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1. 1:ntroduetion 

Recent years heve witnessed a considerable revival of i~terest 

in the bosonie description or nuclei[~J, especielly due to the 

success of the Interacting Boson Model(IBM) [L] • In arder for such 

a description to be useSul in practice, there must exist a relati­

vely simple boson subspace ( hereafter referred to as tbe boson 

eollecti~e subspace) which ia to a large extent decoupled from the 

rest of the whole boson spaee [3] • A typical examRle ~f the boson 

'" 

collective subspace is the IBM-spaeeconsisting of bosons-with 

angular momenta J "" O (s) and J • 2 (cL) • 

In view of the fact that nuclei are basical~y fermion sy~tems, 

it is highly desirable to find a microscopic interpretation of the 

relevant bosons, as well as to derive the IBM-Hamiltonian from theli 
, I underlying shell-model Hamiltonian. r-:ost oi the suggested miero­
• J seopie approaches [It] have pictured the S- and li - bosons of the{, 
, IEM as representing paira of icentical nucleons coupled to angular 

!
I 

~ 
• 

momentum J .. O ( S -~pair) and J .. 2 (:D - pair) , respectively. 

, I This interpretati~n is eertainly justifiable in spherical nuclei[~] 
I 

where the'ground state is built to a large extent by correlated . ,I 
S-pairs and tbe low-lying exeited states contain at most two 

(one proton- and one neutron-)]) -paira. In transitional and defor­

med nuelei, however, the situation is much more complieated. 

Recently, a large number of investigations have been carried out[6J 

whi-ch su~€est that for a microscopic 'understanúing of the proper­
I , 
I,t ties of sueh nuelei one has to take into aceount not only th~ s­

and])-pairs but a1so the higher-multipole ( J>2) ones , among whieh 

the G-pair (J • 4) seems to play the most essential ,role. 

Nevertheless, thia fact does not necessarily mean the incapability 

of the IBM to explain the aame physic8 in terms of S - and cl-bosons 

only. Indeed, it ia well known tbat the IEM works well even in 

deformed nuelei [1] . The above diserepancy between the fermion 
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and boson descriptions merely indic~tes t~at a straightforward 

identification of the IBF-states wát h tbe c or-r-esponc í.ng shell-model. 
states built of S - and ]) - paí.r-s is ove r s i np LaI'a ed , In fact, the 

bosons may in general represent rather complicatea fermion confi­

gurations [~J , and therefore, there is no a priori reason why the 

fermion collective subspace should have th~ same structure as the 

boson collective subspace. The main purpose of the present paper 

is to shed some light on this subject. 

2. The Theoretical Background 

.2.1 TE';':; EOSON If-JAG':"; OF TH3 FERr:ION HAI·:ILTCi·;IAN 

We consider a system õf n identical nucleons moving in several 

non-degenetate j-shells and interacting through the pairing plus 

quadrupole-quadrupole (p + QQ) interaction. The HamíIb onâ an of such 

a system has the forro 

~ t G-p+p - i y.,L. <_)t1 {V.t11 G~-tf ( 1 ) HF '" L.. t.o. (,," «: .......
...... " ) 

where 4::...... (c..,) is the creation (annihilation) operator of a nu­

cleon in the single-particle state (a rH.. ) } o.. (rl ... ,1... , j, ) ; OI 

t;.o. .í.s the c or-r-csponoí.nr, s í.n gl.e-epar-t í.cLe erier-gy , G une 1- are the 

strengths of the pairing and çuadrupole-quadrupole interactions, 

respectivelYt and the operators 1P+
1 ~lM are defined as 

-pt t ~~ .t jid'i' [ 1ft x t~ J:c 

:+ ,..., 2,.	 ( )

tQ~h :: 5- f/l ~ r"" [i:. xC., Jh	 ~J. 

