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1. Introduction

Recent years have witnessed a considerable revival of igterest
in the bosonic description of nuclei[4 ], especielly due to the
success of the Interacting Boson Model(IBM)[L] « In order for such
a description to be useful in practice, there must exist a relati-
vely simple boson subspace (hereafter referred to as the boson
collective subspace) vhich is to & large extent decoupled from the
rest of the whole boson space [37 . a typical example of the boson
collective sdbspace is the IBM-space consisting of bosons with
angular momenta J = 0(s) and J = 2 (d) .

In view of the fact that nuclei are basibaliy fermion systems,
it is highly desirable to find a microscopic interpretation of the
relevant bosons, as well as to derive the IBM-Hamiltonisn from the
underlying shell-model Hamiltonian. Most of the suggested micro-
scopic approaches [H] have pictu;ed the S- and d -bosons of the
IEM as representing pairs of icentical nucleons ccupled to angular
momentum J = O ( S—,pair) and J = 2('_D—pair) , respectively.

This interpretatiﬁn is certainly justifiable in spherical nuclei[F}
where the ground state is built to a large extent by correlated
S-pairs and the low-lying excitea states contain at most two

(one proton- and one neutron-):D-pairs. In transitional and defor-
med nuclei, however, the situation is much more complicated.
Recently, a large number of investigations have been carried outféﬂ
which suggest that for a microscopic understanaing of the proper-
ties of such nuclei one has to take into account not only the S-
and D-pairs but also the higher-multipole (J)E) ones, among which
the G-pair (J = 4) seems to play the most essential role.
Nevertheless, this fact does not necessarily mean the incapability
of the IBM to explain the same physics in terms of §- gnd d-bosons
only. Indeed, it is well known that the IRM works well even in

deformed nuclei [L] . The above discrepancy between the fermion
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and boson descriptions merely indicates that a straightforward
identificeation of the IBM-states with the corresponding shell-model
.
states built of G- and D~ pairs is oversimplified. In fact, the
bosons may in general represent rather complicatea fermion confi-
gurations [1] , and therefore, there is no a priori reason wky the
fermion collective subspace should have the same structure as the
boson collective subspace. The main purpose of the present paper

is to shed some light on this subject.

2. The Theoretical Background

Z4,1 TEEX BEOSON IMAGY CF TEZ FzZRU'ION BANILTCHIAN
We consider a system Of n identical nucleons moving in several

non-degenerate j-shells and interacting through the pairing plus
quadrupole—quadrupole (P + QQ) interaction. The Hemiltonian of such

a system has the form
+ N
-Z. Ea nm. C-\-‘ - G‘P P = 1'1'2"1(_) G-UI GS"" ) (1)

where d:.,“ (c...,)is the creation (annihilation) operator of a nu-
cleon in the single-particle state (amd) , a = (m,l«,jq);

£. is the corresponaing single-particle energy, G wna Y ere the
strengths of the pairing and cuadrupole-guadrupole interactions,

respectively, and the operators 1D+, Q)lﬂ are defined as
- £ Tpe [ehxel ]l
Qun = 5712 9 [ =& ]T5 ) (2)
Jab = Lal Y, 16>, Cirm, = (")‘”m. Coem, -
The symbol [ % }H in (2) means the standard angular momentum

coupling. The Hafnili:oniaﬁ (1) is conveniently rewritten in the form

= Z BT T Uotes) - £22 Via (U x Ukew]y | (3)

where

¢ ac-%G6, - (4)
Vb~ VIRTT | & Fqadea Sra = G 6 &l (5)
UKH(QB) =[chcb]f1. (6>

+ . .
operaters Bin(eb) |, Buwlab, which sutisfy the lollowing o&

relations

[ B () Bowte)] = [Bintat), 8e(ae)] = O
[ B @, Bl @8] = § o] s = CF P80 80 Y
We also define the boson vacuum JO)B by the condition
Bula) )0)s = O. : (&)
In the Belyaev-Zelevinsky-Marshalek (BZM) mepping scheme [8]

hY

?

