\rangle_{B} ; \alpha \neq \alpha_{0}$,
where $|N ; \imath\rangle_{B}$ are the boson states (19).

2.3 CHOICE OF THE COLLECTIVE SUBSPACE

Having established an exact boson image of the fermion Hamiltonian, as well as the method for dealine with spurious boson solutions, we are ready to examine the "gooaness" of both the boson and fermion collective subspaces. According to current thinking [价], this can be done by selecting certain part of the whole Hilbert space as collective, cisregarding the rest and checking whether the important physical ouservables such as the energies and the transition matrix elements remain essentially unchanged by enlarging the chosen collective subspace. If this is indeed so, one may be reasonably sure that the selected collective
subspace is to a food approximation decoupled from the rest of the wolle space. being inspirea by the lew [2] , we suppose that the boson collective subspace is eenerated by the most collective ($\sigma=0$) MDA-bosons $B_{\sigma J M}^{+}$with $J=0$ anc $J=2\left(B_{000}^{+} \equiv s^{+}, B_{02 M}^{+} \equiv d_{M}^{+}\right)$ The corresponiane fermion collective subspace is assumea to be thet composed of the $\mathbb{T}_{000}^{+} \equiv \mathbb{S}^{+}$and $\mathbb{T}_{02 M}^{+} \equiv \mathbb{D}_{M}^{+}$fermion pairs. The above boson and fermion subspaces will be referred to as the sdand SD-subspaces, respectively. Since there are strong indication that the $J=4$ bosons (nucleon pairs) may also play an important role in the low-lyine collective states of nuclei [6], we take as the enlarged space the $s d g$ (SDG) subspace which contains adidional $g_{H}^{+} \equiv B_{04 M}^{+}-$bosons $\left(C_{M}^{+} \equiv \mathbb{T}_{04 M-\text { pairs }}^{+}\right)$.

3. Results

For actual calculations we consider a system of $2 N=6$ identical nucleons distributed over 3 non-degenerate j-shells $j_{1}=1 / 2, j_{2}=3 / 2, j_{3}=5 / 2$ $\left(\varepsilon_{j_{1}}=1 \mathrm{HeV}, \varepsilon_{j_{2}}=3 \mathrm{HeV}, \varepsilon_{j 3}=0 \mathrm{HVV}\right)$ and interacting through the $P+Q Q$ Hamiltonian (1) with $G=0.1 \mathrm{MeV}, x=0.2 \mathrm{MeV}(m \omega / \hbar)^{2}$.
This choice is complex enough to simulate some real situations in nuclei, but at the same time, it is sufficiently simple as to allow for an exact solution of the Hamiltonian (1). This enables one to estimate not only the relative "goodness" of the truncated collective subspace as described above but also its absolute adeouacy with respect to the exact solution.

In Fig. 1 we compare the low-lying levels of the boson and fermion spectra obtained in various approximations. First of all, Figs. 1c) and 1d) show the spectrum of the boson Hamiltonian (17) and the exact spectrum of the fermion Hamiltonian (1), respectively The boson spectrum is seen to be much richer than the fermion one, as a consequence of the overcompleteness of the boson basis (19) with respect to the space available for fermions. However, by com-
puting the expectation value of the operetor (22) ir all the voson states one can easily find that the states marked by full lines are physical (zero expectation value), winile those represented by dashed lines are spurious (positive expectation value). By simply ignoring the latter we immeciately observe that the remaining (i.e. physical) boson eigenstates coincide with the exact fermion eigenstates given in Fig. 1d. . Thus, the diagonalization of the boson Hamiltonien (17) in the whole boson space correctly reproduces all the physical eigenenergies.

In Figs. 1a) and 1 b)we display the energy spectra obtained by diagonalizing the boson Hamiltonian (17) in the $s d$-and sdg-subspace respectively. Fossible spurious boson states are removed before diagonalization by excluding the zero-eigenvalue eigenstates of the fermion norm matrix. The finiteness of the model space is responsible for the fact that only some energy levels of the exact spectrum can be reproauced in the $s d$-subspace. Nevertheless, the energies of these levels remain essentislly unchanged when the boson space is enlarged to include the g^{+}-bosons, which means that the $s d$-truncation provides a relatively good subspace, at least for the description of the energetically lowest states. By comparing the $s d$-levels of Fig. 1a)with the exact ones (full lines in Fig. 1c) we can conclude that the $s d$-subspace is well decoupled not only from the $s d g$ - subspace but also from the whole rest of the boson space (which includes the noncollective $(\sigma \neq 0)$ TDA-bosons as well) . Comparison of Figs. 1b) and 1c)further shows that the sdg-subspace is a good subspace for the whole part of the exact spectrum displayed in the figure.

