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1. INTRODUCTION

In the various physical models’V , the tridiagonal Hamil-
tonians are quite common, and their numerical diagonalisation
is also a standard and well understood procedure /% . Unfor-
tunately, this situation changes after a transition to the
pentadiagonal case. For example, an anharmonic oscillator
H = p2 + g+ g2r4, By > 0, (1.1)
may be recalled as a classical "homework' pentadiagonal mat-
rix in the harmonic oscillator basis |n> : Its computer dia-
gonalisation must proceed via a preliminary tridiagonalisa-
tion /¥ , its alternative perturbation treatment is known to
lead to the divergent Rayleigh-Schroedinger (RS) perturbation
series’% , etc.

A unified treatment of the pentadiagonal and, say, real
and symmetric Hamiltonians

aO BO yO
Yewo Byoy % By yk/

has also the obvious physical reasons since most of the abo-
vementioned tridiagonal models necessitate often an improve-
ment represented just by an inclusion of another diagonal.

In our preceding papers’¥ , we have considered the gene-
ral band-matrix Hamiltonians. For their diagonalisation, we
have proposed and described an '"inversion-perturbation" modi-
fication of the RS theory. In a way, this formalism may be
understood as a perturbation counterpart to the recurrent nu-
merical method of Graffi and Grecchl 5 based on a use of
the auxiliary generalised continued fractions.

In the present paper, we intend to descrlbe an 1mprovement
of the method of’4/ | getting rid of any use of recurrences.
In Sect. 2, we start from a slight "vectorial continued frac-
tional" (VCF,”® ) modification of the numerical algorithm
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of Ref.’% . Then,we relate this technique to the classical
method of Feshbach /7 in Sect. 3. We recall also a recent
algebraic "fixed-point" construction of the VCF asymptotics’
and arrive at a rigorous power-series representation of the
effective Hamiltonians.

In Sect. 4, we return to a more detailed description of
our modified RS (MRS) perturbation theory and incorporate the
VCF techniques into its formalism. This enables us to descri-
be a final synthesis of our considerations in Sect., 5. The
"capped'", algebraically specified VCF approximants are inter-
preted there as a MRS input, and the resulting '"capped MRS"
(CRS) perturbation theory is described in detail. The numeri-
cal anharmonic—-oscillator illustration of convergence is also
added. .

Sect. 6 is a summary.

8/

2, THE VECTORIAL CONTINUED FRACTIONS

In the standard vatiational framework, we consider usually
a finite—-dimensional truncation of the Schroediner equation

H[N] ‘//[N] _ .E[N] l//[N] ’ N.>>‘ L 2.1)
where .
2o Bo Yo <0|l//[N] >
EN] . LY . [N] B e
H - "nes Pyoe Aoy Py v N <N-1|¢'[N] > 1(2.2)
"n-2 By o <N ‘/'[N] >

For the sake of definitness, we may recall here the anhar-
monic oscillator (1.1) since it is one of the most popular
"homework' pentadiagonal matrices in the standard harmonic
oscillator basis |n>, n = 0,1,... . Its matrix elements read

~ ~ 2 2 2
ap = (B3 + %) + Bo(Vpq + X, + V)

x,= <n[r®|n > = 2n+0+32, €=01,..

(2.3)

, = <n|r21n+1> =(n+1)1/2 (n+ £+ 3/2)%,

By =(§1 - Dy, +§2yn(xn+ Xpet) Yn = ézyn Yn+r

L)
n= 0,1,.../5/ and are simple functions of parameters.

—a

) For a numerical solution of (2.1), let us postulate now
glrst that the N + 1 - dimensional Hamiltonian is factorised
in accord with the prescription

[N] [N]

T
E I - H = UDU. . (2.4)

Here, D is a diagonal matrix

D - g-t -
an g ', n= 0,1,... N (2.5)

n
and U is an upper triangular and tridiagonal factor
1 ~h,8, RCLT

1 —h1g2 —y1g3 . (2.6)

The gecomposition (2.4) - (2.6) becomes an algebraic identity,
provided only that the relations

-1 [N]

2 2
g =(E_an—hngn+l—yng ) E=-E

n n+2

. 2.7
hy= B, + v, Bniolnig n =0,1,...,N (2.7

hold: ?h?y must be complemented by the regularity conditions
and initial values,

1/g, #0, k =1,2,...,N

BN+1 = BNy = O, (2.8)
and define.in fact just the above mentioned vectorial conti-
nued fractions in the limit N » o 76/

A use of éecomposition (2.4) converts our truncated Schoe-
dinger equation into an equivalent form

T , [N] '
DU y =0 (2.9)

since det q = 1. Moreover, due to the recurrent character of
thg factorisation (2.4), the regularity assumption (2.8) im-
plies that the solution of (2.9) becomes almost trivial,

[N]

/g, =0 <kly™ > - coly

T -1
>(U )ko » k ='112.---,N,(2-10)
In particular, an evaluation of energies becomes practically

reduced to mere localisation of poles of our VCF "Green's
function" g,.