the boson images {hyy(ab) of the fermion operators Upylat) given
by (6) cen be expressed as;[‘! ]

Uy -LZF =03 L [BheBaeo Ty, (4

where ’J\ =W ) '.B.m(‘b) '(‘)‘"BJ-H[QB) and §

the usual 6j-symbol. The boson image 363 of the fermion Hamiltonian

} stands for

(3) is then simply
Z €a \[lj. +1 oolon) - ‘2;2 Zvnbzd [ W lab) % ux(""()Jo (40)

Since the physical tosons are associated with certain kina of
collectivity, we introduce a unitary transformation to new bosons,
Bl = 2B Bl (41)
where the index & labels different tosons with the same JM .
Unitarity of the transformation (44) means that the coefficients
[56;53 satisfy

T pha - Se, ()
3 s Bty + Bt "B ] (42
The relation {41) guarantees that the proper boson commutator
[30",—8«3”] See Sar Sy (44)
holds. The most important consequence o§(43) is that the relation
(44) can be inverted to yield

'Brn(“") = ;ﬂ:u 3+s:|n . (45)

c s L}
The coefficients F.LJ are determined by the requirement that
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the one~tosodn states 3@,,1 )O)B , where ]CDB is the boson vacuum

‘l

(6’) be eigenstates of the boson Hamiltonian (10)with

defined
5 . .
the ¢ res“onulng eigenvalues E 3 . This leads to the following

system of linear eigsnvalue equations for ﬁfa:l :
'Z:, Rluy Pfsz = ESPL
Al = § £+ 1[(-1J-*1> Za(‘f")1 +(2 +4" 2 qne)” ]}g““&'"’
+ (—)J'*i‘ P qequ 1Y i
q ‘T J _| (4é)
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where the relation (5 ) was explicitly introduced. The procedure
for determining the coefficients (5.6;3 is essentially the two-parti-
cle Tamm-Dancoff approximation (’I‘DA) . We shall therefore refer to
these coefficients as TDA-amplitudes and to the associated eigen-
values Eg as TDh-energies. Correspondingly, the objects created
by the operators ]331,., will be called ’f;JA;bosons. The different
TDA-energies E; for a given J can be used for ordering the set
iq: 0,1,2, S in such a way that E$ increases with & .
The bosons :B+5-:,H with & =0O will then have the lowest energy
(for a given J), and therefore, they will be called "collective",
while those with 6=4,2, ..., having & higher energy, will be %den—
tified with the "noncollective" bosons.

Having fixed the TDA-amplitudes B&: end the TDA-energies ES
we use (1) , (40) end (15) to express the boson Hamiltonian ﬁfb

ih terms of the TDA-bosons,
XB :ZJ,“ EJ Ba:ngsan . (”_>
e K
z W‘.J §3.6375643, [[ Bc,‘.l,x Bt‘lg_.] "[B‘ XBC\I,] Jo

56 8,
Jt-‘:ls

& 2L i (atea) VS

K _ 1 +dy A A (_)1, "’h f_,. v (aL+1 AT
W‘Fc‘;ﬂ;‘ﬂ,ﬁﬂs = ) Al 1 J.h‘" -

Y o
1, 3,.K 4 jr J3§ B Je szs )

x 2.7., J’ Lg i J1 L jl Jn, L jc lrhﬁk”:pdr-’,ﬁ.YJ. . (4 )

In ottaining ('ﬁ) , the commutation relations ('“f) have been used
to arrange 3@5 into the normal order with respect to the boson
vacuum |0)B . Using (42) and LS) , one can easily verify that

K 3,43, 4347y
613,623 6373 6,3, ) W‘s’s 633s 6212641,

]

which means that 3(5 is hermitian. It is also worthwhile to point
out that provided all the TDA-bosons are included in (41%), the
boson Hamiltonian 9@5 is an exact image of the original fermion

Hamiltonian H E ¢

2.2 RENOVAL OF SFURICUS ECSCN STATES

It is well known tha?i the diagonalization of any boson image
of a fermion Hamiltonian in the bogon basis generated by the states
INGaYs = @ Bl Bl o3 10)s

