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. INTRODUCTION
Numerical solution of the general Schroedinger equation
Hiy> = E|y>, (1.1)

is a more or less standard procedure. Indeed, the various va-
riational techniques lead often to very good estimates of the
binding energies, while the wavefunctions!|y > dre usually
generated by means of the so-called inversion iterations’V

In the perturbation theory, a close connection with the
latter technique may also be noticed. Indeed, both the inver-
se iterations and perturbation algorithms of the various
kinds ¥ stem from a common idea - repeated multiplication
of some trial wavefunction | 0> by an approximate resolvent
R = (E,-T)!. (1.2)
Here, E, is an approximate energy and T denotes the exact or
approximate Hamiltonian in the former or latter context, res-
pectively.

In the present paper, we shall deal with the perturbation
theory, noticing that its current forms use only a very rest-
ricted class of the approximate Hamiltonians T. To the best
of our knowledge, only our recent papers ’% may be quoted as
an attempt to build up the perturbation series from the re-
solvents (1.2) with the non-diagonal (namely, band-matrix)
structure of the auxiliary operator T.

In the present text, we intend to complement Ref. by an
alternative methodical proposal, based not on a band-matrix
generalisation of T, but rather on a similar band- or, in ge-
neral, invertible-matrix assumption imposed on the propagator
(1.2) itself.

Our present main idea is quite straightforward. We assume
that the approximate resolvent (1.2) is given to us in an
arbitrary form with an available inversion. 1/R. Then, the re-
constructed operator T,
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and the related decomposition of the Hamiltonian H = T + V .
become a good starting point for the perturbative considera-

tions.
In more detail, we shall assume that the difference V=H-T-U

becomes an almost negligible operator, at worst after its
modification via some mean field U,

V-U=X =smal(h «<1), H = Hy + AH,. (1.4)
The auxiliary field U will be chosen here in the separable
fdrm of rank p,

p [ ml [ml
U= PP, P = 3% | 0 > < 0 [, (1.5)
m=1

for the sake of definitness.

2. THE ZERO-ORDER EQUATION

In general, we may assume that the input propagator (1.2)
and energy estimate E  represent a good approximation for more
than one state. Thus, we shall consider some s states in (i.l),
pigt s o BT L il e s (2.1)

and put s=p for the sake of simplicity.

The, assumption of smallness of the "selfconsistently modi-
fied" perturbation V - U implies immediately the natural per-
turbation ansatz

I (i) lil N+1

N+1 [il

'l/l > = |¢I{N} >+ 0(/\ ), E- =E%N} +0(>\ )9 (2'2)
with the power-series approximants

(il Yoo (1] oo
Uy 2= 00 A By s Bor T B 2.3

In combination with (1.4), this should lead to the complete
perturbation prescription in principle.

In the limit A+ 0 , we obtain the so-called "unperturbed !

equation"

.']
Ho|l/,o[‘= >=E |y > i=1,2..,p (2.4)

(o]

which may be given also the form of a definition
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il o Ll
lpt > < reup gl (2.5)

due to our knowledge of the resolvent (1.2) and H, = T+U.
Now, we are permitted to assume that the pxp - dimensional
normalisation matrix
(il (i] il
Wy = <0 |y, >, i,j=12,..,p (2.6)

with k = 0 is regular, det W, # O (otherwise, we should choo-
se a better set |0>), and require that the P-projection of
eq. (2.5) does not lead to contradictions, i.e.,

[i] rK) Mk] Ml

<0 |R|O ><0 |UJoO > =8
1 1]

I M=

) s Li=12...,p (2.7)

This i$ an important equation. and defines in fact an optimal
auxiliary operator U as an inverse of the matrix PRP,

The first part of our considerations may be summarised.
We have found that an arbitrary choice of the resolvent R and
energy E, becomes compatible with the zero-order equation
(2.4) (converts it into an identity), provided only that we
define the auxiliary field U by eq. (2.7). In this way, our
assumption of smallness aecquires a "selfconsistent" character:
our input matrix E should generate a small perturbation H-T-U
via eqs. (1.3) and (2.7).