,"'" )~. +n1,r.b <(l" r t YJ, Ub?, C......., (-
Co a:kl-nl' 

The symbol [ x J~ in (2..)- nie ans the standard angular momentum 

coupling. The Hamiltoni~(1) is conveniently rewritten in the form 

ti., .. ~, €o. ~L j~ ~ 1"Uoo(qo.) - ~ ~ ~ V~cl [Ua:C&~) x UI( (all)]~, (3) 
where 
,.., o{
ta. 'ClIl ê.... ,...' It G i ' (lt) 

~~e:t. ,. ".:tK +41~ ~ tt'",,<yw dKL - G s: <f.<l ~ 1 
( S' ) 

( f )U"H (o.b) : [<c~ X CI> J~ . 
2 

I 

~ow we introauce the sphericAl boson cre,·tion c~,nni"ila<10n 
oper-at crs ']~'1(..~) I -:BJ/1(ab: whicL s<_ tL1'y toe fOllOWi:~~k,L_mutation 

~ \\\
 
relations
 \\ \ 
[:BJ~ (a'o) , BJ'~,(db') ] .. [']~I1(ab), BjM,(db')] = o , ~~ 

UI r~) 
[:BJ I1 (q,,) , B~'I1,(o.'b')J .. t5/J'Ót1ItI~Ó","'Óbb' -(-i'+j~tJÓah/<fbel'1. 

'\ 

We also define t ne boson vacuum 10)8 by the c ono.í,tion
 

1J I1 t"'I» IO)8 O, (8)
 

In the Belyaev-Zelevinsky-Marshalek (BZM) mapping scheme [8]
 

the boson images UIIHlctb) of the fermion operators UIII1 (al.) given 
\, 

by (G) c an be expressed asT1 ] 

'U (Qb)"' -lL.t-)JI+_~+I(J J
4 

S~1 J~~ ? ['BtcCD.))(jJtthc)J~ , (q) 
kt1 ~.... tJ' J... JcJ1 

where J ~'fJ..J+-1\ ) i:JI'l("b). (-)"-
f1 :BJ _I1 ( Cl b ) and 2.. } .st anda for 

the usual 6j-symbol. The boson image des of the fermionHamiltonian 

( 3 )	 is then simply 

~ ." S \~J' (aa.) _1-L LY~cd. [ ltl(ab) X 1Lf((cJ.)J~.+ 1 '"	 (10)
ala ~ .. lo(, J.. T 1 q).,oo lt ahll te 

Since the physical sosons are associated ~itj certain kina of 

collectivity, we introduce a unitary transformation to new bosons, 

1)+ c L. f.J:"J "'B~f'f (QL) )	 ( 1'1 ).D(lJt-1 .. b 

where t ne index O" labels different tosons ·...'i t h the same J H • 

Uni tarity of the transformation (11) means that the coefficients 

n..f3 .
l..Ia"J sat~sfy
 

6 15' (At)
Ó~(J'~ ~ ..I.J ~ ..,,~ r
 

) j" +j, f J \' \ 7
(	 (-1? )~ ~	 00'"1 6",,' Ólob' - - db"'J •L f.>~loJ ~:'~J 
C' 

The relation (~J..) guarantees that the proper boson commutator 

[ ":B ~1tf , "B~IJ'f'f'] • ~($tt cru' df'frr' (-111- ) 

holds. The most important consequence 0!(1~) is that the relation 

(~1) can be inverted to yield 

+ _ ~ fl.fi 11+	 (.-15)
"BJI1 (qkl) - L.J ' .... QloJ .D 6Jt1 • 

($ 

The coefficients ~~"J are determined by the re'luirement that 

:~ 



the One-bt!.Srf s t ates ""B:Jl'l lo") B ,where lo) a is the boson vacuum 
r.'

defined t S8) , be EÍÊ'enstates of the boson Hamá Lt on í.an (10) 'vii ta
 

t ne c0es~OnQing eigenval ue s E; . This leads to the following
 

system of linf.'ar e i ce nva Lue equations for ~~bJ
 
'I 

f~~J E~ ~:b]L. t~r."b' 
ll.'b' t f, T

ao

E, - ~ '< [(.tj, 

1

T 1r' ~(T")' t(~j, HY'.p't,,)']1ó••<I"
Á~b':~ 

)j~ +j, t J v ()' I a- I ç j~. j ti J 7 6: 
+ (_ . ,... I .... I til> l. j~ j .. .t J 

(1b)
t G d4~ 6..'/0' 6;JoYClj.. +,,)( lj.., + 1)' 

where the relation (5') was explici t Ly introàueed. The procedure
 

for ~etermining the coeffi~ients ~~J is essentially the two-parti ­


ele Tamm-Dancoff approximation (TDA) • we shall ther~fore refer to
 

these coeffieients as TDA-amplitudes and to the assoeiated eigen­


values E~ as TDA-energies. Correspondingly, the objeets ereated
 

by the operators -::B~Jh wi~l be ealled TDA=bosons. The different
 

TDA-energies for a given J can be used for ordering the set
E; 
fü&' O,1/Z/ ..... ~ in such a way that E~ increases with <5'
 

The bosons :B+6"JH wi th <5' - O will then have the lowest energy
 

( for a given J) , and therefore, tbey will be ealled "colleetive", 

whil~ those .... i th ($ = -t,l) ... , having a. higher energy, will be iden­

tified with the "noneollective" bOBons.
 