2(6;3,"1;)3 A ‘E-h,»lz--u,-lng ) N‘-"?_‘ (4(])

produces not only the eigenvectors corresponcing to actual states
of the underlying nucleon system,but also the spurious ones which
have no physical meaning and are associated withL the overczmplete—
ness of the basis (4q> . Since the operators (q ) commute with the
projector onto the physical subspace {40”4] , it is easily seen
from (40) that the present form of ¢€p does not mix the physical
and spurious states. Consequently, these two types of boson states
are strictly separated from each other and the only task one is
left with is to identify which states are physical and vhich are
spurious. This can most easily be aone by means of the method first
proposed by Janssen et al. [14] and recently elaborated by Park [4l])
This method exploits the non-unitary character of the Dyson mapping
[43] , namely the fact that the images of fermion operators have,
in general, different properties in the physical and non-physical

subspaces. The starting point of the method is the fermion operator

K=Ni - Nx (20a)

%)
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where

” ‘1‘
N; : qbZM-.m. ame Cqmqlctw. Cyn, ) (JOh)

dence with the fermion basis. To this end, let us consider the
following fermion.states )
abm m,

Z d:mn. Cama ~ Z d:a-ﬂ- mb-\. Cawe Crme - (QOC\) IN}*>F = \r%? [ﬂt lr:z [r:u’o>F ) (23)

The operator K is clearly equal to zero Decause N.r. is nothing where |0>F is the fermion vacuum (C.l f°>r- - O) and

3i
B—? = T:ﬂm; = V_" 2;'{3“3: [d:fx CtJH; (1'-})

T

A
but N‘j: written in normzl ordered form. Using the Dyson trans-

formation [10-43 ] . “ i

i + 4 . 6; .
C:d:,t é(ct CJI‘—)D = Btp - Zr" 543 l:(ss l');é :l; with the {5_;,;. determined from (‘“’) . The states (23) form an
4 ¥ - . . . . . _
&g G — (CpCd);> = bdb (2 ) overcomplete non-orthogonal basis in ;ée fermion space. By diago
PR : N H oL N \.(.‘ F
¢¢¢{L - (checsdp = qu bpy o 3,.1>bt nalizing the norm matrix < ( IN; “: " (16)
and introducing the TDA—bosons(M) with 3;,&‘15)' & Zf’"“]*"“‘l P ({(‘ Z’ (NG IN; 4> u (:) ‘NL u:) Z, W, Uy é,“'
"L . b ¢
ve get the Dyson 1mage ’<° of (20) in the form _ N and excluding the zero-eigenvalue solutions Lé vAfLa =0,
L . 2Lla

KD = Ny No F; ) ( we construct a complete orthonormal basis in the fermion space
where - 4 ASNIVE (2@)

2 + . - N;« = {W—\Z‘Ma IN;A> 5 o folo

ND < 2 %1 'B‘me‘:H , ) (llh) ! , ! >>F « 3 F J

- + . The corresponding boson basis in which the actual calculations
2, A Beom (22¢)
X have to be carried out in order to avoid spurious solutions is then
with + + K. h|
A+ '—.Bt':n ';Z Z (::)c,: G,J)(K)[[-BGJ.K’B‘;’J x?"”sjﬂ) (224) given by (2%)
€3h 666 K Rt =) . R 1
s bjsd INjae = 2 WV CF o
» |a
A A & 6.

g(‘j) (K = lz_’,‘u']‘ﬂ; Jd Je Js (5.53 (3“;1 4,:;,1[3‘:333 . (22e) where [N;4), are the boson states (1a) .