However, the same conclusions cannot be made for the results obtained in the fermion SID-and SDG-subspaces (see Figs. 1d, e,f). First, even the lowest SD-levels differ considerably
from the corresponding SDG-ones, which means that the fermion SD - subspace is not at all a good subspace. This is confirmed

Fig. 1. Energy spectra associated with 6 icentical nucleons moving in 3 non-degenerate j-shells $j_{1}=1 / 2, j_{2}=3 / 2, j_{3}=5 / 2$ and interacting through the $P+Q Q$ Hamiltonian (1).
For the parameters of the Hamiltonian as well as for the description of individual approximations in a) - f). see the text.

Fig. 2. Calculated values of the ratio $B(E 2 ; I+2 \rightarrow I) / B(E 2 ; 2 \rightarrow 0)_{\text {exa }}$ for the states shown in Fig. 1. Various approximations are explained in the text.
by the observation that the $S \mathbb{D}$-subspace does not provide a goód approximation to the exact sjectrum given in Fig. 1d). Second, the SIDG-subspace works muci. vetter but still worse than the corresponding boson sdg-subspace (figs. 1b, ie).

These results inaicate that analoeous truncations in the fermion and boson spaces are not equivalent and that a boson trun-
cation may provide a better approximation to the exact fermion problem than the corresponding fermion truncation. However, the energy spectra alone do not tell much about the structure of the wave functions. Spectroscopic quantities such as the electromagnetic transition rates are generally considered to provide a more detailed information about this structure. We have therefore calculated the $B(E 2)$ values in different approximations as well. The results are shown in Fig. 2 and they support the idea that the boson $s d$ and $s d g$-subspaces are better for the description of low-lying states than the corresponding fermion SD-and SID-subspaces, respectively.

This observation seems to contradict the commonly accepted opinion $[4-6]$ that the corresponding fermion and boson approx́imations should be equivalent in the sense that, for example, the success or failure of.the $s d$-boson truncation is determined by the success or failure of the SD-fermion truncation, respectively. This opinion, however, originates from the presupposed correspondence between fermion and boson states $[9,15,16]$. On the other hand, we have carried out the fermion and boson calculations without specifying in advance the character of correspondence between these states. The present boson-fermion correspondence is guaranteed to be unambiguos (due to the proper exclusion of spurious solutions) but it need not be "simple" in the sense discussed by Ginocchio and Talmi [15] , because we have worked with a hermitian boson image of the fermion Hamiltonian, while the "simple" boson-fermion correspondence requires the boson Hamiltonian to be non-hermitian, in general. Reepine in mind that the fermion pairs are not real bosons, it is quite natural to expect that the states of a given boson subspace corresponò to certain complicated fermion states in lihich pas is of hieher multipolarity may play an importent role. The stronges: indication for this is the fact that the phenomenological IBN. ith s - and d-bosons works well even in deformed
nuclei [2], where a correct microscopic theory requires an explicit inclusion of \mathbb{G}-pairs [6]. However, a detailed understanding of the above-mentioned boson-fermion correspondence is still far from clear and deserves further investigation.

4. Conclusion

The results of the present paper show that for a system of identical nucleons moving in several non-degenerate j-shells and interacting through the $P+Q Q$ force, the boson and fermion collective subspaces with the same multipoie structure are dynamically inequivalent. In particular, the boson space restricted to S - and $d-$ bosons is a much better invariant subspace of the Hamiltonian than the correspondine fermion space restricted to S- and D - pairs. This means that the boson collective subspace is dominated by s and d-bosons, while its fermion counterpart comprises not only the \mathbb{S} - and \mathbb{D} - pairs but also the higher-multipole ones (\mathbb{G}). A similar finding has recently been made by Dukelsky et al. [价] in the framework of the mean field approach [10].

Cf course, the validity of the above assertion depends in general on the boson mapping chosen (kinematical aspect) as well as on the Hamiltonian (dynamical aspect). It is well known that the seniority conserving mapping (SCM) applied to the single-j-shell Hamiltonian with the pure $Q Q$ interaction provides a very bad decoupling of the $s d$-subspace from the rest of the whole space [16]. In the present paper we have consiaered the case of 3 nondegenerate j-shells anc we have inclucea the pairine force into the Bamiltonian. In ajdition, the dynarics of the boson and fermion systems has been studied iniepencently usine the EZs mapping scheme instead of the SCM. As a result, the coupling of the collective sd-subspare with the rest of the boson space has proved to be considerably weakened.

However, the exact form of the realistic effective interaction in actual nuclei with protons and neutrons is not well established so far and it is by no means clear that a $P+Q Q$ force is adequate. Noreover, peculiarities of the subshell structure in various nuclei are expected to play a non-negligible role as well. Further investigations in this direction are therefore very desirable.

Acknowledgement

Stimulating discussions with Dr. G. Kyrchev are gratefully acknowledged.

