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1. INTRODUCTION 

The principIe of local commutativity states that two local 
field observables must connnute if their supports are space
like separated. The consequence is that th~ corresponding phy
sical observables (events) are independent of each other and 
cannot be the cause and effect (e.g., see!l! ). This princip
Ie (named (I) in the following) is supplemented (and someti
mes combined) with another causality principIe (II):"only re
tarded solutions of the physical equations are realized in 
the Nature". This means that the cause can only be inside the 
past light cone of the effect but not inside its ruture cone. 

It is natural to set the problem of verifying (11) in the 
same sence as one has verified (I) or conservational laws: 
one has to point out physical processes which are forbidden 
by them. It seems that stationary (S-matrix) processes do not 
suit this purpose. In order to verify (I) and (11), the follo
wing nonstationary problem ia considered here, naT:'lely, the 
action of the externaI current on the deexcitation of the ex
cited atom. The current J and atom are supposed to be locali 
zed in regions VJ and V separated by the distance R which ia 
much greater than À, the wavelength of the atom radiation. 
The problem is introductory to a more realistic (but more 
complex) problem: how one atom influences the deexcitatiôn 
of another. 

The inclusive probability of the deexcitation of the atom 
(accompan~ed by ita recoil) ia calculated, i.e., we suppose 
that only the atom states are m~asured, photons are not detec
ted. The change of this probabi1ity induced by switching on 
of the current J is defined as the following difference: "the 
probability with J being present minus the same probabj.lity 
but without J {i.e., when J O alw<:\ys)". IIB 

It is shown in section 2 that the recoil momentum of the 
'atom which is due to the current action is directed towards 
the current, i.e. the current attracts the atom but does not 
exert "light pressure" upon it. This circumstance is impor
tant for the interpretation of the mechanism of the current 

-.J-. li' action which is discussed in sect. 3.
 
! I ' , DtJ.clbii~·tJj'l~n ~mcnrryy ~
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Çli\":'Ji5itdX fl(';r:oi'H~lID!liUIQ ~l 1 
6~H:Jj (1- !::'1T!=H A I). 

1 r 

" 



The calculations in sect. 2 are performed using a "semi .: 

Heisenberg picture" which is, in some sense, intermediate 
between the interaction and Heisenberg pictures. If the recoil 
is not measured, then the result coincides with the one obtai
ned in the Heisenberg picture, see!2! . 

The calculation in standard interaction picture perturha
tion theory is sketched in sect. 3. Being cumbersome as compa
red with the "semi-Heisenberg" calculation it turns out to be 
important for the interpretation of the mechanism of the cur
rent action on the atom. 
• The results ~re discussed in Sect. 4. It is shown how to 
verify principIe (11) along with (I) using switching on of 
the current in appropriate time intervals. It is demonstrated 
that the proposition " signal velocity cannot exceed C" is 
not equivalent to principIe (I) and must be considered as a 
consequence of both (I) and (11). 

2.	 SEMI-HEISENBERG PICTDRE 

The additional probability of the atom deexcitation indu
ced by the externaI curreht J is defined as ~W(t) = WJ(t) 
- Wo(t). Here Wo(t) is the probability of the atom transition 
from the initial state having the energy f 2 to the state ha
ving the energy f < (2' the atom being acquired the recoil mo

J
mentum P • WJ(t) 1S the same probability but when J is present,r 
being -nonz er o í.n a time interval (ri' T2 ) . 

The atomic nucleus is supposed t o have a finite mass m'n' 
I use, in this section, the nonrelativistic description of 
the atom electron. The approximation is good enough for the 
considered problem and it allows one to escape troubles ari 
sing in the relativistic description of the system "electron + 
+	 nucleus". 

The initial state is d e scr í.bed by the vector t/J
2 

' n == <I>(X). 
4>2(7) n : photons are a~sent '(O is no-photon state); the 

atom is in the excited state 2; ~(X) describes (in the center
of-mass-coordinate-i representation) the atom localized as a 
whole in a volume V, its d imens í.ons being » À...; À...- (f . -( 1 )-1. 
The final atom state is described by t/J 1 = exp(i PrX) 4>ltr). The 
distance R between V and the current localization region VJ 
is mu~h greater than V and VJ dimensions, see figo 1. 

The probabilities WJ and Wo, are inclusive ones: 

WJ (t) = ~rl < t/J 1 r \ UJ ( t , O) I t/J 2 O>! 2, Wo(t) = ~rl <t/J ir lU (t,O) I t/J
2 
n>1~ 

(I)2 

Here r denotes the comple tte set of the electromagne
tic field states; fi , one
phonon. s ta tes c+kf n ; \tlk, f ; 

two-photon states, etc. 
U(t,O) can be considered 
as the evolution operator 
in the interaction picture 
when the current is abse~t: i 

e- i H t = e- i HO t U ( t , O), I 
(2)
 

H = Ho + HI .
 