62,6363, & , K
The quantity g T S in (lle) is the usual 9j-symbol. As is shown 2.3 CHOICE OF THE COLLECTIVE SUBSPACE

in [4] , K, has zero expectation value in all the physical boson

S . . - s -
states but positive expectation value in all the spurious boson Having established an exact boson image of the fermion Hamil

states. This property allows one to distinguish between the physi- R tonian, as well as the method for dealing with spurious boson

i N q 3 " n
cal and spurious eigenstates of the boson Hamiltonian. l solutions, we are ready to examine the "gooaness™ of both the

of in cases when some truncation of ac is made 3 boson and fermion collective subspaces. According to current
f course, in [ ’

o L. . : . .
the described procedure cannot be used because the physical and } thinking [“"] » this can be done by selecting certain part of the

spurious boson states are no longer well separated (i.e. all eigen- whole Hilbert space as collective, cisregarding the rest and

stetes of the truncated boson Hemiltonian may contain both physical checkirg whether the important physical ovservables such as the

4 s ents) 1t is therefore necessary to exclude energies and the transition matrix elements remain essentially
and spurious compon .

A P . tates’ riori, e.g by constructing unchanged by enlarging the chosen colliective subspace. If this is
the occurrence of spurious states’'a p y o8

a suitable boson basis which can be put into one-to-one correspon- indeed so, one may be reasonably sure that the selected collective




subspace is to & rood approximation decoupled from the rest of

‘the wnole space. being inspirec by the 1EBM [LJ , We suppose theat
the boson collective subspace is generated by the nost collective
(5= ©) “DA-bosons '.B::m with J = O ané J = 2 ('Btooi 5+, . sd*,,).
The corresponiing fermion collective subspace is assumeu to be thet
composed of the ﬂ;oo $+- and E:th = ])L fermion pairs. The
above boson and fermion subspaces will be referred to as the sd -
and S:D-subspaces, respectively. Since there are strong indication
that the J = 4 bosons (nucleon pairs) may also play an important
role in the low-lying collective states of nuclei [G_J, we take as

the enlarged space the so{g (SDG> subspace which contains additio-

nal %,, = 301”., bosons (d_,;" ﬂ“om-pa:;rs) .

3. Results

For actual calculations we consider a system of XN =6 identical
nucleons distributed over 3 non-degenerate j-shells J,r‘ﬁ,j;=ﬂh,h=fé
(Ei,-1HeV,8,'1'3P1¢V,-sj,=0'w)and interacting through the P + QQ Hamil-
tonian (4) with G =04 HeV) 1= 02 He\/(mw/h)i“

This choice is complex enough to simulate some real situations in
nuclei, but at the same time, it is sufficiently simple as to allow
for an exact solution of the Hamiltonian (1) . This enables one to
estimate not only the relative "goodnessh of the truncated collec-
tive subspace as described above{but also its absolute adeocuacy
with respect to the exact solution.

In Fig. 1 we compare the low-lying levels of the boson and
fermion spectra obtained in various approximations. First of all,
Figs. 1c¢) and 1d) show the spectrum of the boson Hamiltonian(i%)
and the exact spectrum of the fermion Hamiltonian (4), respectively
The Poson spectrum is seen to be much richer than the fermion one,

as & conseguence of the overcompleteness of the boson basis (14)

with respect to the space available for fermions. However, by com-

: 8
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puting the expectation value of the opersztor (11)ir &all the boson
stateé one can easily find that the states marked by full lines
are physical (zero expectation value) , wnhile those represented

by dashed lines are spurious (positive expectation value) .

By cimply ignoring the latter we immediately observe that the
remaining (i.e. physical) boson eigenstates coincide with the
exact fermion eigenstates given in Fig. 1d . Thus, the diagonali-
zation of the boson Hamiltoni&n((!)in the whole boson space correc-
tly reproduces all the physical eigenenergies.

In Figs. 1a)and 1b}we display the energy spectra obtained by
diagonalizing the boson Hemiltonian ({#)in the sd- and sdg-subspace
respectively. Fossible spurious boson states are removed before
diagonalization by excluding the zero-eigenvalue eigenstates of
the fermion norm matrix. The finiteness of the model space is
responsible for the fact that only some energy levels of the exact
spectrum can be reproduced in the s$d, - subspace. Nevertheless,
the energies of these levels remain essentislly unchanged when the
boson space is enlarged to include the 8*—bosons, which means
that the sd -truncation provides a relatively good subspace, at
least for the description of the energetically lowest states.