.
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In what follows, we shall work in a purely non-numerical
spirit - the cut-off parameter N will be considered infinite.
We shall also drop the redundant square-bracketed super-—
scripts!>!

3. THE FIXED-POINT VCF EXPANSIONS
3.1. The Zero-Order Fixed-Point Approximation

As a consequence of the n>>! asymptotically smooth charac-
ter of our example (2.3), we may try to interpret recurrences
(2.7) as an iterated mapping with almost constant coeffici-
ents. This may inspire us to a use of a zero—order estimate

~

g ~ g ~ g ~g=gn), h=h =h=h(n), n»1- (3.1

n+ 2 n+ 1

An insertion of this assumption in eq. (2.7) is a definition
of a fixed-point of the mapping

8

(E—an—hzg -ynzg)"l, h =8 +y 8h n > 1, (3.2)

An algebraic treatment of these equations is straightfor-
ward. With an abbreviation

h = h(n) = B, /(1 -y, 8) (3.3)
they degenerate to a pair of quadratic equations

y2g? ZXg+1 -0 X-E —a, -an/(f(-zyn), n > 1 (3.4)
with the closed solution.

3.2. The n> 1 Asymptotic Fixed-Point Series
In accord with Feshbach’/?/ , the N = limit of (2.1) is
equivalent to the finite-dimensional equation
M
Y > =0, l¢> = 2 |m><m|y > (3.5)

m=0

(B - Heff

provided only that the so-called "effective Hamiltonian" is

introduced as an M + 1 - dimensional matrix
' M

H _P(H+HRH)P, P=3 |m><m|, R=Q

_Q, Q=I—P.(3_6)
m=o0 EI -QHQ

Most of the matrix elements of H® coincide with the origi-
nal H. This follows from the insertion of (2.4) (with N = )
in (3.6),

He _ E1 - pupDPU"P,. (3.7)

The only exception are the four lowest rightmost elements
which have a different though simple explicit VCF form

eff _ o 1 eff _
ay =B -gll4ay By = By # By

3.8
L - R (3.8)

M—1 ~ Buey -~ Mg By Q-1

in accord with our formula (3.7). We may conclude that by
means of our replacement (3.1) of the exact VCF quantities by
their fixed-point approximants, we may accelerate the conver—
gence of the numerical solution of eq. (2.1).

In the latter context, we may return to our anharmonic os-—
cillator example and recall an existence of the explicit sys-—
tematic corrections to the zero-order estimates (3.1) /8/

The corresponding constructions may be given very easily the
form of asymptotic expansions of our effective matrix ele-
ments (3.8). For the sake of definitness, the third-order
formula

5 - %
g(n) = (-1+2p - 2p°+ %pa)/yn, p=p(n) =n" "

(3.9)

h(n) = (2 + 2p — —;'pa)yn, n > Npgp > 1

will be used in the numerical tests below.
4, THE MODIFIED RS PERTURBATION THEORY

4.1. The Separable Selfconsistency
An ansatz H = Hy + AH, and

2

(N)

N+1 N
> =ty > o0 ™S sy sam,
m

N) N+ 1 N N 4.1
E=E + O(A )s M. 2 E A", Al «< 1
m=0
converts any Schroedinger bound-state problem of the form
(3.1) into the well known RS set of equations



Holy,> = B |y, > (4.2)
(the so-called unperturbed problem) and
k
(E I ~H) gy > = Hily > - 21 Eplve.n> k=L2,... (4.3)
m=
(the recurrent definition of corrections ¥ ).

Recently, we have considered relations (4.2) - (4.3) as a
rigorous re-formulation of the Schroedinger eigenvalue prob-
lem and tried to weaken the usual assumption of a complete
solvability of the unperturbed problem. In a resulting MRS
perturbation theory with non-diagonal propagators/4/ , the
unperturbed equation (4.2) has been made satisfied identical-
ly via a separable re-definition of H. Thus, we may put
Hy =H+ G|0><0| AH, = -G|0> <0| (4.4)
and apply simply the MRS technique 'Y to any pentadiagonal H.

Let us notice that a use of some suitable separable mean-—
field correction of the type (4.4) is quite common in the
standard RS context where |0> = |y > and G # O corresponds
merely to a trivial "selfconsistent" modification of E,. Here,
it becomes more essential since the unperturbed problem is
not assumed to be exactly solvable anymore.