Having fixed the TDJ\-ampli tudes (3:~ and the TDA-energies E;
 
we use (Cf) ,(-to) and (15) to express the boson Hamiltonian ~B
 

in terms of the TDA-bosons, 

~8 c ~ E~ B~]" ~~JI'f 
83ft (1*)
 

-4- L~" ~ W~]"11,())1)'t;r, r[B~f"'X 'B~1JJI( X['B")J))(8'\1,JI(J~

"'~~·I"lo K ~ 
I,.la. Js 3,
 

where
 
WI( == (_)'l"J~ JJJ3~ L,(_)i. +j, fj" +j .. (J..L+1YV~K

~~fC~3l6,).45 ..'.. • .. 1 ) IrL ~"'f," ... "~c"rt L. 

i J1

'\ 

J1. K 1 ~ j.( j .. J3 1~ jlo j, Jz,1 .., 'ô~ ~5".) ('ta )
x ~ J~ ls L 5l J, L j.) (J., 1. jc 1 P->·r"J, ~b4tJ~ ~ J.;J) ~ .~J.. • 

4 
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In ottaininE (1l) , the comoutation relations (1~) have been used 

to arrange ~B into the normal order ~ith respect to the boson 

vacuum 10)8 . Us ng (",.ç) anei l5') , on,e can easily verí.ty thatí 

wK 3. t J 1 + J1 + 1~ WK 
(lfJ.6'11...5)J3(j~]., = (-) lS'\J\ 6',33 6',J.. 6.J. J 

which means that ~6 i~ her~itian'~ It is also worthwhile to point 

out that provided alI the TDA~bosons are included in(1}), the 

boson Hamiltonian ~e, is an exact image of the original fermion 
'" 

Hamiltonian HF 

2.2 REfvíOVAL- OF SFURICUS :COSCN .STAT?.S 

It is well known that the dia~onalization of any boson image 

of a fermion Hamiltonian in the boson basis generated by the statea 

IN j .A. '> & :'" ~ 13~1 'Bt-.. -~~N \ O)S I 

('1Q)
li '!!(6';JiHi) j v\ .. l.tl,.ll .... ,J.N~ } N =1­

produces not only the eigenvectors correspon~ing to actual states 

of the underlying nucleon systernfbut aIso the spurious ones which 

have no physical meaning and are associated wit~ the overcomplete­

ness ?f the basis (~q). Since the operetors (4) commute ~ith the 

projector onto the ph3sical subspace [10/i~] , it is easily seen 

from (10) that the present forro of ~b does not mix the physical 

and spurious states. Consequently, these two types of boson states 

are strictly separated from each other and the only task one is 

left with is to identify which states are physical and ~hich are 

spurious. This can most easily be aone by means of tbe method first 

proposed b.;y Janssen et a1. [1-1J and recently elaborated by Park [-t.t]. 

This method exploits the non-unitary charaeter of the Dyson mapping 

[13J , namely the faet that the images of fermion operators have, 

in general, different properties in the physical and non-physieal 

subspac~s. The starting point of the method 15 the ferrnion operator 
J\ J\ to ... '1.

K -:: NI. - N:r. J (.20"-) 

5 
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where 
"'1. ~ 1" . f
N,I :: -'T- (LQIIle. «:<a.... a:. b... d:1....	 (.10l. ) 

~D .........
 

"1 '" + _ ~ + tNli	 = P (f.a ..... Ca ..... í!'--- 4:.. ....... (Lo... (a..... C....... (etOC)
 
- Olllll& ab .........
 