By comparing the sd.- levels of Fig. 71a)with the exact ones
.(full lines in Fig. ﬂc) we can conclude that the s&;-subspace is
well decoupled not only from the Sdﬁ - subspace but also from the
whole rest of the boson space (whlch includes the noncollectlve
(6¢ 0) TDA-bosons as well) « Comparison of Figs.1b)and 1c¢)further
shows that the sdz - subspace is a good subspace for the whole
part of the exact spectrum displayed in the figure.

However, the same conclusions cannot be made for the results
obtained in the fermion 8SI-and SDE ~ subspaces ( see Figs. 14,
e,f ) . First, even the lowest S -levels differ considerably

from the corresponding SPE-ones, which means that the fermion

S - subspace is not at all a good subspace. This is confirmed
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Fig. 1. ¥nergy spectra associated with 6 icentical nucleons
moving in 3 non-degenerate j-shells j,"k,j;=9&,j:=‘71
and interacting through the P + QQ Hamiltonian (1).
For the parameters of the Hamiltonian as well as for
the description of individual approximations in a) - f)

see the text.

8(E2,2-0)exact

BIE2,[-2-1)

, 0 2 46 & 1w
Fig. 2. Calculated values of the ratio B(ELII*L"Iz/B(Ebiz’O)e"

for the states shown in Fig. 1. Various approximations

are explained in the text.

by the observation that the $I -subspace does not previde a godd
approximation to the exact scectrum given in Fig. 1d}. Second,
the SD G- subspace works muci, better but still worse than the
corresponding boson de~subspace(¥q=-4b,4e>-

These resu}ts inaicate thaé analogous truncation¢ in the

fermion and boson spaces are not ecuivalent and that 1 boson trun-
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cation may provide s better approximation to the exact fermion
problem than the corresponding fermion truncation. However, the
energy spectra alone do not tell much about the structure of the
wave func;ions. Spectroscopic guantities such as the electromagnetic
transition rates are generally considered to provide a more detailed
information about this structure. We have therefore calculated the
B ( E2) values in different epproximations as well. The Tesults

are shown in Fig. 2 and they support the idea that the boson sd -
and sd® - subspaces are better for the déﬁcription of is;;lying
states than the corresponding fermion S$D-and S]DG-subspaces,
respectively.

This observatipn seems to contradict the commonly &accepted
opinion [}f'@]'that the corresponding fermion and boéon approXxima-
tions should be ecuivalent in the sense that, for example, the
success or failure of.the sd;boson truncation is determined by the
success or failure of the §D - fermion truncation, respectively.
This opinion, however, originates from the presupposed correspon-
dence between fermion and boson states [9,45,16] . On the other
hand, we have carried out the fermion and boson calculations without
specifying in advance the character of correspondence between these
states. The present boson-fermion correspondence is guaranteed to
be unambiguos (due to the proper exclusion of spurious solutions)
but it need not be "simple" in the sense discussed by Ginocchio
and Talmi f45] , because we have worked with a hermitian boson
image of the fermion Hamiltonian, while the "simple" boson-fermion
correspondence requires the boson Hemiltonian to be non-hermitian,
in general. Keeping in mind that the fermion pairs are not real
bosons, it is guite natural to expect that the states of a given
boson subspace correspond tc certain complicated fermion states
in which pairs of higher multipolarity may play an important role.
The stronges: indicationm for this is the fact that the phenomeno-

logical IBNM .ith S- and d - bosons works well even in deformed

11 ‘



nuclei[l.], where a correct microscopic theory reguires an explicit
inclusion of (3 -pairs LG]. However, a detailed understanding of the
above-mentioned boson-fermion correspondence is still far from clear

and deserves further investigation.

4, Conclusion -

The results of the present paper show that for a system of iden-
tical nucleons moving in several non-degenerate j-shells and inter-
acting through the P + QQ force, the boson and fermion collective
subspaces with the same multipole structure are dynarically inequi-
valent. In particular, the boson space restricted to §- and d -
bosons is a much better invariant subspace of the Hamiltonian than
the corresponding fermion space restricted to § - and D - pairs.
This means that the boson collective subspace is dominated by s -
and d - bosons, while its fermion counterpart comprises not only
the S - and D - pairs but also the higher-multipole ones ( (S ) .