When J is present, ~J.I 

UJ (t, 0)= T exp [- i; H/(t ') dt ' 1, ! 7:, 

o (3) \.j k R 
where H: (t ) is (t.he Coulomb Fig. 1. 
gauge being chosen) 

J e'" ... -+ . e-+ -+ -+ 
H (t) =- P (t). A (x (t ) , t) - - P (t) Al. ( X n( t), t ) +I me l.e m n 

e	 n ' 

(4) 
e 2 "'2 ... e 2 -+2'" 

+ -- Al. (x (t) , t) + -- Al. (x (t ) , t) +
 
2m e e 2m n n


1 3 e.Ta ( ~, t) eJO(~' t) 3 -+... ...-. 
+ - J d x[ --:---1 -J d xJ (x, t).A (x, t). 

...	 ... l. 
411 Ix- xe(t)l I x - xn(t)1
 

J •

As usua I '~I 1S a function of the interaction picture
 

operators, e.g.
 
... i Ho t ... - i HOt i HOa t -. -iHOa t H = HO + H yxe(t) := e x ee e xee 'o a O

(5)
-+... -iHo..t... -. -iH •.t
 
Al. (x, t) = e Y 'Al. ( x) e OY •
 

2.1. The calculation of (I) can be considerably simplified 
using a special representation of the operator UJ(t,O). Note 
the separation in eq. (2) of exp(-iHt) into the product of 
exp(-iHot) and U(t,O). Let us separate analogously UJ(t,O) 
the left multiplier being Texp irJA, see the last ~erm in H: ' 
eq., (4): 
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t ~ ....3.... .....
U/t, O) = Texp(if qt'Jd xJ(X, t').:AJ. (X, 1:")1 . ui (t, O). (6) 

O 

Using the aquat í on ia UJ = H:U J and the analogous eq , fort
 
VJ == Texp( i (J.A] one obtains for Ui the equation:
 

(7)ia u; (t, O) = H{ (t) u; (t , O) 
t 

~;(t) = V~(t) {H: without the last term in eq. (4)1 VJ(t) 
t 3~~ -+ ~ 

VJ(t) == Texp(i r dx r d x J (x, x ) · AJ.(x, ~).ooo 

-+ ..... 

The electron and nucleus operators commute with J .AJ.and the
refore Hí is given by the expression {r.h.s. of eq. (4) with
out the last term I in which A.l(x, t) is r epLaced by 

:AJ.i (i, t) = VJ(t):AJ.i(x, t)VJ (t) = 

(8) 
.... t a. lo.... .... .... 

A ,(x, t)- f dYo·fdyL DI,·(x-y, t-yo)J·(Y, Yo)'
.lI j J J 

o 
The calculation of V;AJ. VJis realized using formulae from 

§ 20 of the book / 3 1 (see, e.g., (20.2) and (20.14a)) 0t in 
§ 21.2 of the first edition of 141 • The function Dl. is the 
transverse D-function which appears in the r.h.s. of the com
mutator which is used to calculate V;AJ.VJ 

... .... lo -+ -+
 
[ ~AJ. i ( x, ~) , Alo j (y, Yo ) ] = - i Di j ( x - y, xO - YO) •
 

..... -+ J .... 
The operator :Ai satisfies the equation oA lo = - JJ. • The 

electron and Ilucleus current are not present in the r.h.s. 
of this equation and therefore :Â~ is not the Heisenberg ope
rator, it can be called the semi-Heisenber.g operator. 

The ;representation (6) for U J where ,Ui Ls the solution 
ofeq. (7) 

t 
Ui (t, O) = Texp(- i rHí (t ' )dt'] (9) 

o 
simplifies the c al.oulat í.on of ·W J because VJ== Texp[ ip.A] d í s 
appêars from r.h.e. of (1) in the fol1owing manner. One has 

~i~~ 1:r '<t/J 2 n IU;+ V; I t/J 1 r > <t/J 1r I vJ UJI t/J 2 n > = 

';' - +: + ' 
~ 'r'" n n .< ljJ n Iu; 1n > <n Iv lf I'" r> .<4J r Iv ln>.<n IuJ' l.p n> . 
,'~t 12 2 " 1 1 cl 1 1 J 22 2


'; ~.':$ ' .
 
.A"" ':' . 

J., ·,i . 
• ". ~; ir 

Here I inserted the sums Lnln> < n \ = 1 over the complete set 
of states \ n> = lrt/Jn>of the considered system "electron + nuc
leus + electromagnetic field". As VJ does not depend upon the 
electron and nucleus operators, one has . 