3. THE FIRST ORDER CORRECTIONS
Up to the first order in the small variable A , the inser-
tion of the ansatz (2.2) in our Schroedinger eq. (2.1) gives

the identically satisfied zero-order equation accompanied by
the p requirements
(T-PUP-E ) J il 5. vopup_gil 0] i

W) > (V- -E iy, >=0.1i=12,...,p. (3.1)

Their re-multiplication by R gives the definition similar to
(2.5),

[ il i i
]¢1’} >=RPUP\¢,£]>+R(V-PUP-Er1’I )(¢L’]’>. (3.2)

Nevertheless, in contrast to the zero—order case, the PQpro—
jection of (3.2) becomes a nontrivial requirement



il {511 il fil il Livil
W, =W, PO |R(V-E,; )|y, >-W ,

(o]

(3.3)
hi=1,2,...,p
where the first-order normalisation matrices drop out but the

rest acquires a structure of a homogeneous linear set of equa-
tions

E o™ s ™ Lo motei 3.0
ne 1
where ¢ = E%l s J“l = WE“J] and
M[nhn] _ [n1 v [n] . <0[nd Ul 0[n\ S
. , p , . (3.5)
Slm,n] - <p[mlxlp[nl > Iplm])= RS ‘O[k] >_<O[k] :U:O'[m] .
: k=1

Thus, we may conclude that the first-order perturbation form
(3. ﬁ% of our Schroedinger equation leaves the corrections

]¢1 '>free again. At the same time, it fixes the "old" wave-
function correct10ns!¢[1‘ > and also the new energies E; s
i=1,2,..., p. The correspondlng generallsed eigenvalue prob-
lem (3.4) must be solved numerically, in a way which parallels
precisely the degenerate perturbation theory of the Rayleigh-
Schroedinger (RS) type ’#

.

4. THE HIGH-ORDER CORRECTIONS
4.1. The Simplified Notation

TIn the above text, a use of the square-bracketed super-—
script indices of the pxp ~ dimensional matrices is not al-
ways necessary. In what follows, we shall indicate a matrix
character of such quantities by the bra and ket symbols and
drop the superscripts. Thus, the definitions (1.5) or (2.6)
acquire the simple matrix form

=|0> <0 <Olwy, > = <W >, (4.1)
etc. Also.the p-plets of energies will bé arranged in the
pxp-dimensional and diagonal matrices <E, > from now on.

The new notation enables us to re-write our Schroedinger
eq. (2.1) in the simple matrix form

4

Hiy > = |y ><E>. (4.2)

Also an insertion of the power-series ansatz (2.2) - (2.3) be-
comes simplified. Besides the k = 0 and k = 1 equations ((2.4)
and (3.1), respectively), the general perturbation requirement
NN [i1. Ml

¥, > =RPUP|y >+ Rlr _ >, (4.3)
will become expressible in the matrix form

N =p> WS o4 Rign_ | >
k (4.4)
Ty > = (V=PUP) [y, > - I

[}

yry > <

me 1 “k-m m

containing eqs. (3.2) or even (2.5) as its simpliest special
cases

4.2. The Renormalisation Ambiguity of the Recurrences

We may trcat eq. (4.4) as a definition of its left-hand si-
de as well as a recurrent specification of “E, > and <W, > In
the latter interpretation, it is sufficient to consider only
the P-projection of eq. (4.4),

k
- -~ - | .
\kal,- /OIRV]¢k_1> - E <0!R}¢k_m> <Em >, (4.5) -

For a clear understanding of the structure of eq. (4.5),
let us fix now the perturbation order k> 1 and denote R{r, ,>=
=!b>. This enables us to introduce the matrix <Z> defined by
the formula

k-1
plp > <Wy>'<Z>= <p|V|b>- <p|b> <E 2 22<p| ypom> <E_> (4.6)
. m==

and independent of both the unknown quantities <W,_ ; > and
<Ey x> With its use, our eq. (4.5) (multiplied by <U> from
the left, combined with its k = 1 predecessor (3.3) and divi-
ded by the common and regular matrix coefficient <p| p> <W, >)

acquires a highly symmetric form of a pxp - dimensional equa—
tion

<Z> = <E, >+ <A><E,>- <E ><A> (4.7)



An gxplicit, element-by-element transcription of eq.(4.7), tive prescriptions, preserving the number of the RS interme-

for the unknown matrix elements of <Ey > and <W_,>= <W,><A>. (a) The band-matrix structure of R simplifies the perturba-
diate-state summations.

[ 12} (1ol - L .
Z , Z , e 2 B, " ,0,...,0 ' (b) The general matrix structure of T fits better its re-
' {p. 11 - (ppl = . Ipl Lf constructed character in the present methodical framework.
zZ L 7 0,0, ...,0E, We shall refer here to 73=5’ for the technicalities, and
. l will pay attention to the numerical results only. Thus, we
(121 .3l (Lpl- (4.8) shall use the sequence (5.2)-with M = 5 ( a relatively low
0, e . e31A C e, %)1A FP precision), M = 10 (a reliable FP approximation) and M ==
. o) [ | (exact limit, no FP approximation). The resulting propagator
p.1 p.p-1 .
1p A v, ep-lpA , 0 Table 1.