.... '" 'L

The	 operator K is c Lear-Ly equal to zero because N]L is nothing 

'" 1.	 . 
but	 N I writt~n in normal ordered formo Us ag the :Dyson trans-í 

formati.on r10 --f?> J 
ec+cr~ ~(tr:tr~)D = b~1! -Lb~~b~6bKe5 

c( 1-	 /(d 

tI'> Co( ~ (itr.-te>t) D z b"'t\	 (.l~ ) 
a:~ crA ...,. (4:~ ~f.> ') o :: L, b+04t\' b~x 

1- ~ t -f '" - • 1 )d
and	 introducing the TDA-bosons(-4-1) wíth :BJJqb) "~L-/I"""J&Jfla, JI1 bu(!> J 

A	 ~~ 

we get the Dyson image Kp of (.tO) in the forro 
(.tlc.)K

b 
; N; - ND - Ftl I 

....here
 

N" 
D '" ~ '".?- 13+lJ J tI ".B~J"" I (12.b)


tJJI1 

"" - "'" +f	 :: ..LJ A~JI1.:B ~JJ1 (J.2. c)
D 6":Ift	 ­

with "-' J 

A~:Ih .15:Jt1~L "L f~~~)"']~63?(K)[[B~.:lfX-:B~,:JJKX1'63'SJt't, ('-lei) 
G'."'C'~ K 

L 

':I"J ' ! tj~ j .. J ~ 
4liJ ..... ,.,"'... • - li ~4 6'L f)~ 

C() (K)' =J..> KJfJ~J3 JJ. Je J.1 .~"'J ~1l"'Jf rc(bJ~~CJ.j3 _ (~le )
~8,1,~1]~~]!> i-.. J1. J" K 

~.c. 

The *quantitY ~ ::": ~ i~(l2.e) is the usual 9j-symbol. As is shown 

in ('12,] ,K D has zero expectation value in alI the physical boson 

states but positive expectation value in all the spurious boson 

states. Thi~ property allows one to distinguieb between the physi­

cal	 and spurious eigenstates of the boson Hamiltonian. 

Of course, in cases when some truncation of ~(& is made, 

the described procedure cannot be used because the physical and 

spurious boson states are no longer well separated ( i. e. ill eigen­

states of the truncated boson Eamiltonian may contain both physical 

and spurious components) • It is therefore necessary te exclude 

the" occurrence of spurious states'a priori, e.g. by constructing 

a suitable boson basia which can be put into one-te-one correspon­

dence with the fermion basis. To tbis end, l~t us consider the
 

following fermion_states
 

~ 1 ~ + ~t ) (.z~)
\N i s: / F = (Nf fr..t 4 Ir..r~ U..r. .. IOF I0-' ­

where IO'>F is the fermion vacuum ( ~J 10 ) F = O") and
 

t t .. '">. fl Q; [+. + ] s, (JIf )
fr.,;	 E. 1rll";1f H... ~ ~ I~QI.Ji· et.)( e; /1. 

w1.th the (?J~;Ji determined from (1") . The states (.B) forro an 

overcomplete non-orthogonal basia in the fermion space. By diago­

nalizing t he norm matrix <N ; ,l IN;,J,.' >F ) 

"'Ç"" <.. , IN') •.(0() _ AP ...(0() • "') fl/(I() u.(o(l): r- I (~S)
L....J IV' J. ; .1 F lAol.' - vV fi!. IA."A J L....J "".I .... e ol~ 
~ f	 ~ 

and	 excluding the zero-eigenvalue solutions t1~.) .}foto ::: O , 

we construct a complete orthonormal basis in the fermi~n space 

IN i "'»F · "J.,.. ~ tt~l Ir-!; ~>F ri F cio (2e;) 

Tbe corresponding boson basis in which the actual calculations 

have to be carried out in order to avoid spurious solutions is then 

given by 

I N i O<)/B = ~ 1.l~) IN j J. ) 8 ; ri.. /: do J 
(l~) 

where IN i -l'> B are the boson states (1q) • 

2.3 CHorCE OF THE COLLECTrVE SUBSPACE 

f!aving established an exact boson irnage of the fermion Hamil­

tonian, as well as the method for dealin[ with s~urious boson 

solutions, we are ready to examine the ~gooQneSSn of both the 

boson and fermion collective subspaces. According to current 

thinking [~~ ] ' this can be done by 'selecting certain part of the 

whole Hilbert space as collective, cisregardinE the rest and 

checking whether the important physical o~servables such as the 

energies and the transition matrix elements remain essentially 

unchanged by enlarging the chosen collective subspace. If this is 

indeed so, one may be reasonably sure that the selected collective 

7(, 
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subspace i8 to ~ fOO~ approximation dEcoupled 