4.2, The MRS Perturbation Theory

In accord with Ref.’? , an essential MRS input is an avai-
lable M = 1 unperturbed propagator

R-Q—"' @, Q=-1-]0><0] . (4.5)
E_1- QHQ

which enters both the closed solution

o> = 10> + RH[O> (4.6)
of (4.2) and the higher-order wavefunction corrections
k
‘¢k>=RH1|¢k.1>_ ElEm'R|¢k.m>’ k =12, (4.7)
[N m=
{with the standard normalisation <O| wk >=0, k =1,2,...)

The MRS energies

TEa——

b

1 k-1

_— < H. | >3 . E 1, k=12,...(4.8
<g | > Yol Hal ¥ m=1 Yol¥in > Fnl -8

remain defined by the ordinary RS formula but, for the sake
of selfconsistency, we must accept also a restriction

G = E

0

- <O|H|y, >. (4.9)
It specifies the auxiliary coupling g = g(E,) for an arbitra-
ry choice of the free MRS parameter E, "4/ .

In a more detailed MRS analysis, a similarity between the
resolvents in (4.5) and (3.6) enables us to use again a VCF
factorisation formula
Q(E,I -H)Q = WDW ", (4.10)
Here, the matrix W differs from the N =« matrix U in (2.6)
just by an absence of the first row and column. We may also
write

R - (W) (Pl w

(4.11)
For the sake of simplicity, our VCF formulas (4.10) and
(4.11) are to be partioned now into the 2x2 - dimensional sub-

matrices.

=)
I -Ty ) 1 thygy,,
I =
k
I3 -T, 0 1
w:
=)
I -I
5 6 k-1 gk+1 0
rk = .
hy Yk /) 0 Exto
This will simplify the inversion since (4.12)
) (3) (5) 7
0 71 71 ”g)
wlo
S, (5) (1) } (4.13)
3 T3 73
where
@ @ - ) «®
meo =1y lﬂk+1lk+2 kes " TpooTp_ Tp. (4.14)
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We may summarise that the general pentadiagonal Hamiltoni-
an admits a straightforward MRS treatment, provided only that
we start from a recurrent specification of the auxiliary VCF
sequence.

5. THE NEW FIXED-POINT VERSION OF THE MRS PERTURBATION
THEORY

An essence of the numerical VCF algorithm (cf. Sect. 2)
lies in a repeated evaluatioF_of the auxiliary E-dependent
VCF sequences (hn, gn), E- ELNI , while the perturbative for-
mulas of Sect. 4 contain just a single set of these VCF quan-
tities evaluated at a single value of the energy-guess MRS
parameter E = Eg. .

In what follows, we shall show how to get rid of the nume-
rical (N + «) VCF recurrents by means of a replacement of all
the VCF quantities h, and g by some a priori chosen "quasi~
VCF" or "capped”" quantities h(n) and g(n), n2N>1,

The replacement violates obviously the VCF recurrences
(2.7), so that the capped quantities do not correspond to our
original Hamiltonian H anymore. Nevertheless, we may introdu-
ce a new, capped analogue of recurrences (2.7),

g(k) 1

]

[Ey -2, - B° () 8k+ 1) —y2 g(k+ 217

A (5.1)
h(k)

By +yg8(k+2)h(k+1), k> Ngp >'1

.
and treat these new relations as if they were -obtained from

some other pentadiagonal matrix T with the capped matrix ele-
ments.

~ - ‘ (5.2)
Bo a1 By Y1

This is our main idea - the new matrix T is to be used now as
a new approximate Hamiltonian within the old MRS perturbative
framework.

For the sake of definitness (and with the anharmonic oscil-
lator éxample in mind), we shall restrict gqur further atten-
tion to the fixed-point type of sequences h(n) and g(n) (cf.
(3.9)). This will guarantee that the capped perturbation

8

= —

S
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V = H-T (5.3)
defined by the relations (5.2), (5.3) and
;/k = )’k ék =ﬁ(k) ~¥Yx é(k+2)h(k+l)

(5.4)

A ~Q ~ . 2 ~
a, =E -2 (k) - 0¥ (0 (k+1) -y, g(k+2), k 2 Ngp >>1

will be small, proportional to the deviationms

h, - h(k) g, - 8(k). (5.5)

k

Within the framework of the MRS formalism, it remains for
us to replace (4.4) by the'capped RS" (CRS) postulate

H =T + G|0><0] AH, = V- G| 0><0!. (5.6)

Then, the CRS propagator becomes defined by the capped ana-
logue
B1 21

- DT, N

R-Q————Q = (W
E - QTQ

(5.7)

of the product (4.11), and all the remaining CRS formulas may
be also written in their modified cappeq form. o

In particular, the unperturbed equation may be satisfied
in accord with the capped MRS prescriptions (4.6) and 4.9,
|4, > = 10> +RT|0> G =E_ - <0|T|y, > (5.8)
so that we end up essentially with the same formulas as befo-
re,

“21) = IE(V"]’E\ll)l‘Zo >

5 7 ? s _G g 5.9)
AE | = (<ol Vg > = G) /<ol o > (
By= <ty | (V=EDPR(V=E Dl >/<th | Yo >
etc, .