< t/J r I VJ·I n > = < r IVJ I r 2> < t/J I t/J > .
1 1 1 n 

and the sums over n 1 and n 2 reduce to the sums over r 1 and 
r • Using the VJ unitarity property

2 

L < r I V+ I r > < r 1VJ I r > = Ôr r 
r 1 J 2 i ' 2 

we obtain 

+. 
WJ = L <t/J2 

0 I U;I tk 1 r 1 > <t/1l'r1 \U~I t/1 2 
n > = r 

1 (10)
2
 

= L I < t/J r lU' ( t, O) I t/J U > I .
 
r 1 J 2 

2.2. Let us calculate (10) in the first nonvanishing appro
ximation in e, the electron charge. The approximation turns 
out to be _e 1 and therefore the terms e 2 Af from eq. (4) do 
not contribute. 

Le t the current j ( i, t) be local ized in a region VJ -Jlear 
the end of the vector R, see figo 1. Then one has i = R + x', 
where I x' I «R. The equation . 

3 1 1
(dxeJo(x,t)( ...... -~-]=
 

I x - x I 1x - xn I
e , ( 11 ) 
3 ........ .... ::t .... 

= ~f d x' J (R + x' t)(-2r x ' + r x ' + r x ' L r == 1(.n
3 o ' zz xx yy 

x e 
R 

can be deduced , We shall see that < t/1 1r .uJI t/1 20 > í s of the 
order l/R, so the contribution (11) to the matrix element can 
be discarded, as being of' the order I/R 3 • 

Let us further use the dinole or long-wave approximation
• • ....-;) -+ =l'"J .... ..... J .... ..... .... 

Substltut~ng :1\ (X, t ) for AJ.(x t) and A.J. (x t), X = (mnx +e, n, n 
+ .mex~/(mt1 + mJ. 

After these approximations one has ,
 
t +iH t' .... -+J..... -iH t'
 

U'(t,O) ~ 1- ifdte Oa (-~p. A (X, t)] e O a
 
J O ~ lo
 

..... .... ....
 ( 12)1 1 1 P Pn P e 
-.- = - +-; -=----

/.L m m ~ m me n n e 
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r have represented here U; in terms of the Schroedinger elec-' 
tron and nucleus operators, using eqs. (5). 

Now one can see that the operator (12) has nonvanishing 
elements < t/J 1I' lUJIt/J é1 > only if of=n or r= c~n. Tf r=c ~(n , . 
then only the free part A.J.. (x, t) of the operator ~Âl, see 
eq . (8), contributes to <t/J 1c;(OIU;I t/J 20> • So the elements 
coincide with <t/J1C~ 0IU\t/J20 > ,the square of modulus of 
which is equal to the "background ll Wo(t). We get 

~ W(t) == WJ - WO ~ I < t/J 1n \ U.; (t , O) I t/J 2 Q > ! (13) 

Using the equatións 

~ ~ 2 ~ ~ 

-iH t iPfX --+ P r il'r X --+ 
e Oa e cP (r) == exp [- (- + ( ) t] e cP (r); ( 14) 

1 2M 1 1 

-iH t --+ -~ 1 3 P 2 
e Oa <I> ( X) cP (r) == -- f d P exp[- i (- + (2) t ] . (15) 

2 (2 TT) 3 2M 

iP X - --+ --+ 
. e cfJ(P) cP (r);

2 

--+--+ 
- ~ 3 -iP X
<I> (P) =f d X e (Í) (X) , M = mn + m e 

one gets for <t/J 1n \U.Í I t/J 2í.1 > 

<t/Jl0\U;(t, 0)1t/J2 í1 >: - i 3 jdt'!d3péiJ(p)e-iE12t' 
• (2TT) O 

--+ -+ -+ (16)
3 i( P - Pr ) X 3 --+ e ~ 

f d X e Jd r ep * (r) L (- - P. ) cP (r) x 
1 i,.i /l 1 2 

t 3 --+--+
 

X f dyo (d y ~j (X - y, t ' - yo) J j (Y, yo)
 
O
 

2 2 (

E 12 = (P r - P ) I 2M + ( 1 - (2' 17) 

Lf <P(?) .de s cr i.be s the state with a vanishing average momentum 
wi th the uncertainty i ~ P i «( 2- (1= ~, then P 212M « ~ 212M. As
sume as an Anzatz (to be confirmed by the subsequent calcula
tion) that IPr I is of the order s . Then P!/2McoJ ~2/2M which 
is «~ because of M» ~. So .E (P) , see eq. (17)) is equal, 12 ~ 
approximatel~ to - ~ . Let us rep ace E 12 (P) by the expres
sion - ~ + ~ 12M = - ~' which does not depend upon P. One can 
show using some realistic values of the parameters R, '2 - r 1 ' 
~ that the resulting error is sma l.l , 