.the ~nole space. being inspirea b~ the lEE [LJ 

the boson collective subspace i5 [enerated by 

(13' :=. O) ':':UA-bosons "B~J H with'; = C; anc J = 2 

The corresponjing fermion collective subspace 
t ~t + t 

fro~ ths rest oI 

, we suppose that 

tbe ~ost collective 

('B~o s s+, B~1H :; dt) . 
is assumeu to be thet 

composed of the ~oo -= J ano fr0 1H == :Dk fermion pairs. The 

ebove boson and fermion subspaces will be referred to as the s~­

and S1> - subspaces, respectively. Since there are strong inãication 

that the J = 4 bosons (nucleon pair~) may also play an important 

role in the low-lyin~, collective states of nuclei [ 'J , we take as 

the enlarged space tbe sdl (.5])(f;) subspace wh-ich contains additio­
t _ "])+ ( f _ rnt .)

nal ~tt =	 .lJ o~t1 - bosons ~,., = u olt-tJ- pa!.ps 

3. Results 

For actual calculations we consider a system of J.. N ... b identical 

nucleons distributed over 3 non-degenerate j-shells Ji" 1'/1 .jl.- S/'L,b:=. l'j) 

( E. J· 1 -1 HeV , Sjl • 3HeV,~jJ =0 HtV)and interacting through the P + QQ Hamil­

tonian (.1) 

Tbis choice 

nuclei, but 

wi th G • 0.1 HeV ) "f.. .. O.L H~V ( Wlc.J/t. ) 2. '.
 

is complex enough to simulate some real situations in
 

at the same time, it is sufficiently simple as to allo~
 

for ao exact 

estimate not 

tive subspace 

with respect 

solution of the Bamiltonian (-1) • This enables one to 

only the relative ngoodnes8~ of the truncated collec­

as described above but also its absolute adequacy 

to the exact solution. 

In Fig. 1 we compare the low-lying levels of the boson and 

fermion spectra obtained in various approximationa. First of alI, 

Figs. 1c) and 1d) show the spectrum of the boson Hamiltonian(1~) 

and the exact spectrum of the fermion Hamiltonian (1), respectively 

The boson spectrum ia seen to be much richer than the fermion one," . 
as g conse~uence o~ the overcompleteness of the boson basia (1q) 

with respec~ to the space available for fermions. However, by com­

puting th~ expectation value of the operetor(Jt)i~ ~ll tbe boson 

~ates one can easily find that the states marked by full lines 

are physical (zero expectation value) , ~hile those represented 

by dashed lines are spurious (positive expectation value) • 

By simply ignoring the latter we immeàiately observe that the 

remaining ( i. e. physical) boson eigenstates coincide wi th the 

exact fermion eigenstates given in Fig. 1d • Thus, the diagonali ­(~. 
zation of the boson Hamiltonian(1l) in the whole boson space correc­

tly reproduces all the_ physical eigenenergi.es.(I!
\ In Figs. 1a)and 1b)we display the energy spectra obtained by 

diagonalizing -the bos on Hamiltonian (1!f)in the sd..- and ~ -subspacç 

respectively. Fossible sp~rious boson states are removed before 

diagonalization by excluding the zero-eigenvalue eigenstates of 

the fermion norm matrix. The finiteness of the model ~pace is 

responsible for the fact that only some energy levels of the exact 

spectrum can be reproduced in the stt- subspace. Nevertheless, 

the energiea of these levels remain essentiBlly unchanged when the 

boson space is enlarged to include the 3+- bosons, which meana 

that the s~-truncation provides a relatively good subspace, at 

least for the description of the energetically lowest stetes. 

By comparing the st/...-levels of Fig. 1a)with the exact ones 

(full lines in Fig. 1C) we can conclude that the scl- subspace is 

well decoupled not only from the S cld- subspace but als~ from the 

;1~	 whole rest of the boson space (Which includes the noncollective 

(Sf-O)TDA-bosons as ·.;ell) • Comparison of Figs.1b)a.nd 1c)furtherI.	 ShOW8 that the s c1~ - subspace is a good subspace for the whole 

part of the exact spectrum displayed in the figure. 