References

1. Tamura, T.: Phys.Rev.c28, 2480 (1983);

Zirnbauer, M.R.: Nucl.Phys.A419, 241 (1984) ;
Gambhir,Y.K., Sheikh,J.A., Ring,F., Schuck,P.: Phys.Rev. C31, 1519(1985);
Geyer,H.B., Engelbrecht,C.A., Hahne,F.J.W.: Phys.Rev.C3Z,
1041 (1986) ;
Tsukuma, H., Thorn, H., Takada,K.: Nucl.Phys. A466, 70(1987)
2. Arima, A., Iachello, F.: Ann. of Fhys.99, 253 (1976); 111, 201 (1978) 123, 458 (1979)
3. Feng, D.H., Wang,K.X., wang,A.L., Wu,C.L.: Phys.Lett.155B, 203 (1985)
4. Otsuka,T., Arima,A., Iachello,F.: Nucl.Fhys.4309, 1(19;78); Gambhir, I.1., Fing,P., Scuck, P.: Nucl.ïhys.A384, 37(1982); A423, 35 (1984);
 Ealse,F.: Nucl.Fhys.A451, 91(1986)
Wang,R.L., Fan,J.Z., Bao, C.G.: Phys.Rev.C35, 324 (1987)
5. Pittel, S., Duval, D., Barrett, B.R.: Phys.Rev. C25, 2834 (1982); Scholten, O., Fittel,S.: Phys.Lett.120B, 9 (1983)
6. Bes, D.R., Broglia,R.A., Maglione,E., Vitturi,A.: Phys.Rev.Lett 48, 1001(1982);
Pittel,S., Dukelsky,J.: Phys.Lett.128B, 9(1983);
Maglione, E., Vitturi,A., Catara,F., Insolia,A.: Nucl.Phys.
A411, $\overline{1} 81$ (1983); Phys.Rev.c29, 1916 (1984) ;
Pannert,W., Ring,F., Gambhir,Y.K.: Nucl.Phys.A443, 189 (1985);
Cohen,T.D.: Nucl.Fhys.A436, 165 (1985)
7. Suzuki,T., Matsuyanagi, K.: Prog.Theor.Phys.56, 1156(1976); Yang,L.M.: Nucl. $:$ hys. A $421,229 \mathrm{c}$ (1984);
Filein,A., Farumori,T., Une,T.: Fhys.Rev.C29, 240 (1984)
8. Belyaev, S.T., Zelevinsky,V.G.: Nucl.Fhys.39, 582 (1962); Marshalek, E. R.: Nucl.Fhys. AR24, $221(1974)$ i A己己24, $<45(1974)$
9. Li,C.T.: Phys.Iett. 120B, 251 (1983)
10. Ring, P., Schuck. P.: The Nuclear Nany-Body Problem. New York: Springer 1980
11. Janssen, D., Dönau, F., Frauendorf,B., Jolos,R.v.: Nucl.Phys. \&172, 145 (1971)
12. Fark, P.: Phys.Rev.C35, 807 (1987)
13. 'Dyson,F.J.: Phys.Rev.102, 1217 (1956)
14. Cohen,T.D.: Nucl.Fhys.A431, 45 (1984)
15. Ginocchio,J.N., Talmi, I.: Nucl.Fhys. A337, 431 (1980)
16. Faessler, A., Morrison, I.: Nucl.rhys.A423, 320 (1984)
17. Dukelsky,J., Fittel,.̇., Sofis,H.N., Lima,C.: Nucl.Fhys.A456, 75 (1986)

Received by Publishing Department on October 14, 1987.

Кухта P,

E4-87-745
Динамическая неэквивалентность структуры

коллективного подпространства в фермионном

и бозонном представлениях

Построен точный бозонный образ ядерного гамильтониана, содержащего спаривательное и квадруполь-квадрупольное взаимодействия и действующего в пространстве нескольких невырожденных j -оболочек. Показано, что бозонный гамильтониан, действующий на подпространстве в - и dं-бозонов, описывает фермионный энергетический спектр и вероятности электромагнитных переходов лучше, чем оригинальный фермионный гамильтониан на подпространстве S- и D-пар. Такая же ситуация встречается в рамках sdg-SDQ приближения. Это значит, что бозонные и фермионные подпространства с одной и той же мультипольной структурой являются динамически неэквивалентными.

Работа выполнена в Лаборатории теоретической физики ОИЯИ
Мрепринт Объединенного института пдерных исследований. Дубна 1987

Kuchta R.

Dynamical Inequivalence of the Structure of the Collective

Subspace in the Fermion and Boson Representations

An exact boson mapping of the multi-j-shell pairing-plus-quadrupole Hamiltonian onto a Hermitian boson image with at most twobody terms is performed. The resulting boson Hamiltonian truncated to s- and d-boson is shown to be capable of describing the exact energy spectrum and electromagnetic transition rates better than the original fermion Hamiltonian restricted to the space of S . and D-pairs. This situation persists within the sdg-SDG truncation as well. It can thus be concluded that the boson and fermion subspaces with the same multipole structure are dynamically inequivalent.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