[ 0 The ground-state deviations D = (E - Epxact)x10% as a
with ej; = By - E, demonstrates clearly that the energies function of the perturbation order N and trimming pa-
coincide with the diagonal elements of <Z> , while the diago- rameter t, with E, = 6.0

¢ nal matrix elements of the normalisations <A> remain entirely
H free. In a way known from the degenerate RS perturbation theo- Nyurs
; ry, thcse p free parameters Al reflect an ambiguity of 1 2 3 4
the perturbation recurrences and may be fixed by a suitable t
normalisation requirement. - T
13 39.3% -5.24 0.56 -0,009
5. AN ILLUSTRATION 12 39.36 -5.24 0.56 -0.008
The main condition of applicability of our preceding cons- 11 39.37 -5.24 0.56 -0,009
’ truction %ies in a ?imu¥taneogs availa?ility of the propaga- 10 39.37 —5.24 .56 0. 009
~ tor (matrix R) and its inversion (matrix T). With the simp-
: lest nontrivial choice of p = |, such a situation may be il- 9 39.35 -5.24 0.56 -0.008
* . . . . '
; lustrated on the simple one- or three-dimensional anharmonic § )
oscillator example 8 39.52 -5.25 0.56 -0, 007
. 7 40.74 -5.32 0,60 -0.006
H =p2 + gll‘2 ¥ g‘)r4, (5.1) !
- . ] » 6 44.70 -5.55 0.84 -0.010
: where, in the light of its recent fixed-polnt (FP) analysis °, )
we may start from certain FP auxiliary sequence 5 50.97 ~5.93 1.29 -0,015
(FP) -
l (= fe D, k= MM (5.2) 4 49.84 6.01 0.88 -0. 008
L
: ' . . ) 3 ad .29 -6.13 0,90 -0.046
of the 2x2 — dimensional matrices, and define both T = T(M) |
and R = R(M) non-numerically’® 2 234.83 -9.18 177.47 - 129.09
In general, there are two essentially different types of % )
such a construction - we may require a band-matrix structure ) 1 1410.62 +1883.41 7951.75 + 25814.99
0 5617.82 -19589.89 77898.28 -384287.35

of %(M) or R(M). The former case has been considered elsewhe-
re’3 | The latter requirement 1s more suitable in the pre-
sent context:




An extension of Table 1 to the

Table 2.
higher N, with Eg= 7.0

Nt 5 4 3
| 170.41 165.83 166 .74
2 -38.51 -38.56 -40.29
3 6.30 5.89 6.76
4 0.65 0.51 0.42
e 5 -0.53 -0.63 -0.35
6 0.20 0.21 0.27
7 0.20 -0.01 0.53
| 8 -0.01 ~0.01 0.32
| 9 0.02 0.01 2,01
10, 0.0005 0.0005 2.61

An extension of Table 2

Table ~.

to the second excited state,

with t =10 and E = 23.0
N 1 2 3 4 5 6 7 8 9 10
D -134, -62. =-26. -9.4 2.7 7.2 21 28. 77 104.
Table 4.
An E_ = dependence of the first excited-state energies
B (N)
E=E for t = 10 and M = 10
£© £ (® g (10)
12.6 13.153 336 13.155 116
12.8 13.156 817 13.156 807
13.0 13.156 808 13.156 799
13.2 13.156 807 13.156 800
13.4 13.156 816 13.156 808
13.6 13.156 780 13.156 806
13.8 13.156 689 13.157 471

PRI

.
[ Lo

Table & -

An irrelevance of removal of the IP and trimming
approximations from the fourth row of Table 4

L, ) 160 M0 1@
¥ o0 . o0 16 1@
r\i e e e eeee oot o o e e fhre s et e S RS S S S S S st e e S SR
& 13,2600 GO0 13.200 00¢ 12.206¢ 000 13.20¢@ 000
1 L5154 922 13,155 530 13,1599 420 13.1595 460
13,154 847 13,154 817 13.157 220 13.157 230
13,1596 770 '13.156 784 17,157 eR7 132.197 024
4 T AnE P77 12,1546 782 12.15& 949 13.1596 P42
LA FTT L LGA 78 S 1mh BER 12,1546 876
e 1'é~77? 13 , A8 13,1946 863 12.1546 8546
7 1HLAns PPV S S P, 52 ! 1aé& BIY 13.1946 B33
3 154 777 130054 70 13,154 B23 13,156 817
} LA R 13,056 78 15 13,156 807
! 135S 777 13,154 782 13,156 Be3 13.154 800

R will be permitted to contain 2t+]1 nonzero Qiagonals (wiFh
T = H for t- in principle). We shall also fix g = 8,= 1 in
(5.1) and restrict our attention to the first three s-wave
bound states with energies Egy,q = 4.648 8127, 13. 156 800
and 23.297 442 78/, _

Our sample of results is summarised in thg ?a?lgs. The
introductory one (Table 1) displays the negligibility of er-
rors in the first four perturbation approximations~(N=S4) for
the decreasing trimming parameter t2 6 and fixed E, = 6.0.
The errors remain small even for t>3 while the t <3 cases
become quickly divergent.