_6 

;,. . 
To calculate (16), r begin with the time integraIs in the 

r.h.s. of eq. (I?) 

t -i~'t' t' .1 --+ ~ --+ 

Yi == ~ r d t " e (dYoDi j (X - y, t'- yo)Jj(y, yo)' ( 18) 
1 O O 

Le t J j (y, yo) b e zero outside an interval (r , '2) and
1 

i~'yO' *~. -i~'yo 
J
j 

(y, yo) == K/Y) e + Kj (y) e (19) 

if Yo E ('1' r ) . Taking into account only the first term of
2

the order l/R in expression (A.4) for D.l, see Appendix, one 
gets (cf , subsect 2.3 in/ 2! ) 

1 -ip~ 
Y. == -- [K i - n. (K n)1 e F {t) ; 

1 4TT P 1 P 
--+ --+ I. --+ --+ --+ (20)

p=IX-y\, n=(X-y)l p . 

t<r 1 +p } 

F (t) == T +P<t < T 'P{ t-:T 1 + P) 
(21) 

1 2
 

, - r t >, + p
 
P 

2 1 2 

Here XÇV; .y.ç VJ and t he r e fo r e, p ~ R. But se one Le ts simply 
p == R~ the r e su l t will be P r == P: in such an approximation the 
atom recoil is absent. One needs an approximate p which de
pends upon X. r let the volume VJ to be much less than V. Then 
p == IX - Y! == \R - X:, where rX' «R. The main t e rms vof Yi ex
pansion into the series over X(see, e.g., eq. (29) in /2~ 
have the order l/R. They o r í g i nat.e from the exp (-'i p~) expan
síon, see eq. (20). The infinite seríes of these terms sums 
to the expression 

1 --+ --+ --+--. --+--+ 
Y. == -- [K.- n.(Kn)] exp[-i(R - nX)~l FR(t); n == RIR (22)

1 477 R 1 1 

(note that ! R- XI ;; R - ~ X). rnserting this expression into 
the r.h.s. of e q , (16) we find out that integraIs (d 3r ... and 
(d 3 y ... turn into dipole moments of the atom <1 12 and the cur
rent dJ (see eq. (27) in!2/ ); (d 3X ... turns Lnt o 

a.. --+ --+ --+ ~ --+ 3 J 3) --+ --+ --+ 
(d X exp[ i(P - Pr) X] expin X~ == (2TT) o' (Pj - P - n õ ) 

3
and then rd P... become s 

3 - --+ (3) --+ --+ --+ - --+ --+
 
rd P <I> (P) o (P r - P - n A) == <I> (P r - n A) .
 (23) 

7 



;.. 

Here n is the photon vacuum. Using the electron creation ope
The final result is rators yone can wri te cP 1 = a~ n e' CP2 = a~ ne' a e being the elec

~ ~ ~ -iR~ tron-positron vacuum, a1 creates e1ectron i~ the state 1~ 
<t/J 1n Iu~ (t, O) t/J 2n> = <lJ (Pr - n ~ ) e , To calcu1ate WJ in the first nonvanishing order, one has 
(_ie~2) ~ ~ . ~ -) ~ ~ (24) now to expand the T-exponentia1 UJ(t, O) up to the terms of 

,[(d12, d ) - (d 12 · n)(d , n)] FR(t).J J the third oràer (it was sufficient to use the term _ e 1 from 

I)
 
U; (t, O) in the preceding section):


2.3. rf one integrates the squared modu1us of this expres
2 2 3sion (see eq.· (13)) over P ' then one will get the change of WJ(t) = Irl < cp 1ri 1 + Ui ) :+- ui ) + U: ) ! <1>in >.12~r 

the transition 2 ~1 probability induced by J. The resu1t wi11 2 
J
 

~oincide with expression (32) for the change ca1cu1ated in / 21 -f) Irl <cP ri u~2)1 <P in > 1 + (27)

1 

using the pert~rbation theory in the Heisenberg picture in 
the Lorentz gauge. Bere r started with the Cou10mb gauge, but 
r omitted the terms - 1/R3 (see (11) and the second term in 
eq. (A.4)). The resu1ts obtained in the Coulomb and Lorentz 
gauges differ on1y by these smal I t errns , It was argued in/ 5•61 

that these terms must be considered as unobservab1e. So, the 
calculation in the Lorentz gauge (which has the defect discus
sed in subsect 2.6 in / 21 ) gives the same resu1t as in the 
Cóu10mb gauge and r shal1 use, in the next section,' the Lo
rentz gauge which is simpler.- ~ ~ 

2.4. The presence of <lJ(P -n~) in eq , (24) means that the 
distribution over P differs from the initial momemtum disr 
tribution by the simple disp1acement n~. In par.ticular Lf 
~ ~ ~ ~ ~ ~ 

\V(P) has a zero average momentum <P>::: 0, then .<Pr>=~n=~R/R • 
Ris directed from the atom towards the current and so does 
the recoil momentum: the current attracts the atom. 