A similar finding has recently been made by Dukelsky et al.[1¥]
in the framework of the mean field approach[1o].

Cf course, the validity of the above assertion depends in gene-
ral ;n the boson mapping chosen (kinematical aspect) as well sas
on the Hamiltonian (dynamical aspect). It is well known that the
seniority conserving mapping (SCM) applied to the single-j-shell
Hamiltonian with the pure QQ interaction provides a very bad de-
coupling of the Sd_-subspace from the rest of the whole space[4ﬁj.
In the present paper we have consiaered the case of 3 nondegenerate
Jj-shells and we have inclucea the pairing force iﬂto the Familto-
nian. In aidition, the dynanics of the boson and fermion systems
has been studied indepenaently using the EZM mapping scheme inste-
ad of the SCM. As a result, the coupling of the collective {gf-sub-
spate with'the rest of the boson space has proved to be considerably

weakened.

However, the exact form of the realistic effective interaction
in actual nuclei with protons and neutrons is not well established
so far and it is by no means clear that a P + QQ force is adeguate.
Foreover, peculiarities of the subshell structure in various nuclgi
are expected to play & non-negligible role as well. Further investi-

gations in this direction are therefore very desirable.
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Kyxra P,
JuHaMuueckas He3 KBUBAJIEHTHOCTh CTPY KTYPbl
KOJJIEKTHBHOrO NOAINPOCTPAHCTBA B (JepMHOHHOM
# GO30HHOM NpenCTaBIEHUAX

IMoctpoeH TOuHBLI! 6030HHLIK 0O6pa3 AAEPHOrO raMKJLTOHHAHA,
comepxalllero ChNapuBaresbHOe M KBaAPYNONL-KBAAPYIONLHOE B3a-
UMOZleiCTBUA ¥ [eMCTBYIOLIEro B NpOCTPAHCTBE HECKOJbKHUX HEBLI-
poxceHHEIX § -o0onoyex. [lokasaHo, uTo 6GO30HHLIK raMUIBLTOHHAH,
nedicTByOMNIt Ha NMOXIPOCTPAHCTBE & - U d-0030HOB, OonHebIBaeT ¢ep-
MHOHHBIH 3HepreTHYeCKHUl CIIeKTp U BEPOATHOCTH 371€KTPOMArHUTHEIX
nepexof0B Jydille, YeM OPHTHHAaNbHBIH (hepMHOHHLIN raMHUIILTOHHMAH
H& nopnpocrpaHcTee S~ M D-nap. Taxaa jxe cuTyauusa BcTpeuaerca
B pamKax 8dg-SDQ npubmwxKenua, ITo 3HauMT, YTO' 6030HHLBIE U (ep-
MUOHHBIE NTOANPOCTPAHCTBA C OQHOM H TOt XKe MYJIbTHNONBHOM CTPYK-
TYpOit ABNAIOTCA IMHAMHYECKH He3KBUBAIIEHTHLIMH,

Pa6ora BrinonHeHa B Jlaboparopuu reoperudeckoit pusnxn OUAN

E4-87-746

[penpunt O6benrHeHHOro MHCTHTYTA ANEPHBIX HeenenosaHnl, ly6ua 1987

Kuchta R,
Dynamical Inequivalence of the Structure of the Collective
Subspace in the Fermion and Boson Representations

An exact boson mapping of the multij-shell -pairing-plus-quad-
rupole Hamiltonian onto a Hermitian boson image with at most two-
body terms is performed, The resulting boson Hamiltonian truncated to
8- and d-boson is shown to be capable of describing the exact energy
spectrum and electromagnetic transition rates better than the origi-
nal fermion Hamiltonian restricted to the space of 8- and D-pairs,
This sltuutmn persista within the sdg-SDG truncation as well, 1t can
thus be concluded that the boson and fermion subspaces with the
same multipole structure are dynamically incquivalent,

The investigation has been performed at the Laboratory of Theo-
retical Physics, JINR,
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