Table 6.

The ground-state deviation D'=(E - Bexact)x10® as a
function of the FP precision M and parameters N, t

and E A
O 4
[3 Lo 1y
’ 4H.00 l
A
M NEO) .
o 0 5 10 o0
: e e O
ooy
. e e e
‘ ‘4 ' .
Y 400 T4 576 4239 4429 4476
” T y
2 210 11 -11 ~268 ~55& ~555
i} A
4 o 4 21 - 244 56 B4
. r 4
4 Ay 1 1 180 -1 -1
T 4o 4973 454 4234 4477 4426
PR - P o7
w el s s o
' 16 X 1953 ~613 4173
4 i Z - -y oy o ey
: 204 r ) 257 8o 90 \
A 2
4 174 1 1 137 5 5 :
" b
,
21 1L LT EAAPAL 2ELL YA
2 1307 ~130% 1670 ~3917 -7918 |
3 8157 074G Lo6E 15507 747
4 BS54 ~5729 187  —~17%82 -12609 o

Table 2 contains similar results for E = 7.0 and up to
N = 10. We may notice that the t = 3 item starts also to
diverge at N=7,.

In the forthcoming three Tables, an excited-state analo-
gue of the same type of behaviour is documented. An asympto-
tic deterioration of convergence is shown to take place there

10

at t = 10 and N = 7 (Table 3), giving still the fairly good
results for N =M = t = 10 and variable E  (Table 4). An in-
troduction of the FP approximation may even improve the over-
all convergence pattern and quality of the approximants (Tab-
le 5).

A use of a less precise propagator R is illustrated by
the choice of M = 5 here. Similarly, our final Table 7 uses
a modified form of the input (6.2) (we omit the details here)
and demonstrates a validity of the same conclusions.

We may summarise that our choice of the free parameters
(within reasonable bounds) does not lead to a significant
deterioration of precision. Thus, our R-input perturbation
prescription should be tested on the more realistic problems
in the future. A work in this direction is in progress

Table 7.

A sample of the influence of a modified FP formula

FP modification A B

N M 5 10 5 10

1 4353 4423 4228 4431

2 -228 -556 -268 -556

3 308 57 264 58

4 229 0.5 181 -0.7
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3Houa M. E4-87-667
Teopusa BO3MymeHHH, NOPOXOeHHAS NPHOIHIHTEIBHBIM
NpoOnaraTopoM '

KoHcTpyKuMst CBA3aHHBIX COCTOAHUH B BHAE psna TEODHH BO3-
MymeHUii o6obmaercAa Ha cnydyel, KOrga u3BeCTeH IIPpHOGIUKEHHbI
HO, BoOOme, He auaroHameHuil nponararop R. He monesysce
cranpnapTtHoii Pll /Panes — llpepunrepa/ puaroHamsanuei R,
PAO TeOpHH BO3MYmMEHHH MOCTPOEH NpH NOMOMM BCHIOMOraTelIBHOH
pxp Marpuubsl BsaumoneicTBusa U Ttuna Xaprpu — doka. Honmyuen-—
Hbie GOpMYNIbi 0606mAanT BLHIPOXTEHHYW TeOopHi BOosMymeHHH PIi.
YucneHHo, dopmanusM C p=! NPOMINKCTPHPOBAH Ha NpHMEpe aH—
rapMOHHUECKOr0o ocuunmnaTopa. XOpomasd CXOOHMOCTH TNONYUMIIACH
OTA pas3nudyHuX BbiGopoB R.

PaBGora BbmosiHeHa B JlaGopaTOpPHH TeOopPeTHUeCKOH ¢H3MKH

OHUAH.
Coobenne O6beqMHEHHOTO MHCTUTYTA AHEpHbIX uccexopanuii. Jly6na 1987

Znojil M. E4-87-667
Perturbation Expansions Generated by an
Approximate Propagator

Starting from a knowledge of an approximate propagator
R at some trial energy guess Ep,a new perturbative pres—
cription for a p-plet of bound states and of their ener-
gies is proposed. It generalizes the Rayleigh—-Schrcedinger
(RS) degenerate perturbation theory to the nondiagonal
operators R (eliminates a RS need of their diagonalisa-
tion) and defines an approximate Hamiltonian T by mere in-
version. The deviation V of T from the exact Hamiltonian
H is assumed small only after a subtraction of a further
auxiliary Hartree-Fock-like separable '"selfconsistent"
potential U of rank p. The convergence is illustrated nu-
merically on the anharmonic oscillator example.

The investigation has been performed at the Laboratory

of Theoretical Physics, JINR.
Communication of the Joint Institute for Nuclear Research. Dubna 1987