3. STANDARD PERTURBATrON THEORY 

Following the standard QED perturbation theory/4,7/. I use, 
in this section, the Lorentz gauge and relativistic secondary
quantized description of the electron in the field of the 
atomic nucleus (now r let ffi = 0Cl). In t.he preceding section,n 
the interaction (JA was not considered small and was trea
ted nonperturbatively. Now r assume that the externaI current 
J contains a small constant e (analogõus to the constant e

J
in the electron current) and use perturbation theory to take 
interaction [J:A into account , The s t ar t ng equation is ~ W=í 

= WJ - Wo ' where ]
\VJ(t) == f 1<</;1 rI UJ(t, O) !4>2 nj > I ~ (25) 

1) 3 
+ I I. r <<7\ r I ui I <l>in >* < 1> 1r I ui ) 1 <1>in> + c.c, I . 

Bere r t ake into account that < 1>lr 11\ <1>in > = O because of 
<1: 1\cP > = O. The terms' TiPui1) are equal ~o the correspon2
ding terms of WO' and therefore do not enter 1nto ~W. They 
are not written out in the r. h. s , of (27). The terms U~1)US2) 
are a.bsent. because the poss ib1e r in < cp l r Iul) I <I> in> are on1y 
the one-photon states whereas in <CPlr\U~~)!<I>in> the states 
r are no-photon and two-photons ones. 

To simp1ify the exposition of the calcu1ation and compari
son with the preceding section, r assume e J » e in what fol

4lows and omit the terms - e and - e3 eJ in ~ Was being sma11 
compared to e2 eJ . 

3.1. Consider the matrix elemepts <cP1rluj2)I<I>in> from eq . 
(27). Lf r =n, they are represented by diagrams "a" and "b" 
in figo 2 (the term quadratic in J vanishes because of <1>1

11>2'>= 

= O). The diagram b is of the order e2 • The r.h.s. of eq. (l7)
2contains b 1 and the produc t b*a which are o f the order e4 

I 

and e3e ' respectively and are omitted. The diargam a is ofJ 

* The probability ~W differs from ~N , defined in 121 though 
the difference is smal1 numerically. ~N was defined as the 
probability to find the e1ectron in the bound state 1. The 
probability turns out to contain the contribution (described 
by the second item in eq. (18) from / 21 ) of the following ori 
gin. The current J emits a photon, it propagates to the atom 
and creates a pair, the electron of which is in state 1. The 
atomic electron remains in its initial state 2. Then the final 
state contains the negative ion, not the neutra! atam. Bere I 

t 3 assume that just the neutral atom in the bound state 1 is de
UJ (t, O) = Texp i r dt " rd x ' (j A + J A ). (26)Ô jLll J1.J1. tected at the moment t. 

8 9 
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i 

2)C 
. J)C 

l:~jj)~J 
a 

the proper otder 
in the following 
~ams is implied) 

t t 3 
( - 1) r e x O ( d YO (d 

O O 

J "'2 
Fig. 2.	 IIb 

Jf 
88J and represents the expression (here and
 
the coordinate representation/ 7/ of diag


(
J
\
 

3 
x r d y j 11. (x) D c ( x - y) J (y ) 

12 (.1 

(28)
j (.1 (x) := < cP I j 11.(x) I rP ">, X ~ (x, x )

12 1 2 o
 
.. . /4/ )
( t he notatlon lS as ln . 