However t the same conclusions cannot be made for the results 

obtained in the fermion S1D- and S])(, - subspaces (see Figs. 1d, 

e,f ) • First, even the lowest S]D-levels differ considerably 

from the corresponding S])f>-ones, which means that the fermion 

j])- subspace is not at all a good subspace. This is confirmed 

8 9 
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Fig. 1. Energy spectra associated with 6 icentical nucleons 

moving in .3 non-degenerate j-shells j,,,,1Itljt.=~/2.lj3=J"jz.. 
and interacting through the P + QQ Hamiltonian (1). 

For the parameters of the Hamiltonian as well as for 

the description of individual approximations in a) _ f) 

see the texto 
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Fig.	 2. Calculated values of tbe ratio ':P.(E1,,;I+J.,-"I)/8(E2'it~O)~u 

for the states shown in Fig. 1. V~rious ap~roximations 

are explained in the texto 

by the observation that toe 5JD -subspace d oe s not prcvide a goód 

approximation to the exaet s~eetrurn given in Fi~. 1d). Second, 

the .s 1bb - subspaee works muci. better but still worse t han the 

corresponding boson sd..3 -sUbsp~ee( ~i~s. 16).fe). 

These results inaieate that anaLogcus t r-unc at í onr in the 

fetIDion and boson spaces are not eauivalent and that g boson trun­

10 

;.. 

,eation may provide a better approximation to the exact fermion 

problem than the corresponding fermioo truncation. However, the 

energy spectra alooe do not tell much about the structure of the 

wave functions. Spectroscopic qtiantities such as the electromagnetic 

transition rates are generally considered to provide a more detailed 

information about this structure. We have therefore calculated the 

B (E2) values in different approximations as wel L.. The results 

are shown in Fig. 2 and they support the idea that the bosoo S~­

and sl~ - subspaces are better for the description of i~';-IYing 

states than the correspondiog fermion S ']). and SJl)6,-subspaces, 

respectively. 

This observati?n seems to contradict the commonly accepted 

opinioo [4- ,] that the corresponding fermion and boson approxima­

tions should be equivalent in the sense that, for example, the 

success or failure of'. the set- boson truncatioo Ls determined by the 

success or failure of the SJD - fermion truncation, respectively. 

Tbis opinion, however, originates from the presupposed correspon­

dence between fermioo and bosoo states [q,"5, l' J. On the other 

hand,. we have carried out the fermioo and boson calculations without 

specifyiog in advance tbe character of correspondence between these 

states. The present boson-fermion correspondence is guaranteed to 

be unambiguos (due to the proper exclusion of spurious solutions) 

but it need not be "simple" in the sense discussed by Ginocchio 

and Talmi [~5] , because we have worked with a hermitian boson 

\	 imàge of tpe fermion Hamiltonian, while the "simple" boson-fermion 

~ correspondence requires the boson Hamiltonian to be non-hermitian, 

in general. Keepinf in mind that the fermion pairs are not real 

bosons, ~t is 9uite natural" to expect that the states of a given 

boson SubspEce correspond te certain complicated fermion states 

in whá ch pa i ~'S of f,if'her mul tipolari ty may pLay an important role. 

T~e stronges: indicatiori for this is the fact that the phenomeno­

logica.l lBr-: .í, th 5 - and ti - bosons works well even in deformed 

11 



nuclei [.tJ, -••here a correct rr.icroscopic theory requires an explicit 

inclusion of b""·pairs r~ J. Bowever, a detailed understanding of the 

above-mentioned bosnn-fermion correspondence is still far from~lear 

and deserves I'ur-bbe r Lnve s t í.ga t on . í 

4.	 Conclusion 

The resulte of the present pape~ sh9w_that for a system of iden­

tical nucleons moving in several non-degenerate j-shells and inter­

acting through the P + QQ force, the boson and fermion collective 

subspaces with the same multipole structure are dynamically inequi­

valente In particular, the boson space restricted to s- and ~­

bosons is a much better invariant qubspace of the Hamiltonian than 

the corresponding .ferrnion space restricted to S - and:D - pa í r s , 

This means that the boson collective subspace is dominated by s­

and L- bosons, while its ferrnion counterpart comprises not only 

the S - and ':l> - pairs but also the higher-multipole ones ( , ) • 

A simil~r finding has recently been rnade by Dukelsky et alo [11J 
in the framework of the mean field approach [10J • 