-	 + +
lf r are two-photon s t ate s r 2 = 1/ ,/2 C k t c k e n y then 

(2) 1 22 
the part of the amplitude <cP 1 12 1 UJ I <I>in > which is of the 
order 88 is

J 
t 4' t 4 1 (1 ~ -j k x (--+ -ik-1	 2 y 
( d x r d y I jll. (x) e (k 1) e 1 J (y) 8 2 (k ) 8 + 

3 o o ---o 12 /-L 1/ 1/ 2
2,12(2 1T) ,Ik 1k 2 

(29) 
(2	 --+ -ik 2 x (1 -> -ik 1y 

+ j /-L (x) e. (k ) 8 J (y) 8 (k) e I . 
12 (.1 2' IL 1/' 1 

The r.h.s. of eq. (27) contains the squares ,of the moduli of 
the first and secontl items in the curly brackets in (29) sum
med o,:er :2 (L;e , integr~ted ove: k~, k~ and summed over 
polarlzatl0ns ( , (2)' ThlS contrlbutlon lS the product of the 
probabilities ol the atom one-photon emission and the probabi
lity of the current one-photon emission. It is the "crossed" 
product of the fitst item and the complex-conjugated second 
one sunnned over r 2 which turns out to be important fqr the 
interpretation of the mechanism of the current action upon the 
atom deexcitation (see the subsect 3.3 below). Let us describe 
'i t . The amplitude of the photon k1 • (1 emission by the curr~nt 
is multiplied by the c.c. of the amplitude of the emission by 
the atom of a photon with the same momentum and polarization .
k:r e l' The resul t is integrated ,over k1 and summed over (1 

and	 its modulus is squared. 
U~ing the known equations :\

\.~( -+ ( ~ 

~(8 11 (k) 8 (k) = o 
r 1 (.12 /-L 1(.12 

3 
~~ 

+ d k i(kx --+
 
D (x) X := (x, x ) (30)
2(2") 3 Jk e - k "o) o

one can introduce the D+-functions instead of integraIs over 
k 1 , k-+ 2' Thi s allows us to represent the quanti t ies 
~r~<rPt'121t1J.2)I<I1n>12 described above, by the products D and B of dia
grams, see figo 3."B" represents the "crossed" product (the 
vertex'> repre.sents ji2* ). 

1J ' !' 2 -, f/)+J, ~ »: [J)+Ijn
C

J +j7--~' J;--'-<.Jt j>--{r~j~H'''} 
A B	 C 

2)+ 2J+ ~1' ~ :tl~ /, ] 
+/1'---<1 •V--{J + [/,---( • Jr-\J + c.c, 

D	 E 

Fig. 3. 

The contributions of the terms U(1) x U(3) in eq . (27) which 
_828}are are represented by the products of diagrams C and 

E, see figo 3 (c.c. denotes complex-conjugated to them). 
Here the functions D+ and DC originate f r orn the equation 

2r < n \ A I r> <r \ T (A A :A\) In> = ya (.1V/\ y 

(31)= < n IA T (A A :A J In> = a (.1 v 1\ 

= _ i D+ De _ i D+ De _ i D+ D c
 
a (.1 v À av (.1v ar: /-LV
 

which follows from the completeness of the states r and from 
the known expansion of the T~product in the nQrm~1 products. 

3.2. It turns out that the 
t 4 t 4 .(.1I r d x r d y J (x) e (x - y ) D(x 

o o 12 o O 

because of the equation 
c + R 

D (x - y) + i D (y - x ) = - i D (x 

sum A+B+C+C* is exactly equal to 
2 

y) J (y) I	 (32)
(.1 

y) := - i e (x O - Yo ) D (x - y). ( 33) 
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It is passible also to prove that D+E+E* o using the equa
tion 

c c* + +D (x - y) + D (x - y) + i [D (x - y) - (D (x - y» * ] =: O. (34) 

The equality D+E+E* = O can be obtained àlso as a consequence 
of the unitarity of the operator VJ=:.TexpirJA, see sect. 2. 

So, the cumbersome expression represented in figo 3 given 
by the standard perturbation theory for t! W can be reduced to 
tpe simple expression (32) which can be obtained far simpler 
in the semi-Heisenberg or Heisenberg pictures (see, e.g., eq. 

in / 2 !(19) ). 
3.3. Let the current J be switched on in such a time inter

val (r 1 ,r 2 ) that the points (y, yo) ~ y E- VJ, Yo E- (rJ,r~) are in 
the 4-volume P ("past", see fig.]) which is place ~nside the 
past light cone having the vertex at the 4-point (O,t) (more 
exactly, one should speak about the intersection of the conés 
with vertices at the point (.;, t ) , ; E V ). Let us show that 
the amplitude (28) corresponding to the diàgram a, see fig.2, 
is small in this case. 

The function DC(x_y), see (28), is small when x _ y (x is 
space-like relative to y). Therefore, only those xo which are 
greater than r 1+ R/c contribute to the integral ~t d Xo (t.he 
current action reaches the atom with the delay R?C). Becaus~ 
of yo.:s;: "a we have Xo > Yo assuming r2 < r1 + R/c. Then only the 
part -i(J(xo- yo)D\x - y) of the function D C(x_ y) (see eq. 
(17.31') in/~ ) contributes to (28). Using the representation 
(30) fo r D+ we get that the time integraIs in (28) are equal 
to 

t r2 i«(l -(2) X o -ik(Xo-YO) it!yO * -it!yO
f dxOr dYo e e [K e + K e ] .- (35 ) 
r + R r1 11 111 

Equation (19) was used here (ihe atom mass M is set e~ual to 
infinity in this sectio~ and therefore' t!'~ t! =(2-( ). Only 
k .... li can contribute to the integral over yQ (let t! tr2 - r1»>1) 
but for such k values the integral over Xo ~s small. One can 
say that (35) is small because in the cases when the energy 
is conserved (approximately) at the J vertex, it cannot be 
conserved at j vertex. 

Using the saroe line of reasoning one can conclude that the ,.. l 
diagram in the product B, see fig.3, is not small. In this ca i 
se we"have (us í.ng that D+ (x -y) is small at x - y and ·that df.* - exp(i X t!»12 o J' 

t 
o 

"a it!Xo -ik(xo-YO) it! Yo * -it!yO
J dx r dyo e e [K"e + Klle] (36) 
r ~R o r1 r r.

1 

12 

instead of (35) ~nd the energy can be conserved at both verti
ces. The conservation also follows evidently from the descrip
tion of the "crossed" product (see the textO before eq.(30)) 
which B represents. 

* . 3Now one can see that A+B+C+C ~ B, see f~g. , because A 
and C contain the small integral (28) (or (35)). We conclude 
that in the standard perturbation° theory the main contribu
tion to t!W is brought by the two-photon states described abo
ve before eq. (30): J emits a photon k and the atom emits a 
photon with the sam~ momentum k . The presented calculation 
does not show that k is directed from J towards the atom. But 
this follows from calculations of sect.2: remind that the atom 
acquires the recoil in the direction towards current. 

So one can interpret the retarded actio~ of the current on 
the atom in the following manner-: J emits a photen in the di
rection of the atom, this photon reaches the atom with the 
delay R/c and the atom then emits one more photon, exactly 
like the incident one*. o 

Note that the calculation of sect. 2 does not hint at this 
mechanism: according to eq.(13) it is no-photon state (but 
not two-photon ones) that contributes to (lÔ). But we use 
summatiori over alI photon states r (including two-photon ones) 
when obtaining ur» from (1). 

3.4. Another interpretation was suggested in!2! • It was 
based on the inspection of the structure of the formulae of 
the Heisenberg picture perturbation theory (see, e.g., eq.(13) 
here and eq.(32) in!2! ) and used the notion of the quantum 
with negative energy. The mechanism described in the preced
ing subsect 3.3 does not reject the interpretation (it can be 
considered as an alternative). For rejecting we must replace 
the externaI current by an unexcited atom which is unable to 
emit photons. The calculation of such a problem by means of 
the standard perturbation theory gives the following qualita
tive result (the derivation will be presented in another pa
per): the unexcited atom does not change the deexcitation of 
the excited atom. More exactly, the unexcited at9m retarded 
action (represented by the curve with a bump in fig.1 from/ 2!) 
i8 unobservably emall, its value being of the same order as 
the energy nonconserving contributions of A and C (fig.3) to 

* The mechanism of stimulated atom radiation in the presence 
of the current photon w2a·8uggested by V.I.Ritus and V.P.Fro
lavo I am grateful to them for discussions of the paper!2! 
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r
 
in / 4/ and in the same manner (see § ]7.] ) . One integratestJ. W. In the semi-Heisenberg o r Heisenberg pictures this fact 

turns out to follow from the mutual (looking accidental) anni -+ 1 3 k.k..-+-+·sink.xo..... 
I	 

1 J i k xhilation of big contribu~ions: the term of the type U(2)x U~~ D..	 (x,x)=--/dk(Ô.. ---)e (A.2)
(cf. eq. (27)) cance l s the terms of the type U(1)xU(.3). lJ O (211) 3 lJ k 2 

50, one must conclude that the existence of negative ener~ 
over the k angles using the formula 

gy	 quanta does not follows from. QED. 

'I 
_L Jd n (o.. _ ki k j ) e i k~= (ô.. _ n. )sin k r + 
411 k lJ k 2 lJ I\ J kr 

(A.3)4.	 DI5CU55ION 

Let us discuss two qualitative consequences of the equa
tion tJ. W = (32), see sec t . 3~ The first is that tJ.W = O if J 
is switched on in the time interval (r 1 ,r2 ) which is in the 
4-region 5 (li space", see f i.g l ) , the points of which (y ,Yo ) , v 

y E- V:L' Yo E- (r , r.) are space-like relative to the points (x, 
x ) , x E- V , ti < X < t , This fac t is not consequence of the 

O odetails of QED theory but follows from the general principIe 
of the local commutativity (principIe I, see the Introduction): 
the function D(x - y) which vanishes at y - x originates from 
t he cornrnutator [A~(X), Av(Y) 1, cf . the text after e q , (8). 