Cf course, the validity of the above assertion depends in gene­

ral on the bosoo mapping chosen (kinematical aspect) as well as 

on the Ha~iltonian (dynamical aspect). It is well known that the 

eeoiority conserving mapping (SCM) applied to the single-j-shell 

Hamiltonian with the pure QQ interaction provides a very bad de­

coupling of the se:t -subspace from the rest of the whole space [1bJ. 
In	 tbe present paper we have consiaered the case of 3 nonàegenerate 

j-shells anti we have inclucea the ~airinc force ~nto the Pamilto­

n i an , In a i d i tion, the dyn an.á c.s of the boson and fermion systems 

has been studied in~epenaently usin~ the BZ~ mapping scheme inste­

ad	 of the SeM. As a rasul t, the coupling of' the collective Sel-sub­

spate with the rest of the boson space has proved to be considerably 

weakened. 

li 

.1 

I 

'I' 

... 

However, the exact form of the realistic effective interaction 

in actual nuelei with protons and neutrons is not well established 

~o tar and it is by no meana clear that a P + QQ force is adequate. 

Foreover, pe~uliarities of the subshell structure in various nucl;i 

are expected to play a non-negligible role as well. Further invest~ 

gations in this direction-are therefore very desirable. 
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KYXTR P.	 E4·87·745 
,llHHRMHlleCKRR He3KBHBRJIeHTHOCTb CTpYKTYPbI 
KOJJJJeKTHBHoro no,u.npOCTp8HCTBR B 4>epMHoHHOM 
H 6030HHOM npe,u.CTaBJJeHWlX 

Ilocrpoen TOtlHMA 6030HHblt% 06P03 nnepnoro rOMHJJbTOHHaHR, 
conepacnnero CnapHBaTeJJbHOe H KBaP,PynOJIL·KBU,u.pynOJJLHQC 83a· 
HMO,u.eÜCTBHR H ,u.eikTByromero B npocrpancrae neCKOJJhKHX nensr­
pOm,u.eHHMX J .060JJOtIeK. 110xasano, IITO 6030HHblt% rRMHJJhTOHHaH, 
,u.eiiCTBYlOmHt% na nO,u.npOCTp8.HCTBe S • H d-6030HOB, onacsrsaer 4>ep· 
MHOHHblH 3HepreTHlleCKHH cnexrp H Bép9HTHOCTH 3fIeI<TpOMarHHTHhIX 

!I nepexonoa JJYlIrne, II€M OpHfHHaJIhHbJH 4>epMMoHHhIH raMHJJbTOHHaH 
na nO,u.npOCTpa.HCTBe S- H D-nap. TaKaR )Ke cHTyaUIDI acrpesaerca 
B pasrxax Bdg-SDO npH6JJmKeHIDI. 3TO 3HaIlHT, xro' 6030HHbIe H 4>ep­
MHOHHbIe nO,u.npOCTpaHCTBa C O,u.HOH H TOH:>Ke MY~bTHnOnbHOH CTPYK­
TYpOÜ RBJIRIOTCR ,u.HHaMHlleCKH He3KBHBaJIeHTHbIMH. 

Pa60TaBbmOJIHeHa B JIa60paTopHHTeopeTHlIeCKOH 4>H3HKH OH.fIH 

npenpHlIT 06'henHHeHHOrO HHCTHTy-ra RnepHblX accnenoaaaaã, .lly6HB'1987 

Kuchta R. E4·87-745 
Dynamical Inequivalence of the Structure of the Collective 
Subspace in the Fermion and Boson Representations 

An exact boson mappíng Ç)f the multí-j-shell ·pairing-plus-quad­
rupole Hamiltonian onto a Hermitian boson ímage with at most two­
body terms ís performed, The resultíng boson Hamiltonian truncated to 
s· and d-boson is shown to be capable of describing the exact energy 
spectrum and electromagrretíc transítíon ratos ·bettor than the orígí­
nal fcrmlon Hamíltonían restrictcd to. tho spaco of S· and Dvpaírs, 
Thía sltuatíon persista within the sdg·HDG truncatíon as well, 'It can 
thus be concluded that the boson and fcrmion subspaces with the 
same multipole structure are dynamícally Inequlvalont. 

The ínvestlgatíon has been performed at the Laboratory of Theo­
retícal Physícs, JINR. 
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