The secot~ consequence is that tJ.W = O also in the case 
when J is turned on in the 4-region F ("future", see figo ]) 
the points of which cY 'Yo), y E VJ , R/c < Yo <t are located 
inside future cones wi th ver t í.ce s at the points (i, xo) , i E- V , 
X = O (shaded in- fig. l ) , In such a case some 4-points (y, Yo) 
oare time-like relative to (x, Xo), i E V, O <xo<t and van i sh i ng 

of	 ~w is now the consequence of the fact that just the func
t í on' DR(x-y) = e(Xo - yo) O (x - y) enters into (32), i. e. the con
sequence both of rejecting of the advanced solutions (princip
Ie	 11) and of p~inciple I. Let us stress that nonvanishing 
of	 tJ.W in this case would mean that the velocity of the 
current action upon atom deexcitation is gre~ter than C 
(though principIe I may hold). 

I am grateful to V.Ritus, V~Frolov, A.Nikishov, M.Markov, 
V.Petrunkin, V.Skarzhinsky and Yu.Golfand for useful discus

sions. 

APPENDIX. THE FUNCTION O 
~
 

àne can obtain for D~ a representation analogous to
 

-+ 1	 (A. 1) .;
O (x, x) =-- [8 (r - xo) - 8(r + ~) 1, r = I~I 

O 4"R	 I 
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.,r (o - 3 n n ) [ cos kr _ 'sinkr] n. = x.l r . 
ij i j (kr) 2 (kr)3' 1 J 

Further, the integraIs of the type 

ee	 .sín kr }
.r dk 'sin k'XO n = 0, 1, 2{n coskr
O k

c an be reduced to o(r ± L) for n = O and to the func tions 
_ -"U	 '. 181e (r ± Xo) for n - ] ,2, see, e v g . , 3.72].] and 3.784.3 r n • 

«(J (a) = O if a < O and e(a) = ] if a > O). For Xo > O the re
sult is (the retarded transverse function) 

~	 -+ 1 
D..	 (x,x ) = - (o ....,

lJ O 4" r ij 

The last item does 
when X < r.o 
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IIIHpoKOB M.M. 
3ana9,QbiB ruom;ee BblCBetiHBaHHe a TOM a, HHAY~HpO
BaHHOe BHeiiiHHM TOKOM 

E4-87-686 

MccneAyeTCH H9MeHeHHe BpeMeHHOrO 9aKOHa BNCSetiHB8HHH 
aTOMa, HHAY~HpOBaHHOe BHeiiiHHM TOKOM, flOKa9aHo, liTO 98na9-
Abmarom;ee AefiCTBHe TOKa Ha aTOM HBnReTCH KatleCTBeHKNH cneA
CTBHeM He TOnbKO npHH~Hna noKanbHOfi KOMMYTaTHBHOCTH, HO H 
npHH~Hna OT~pacNBaHHR onepeEarom;HX pemeHHA. TipeAnO~eH cno
co~ BhltiHCneHHH 9TOro AefiCTBHH, HCnonb9YIDD!;aH KapTHHY 1 npo
MeEyTOtiHyro MeEAY KapTHHOfi B9aHMOAefiCTBHH H reH9eH~eprosc
KOfi, 0H OKa9NBaeTCH ~onee npOCTNM, tleM CTaHAapTHaH TeOpHH 
B09M~eHHfi B J(apTHHe B9aHMOAeHCTBHH, 06CYEAaeTCH MeXaHH9M 
BnHHHHH TOKa Ha B096~eH~~ aTOM, 

Pa6oTa BNnOnHeHa B na~opaTOpHH TeopeTHtleCKOA ~H9HKH 
OIDIH. 
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Shirokov M.I. E4-87-686 
Retarded Deexcitation of the Atom Induced 
by External Current 

The change in the time law of the atom deexcitation in_, 
duced by the remote external current is investigated. It 
is shown that the retarded current action on the atom is 
a qualitative consequence of both the principle of local 
commutativity and the principle of discarding the advanced 
solutions. A method of the calculation of the action is 
suggested which uses a picture intermediate between the 
interaction and the Heisenberg pictures. It turns out to 
be simpler than standard perturbation theory in the inter
action picture. The mechanism of the current action on the 
excited atom is discussed. 

The investigation has been performed at the Laborato~y 
of Theoretical Physics JINR. -
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