In the Tables ! — 3, a representative set of the CRS nume=

rical tests is given. The results confirm that the transition
H- T and the whole CRS re—arrangement of the Hamiltonian cau-
ses merely an inessential modification of the MRS V=0 results,
say, of Ref.’4’/ . The convergence rate is quick (Table 1) and

9



Table 1

A sample of convergence of the CRS expansions. For
the first excited state emergy Eexact = 13.156 80071/
of the s-wave Hamiltonian H = p2 + r2 + r4, we use
the Ngp= 10 2n (5.4)

2

E

13.2
13.155 62
13.157 22
13.157 027
13.156 949
13.156 898
13.156 863
13.156 839
13.156 823
13.156 812
13.156 803

QoSN WN—=O

practically independent of the choice of E, (Table 2). More-
over, the E,—dependence weakens in the higher-order approxi-
mations, even for the non-negligible magnitude of the errors
(5.5) (Table 3). Hence, a use of the fixed-point approxima-

tion leads to an efficient algorithm which may be considered
one of most adequate techniques for evaluation of the anhar-
monic-oscillator-like spectra.

Table 2

The dependence of results on the guess parameter E0=E(m

£© £©®) E(D)
12.8 13.156 789 13.156 777
13.0 13.156 807 13.156 798
13.2 13.156 812 13.156 803
13.4 13.156 816 13.156 809
13.6 13.156 798 13.156 813
13.156 463

13.8 13.156 682

10

Table 3

A step—by-step weakening of dependence on the parameter
E,. We display the "number of correct digits” P = —lnx
x| EM) — Eogact| for the ground-state energy and Ngp = 5

orderN 1 2 3 8
EO

-2.0 0.61 1.02 1.43 2.97

-1.0 0.69 1.15 1.60 2.99
0.0 0.80 1.31 1.80 3.00
1.0 0.95 1.52 2.05 3.00
2.0 ~1.15 1.80 2.43 2.99
3.0 1.47 2.18 1.59 2.99
6. SUMMARY

In the MRS perturbation formalism with the non-diagonal
propagators and with the "optimal" zero-order approximation
T = H, a CRS re-arrangement (a transition to T # H) generates
only a small perturbation V = H - T for the sufficiently re-
liable (e.g., fixed-point) quasi-VCF approximation. A priori,
we may expect then a good convergence and summarise:

(a) Our old inversion-perturbation algorithm’4 "compres-
ses" the information contained in the five (or 2s+l in gene-
ral) diagonals of H into an auxiliary VCF array. This array
plays a role of certain 'generalised unperturbed energies".
Thus, the preparatory numerical recurrent generation of VCF's
from H is just a MRS analogue of the RS "preliminary diagona-

lization" of H,, which is rarely performed in the actual ap-

plications.

(b) In the present paper, we have started the MRS construc-—
tion of perturbation series directly from an a priori given
quasi-VCF generalised spectrum. As a general CRS perturbation
theory, this parallels more closely most textbook RS applica-
tions where the exact unperturbed spectrum is also known in
advance.

(c) Besides the described fixed-point version of the CRS
theory, the various other types of the quasi-VCF input (say,
the finite, N<«~ "VCF approximants) are also possible of
course. All of them might provide new ideas for resummations
of the divergent RS expansions, especially in all the situa-
tions where the divergence has been caused by a strong-coup— *

11



ling character (band-matrix structure) of the Hamiltonian
itself.

(d) In comparison with the RS theory with diagonal Hys our
"non-diagonal solvability of T" is a much weaker requirement.
More realistic Hamiltonians H may lie close to some capped T,
and the convergent CRS expansions should exist for a broader
class of Hamiltonians in principle. In the computations, such
an expectation seems to be confirmed also by our anharmonic
oscillator example.

(e) Even in its present fixed-point version, the whole CRS
prescription and, in particular, the H-T replacement are by
far not unique. In general, the closer lies the capped input
to the exact VCF image of H itself, the quicker will also be
the rate of convergence of the CRS perturbation expansions.
In practice, the input or "exactly solvable" models T may be
related also to some independent physical information in prin-
ciple. For a broad class of systems of interest, this opens
an entirely new way of their non-RS "selfconsistent" pertur-
bation treatment.
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HoBas TpakTOBKa 5+OHATOHAIBLHBIX I'aMHIbTOHHAHOB

» JlIefHHe BCIIOMOT'aTeJIbHble BEJIHUHHE 3aMEeHANTCA HUX anreﬁpanqec—

' HENMOJBIWKHOM TOYKH'/, KOTOpHE HHTEpPNpPEeTHDPYWOTCH KaK BCTYIIH—

oW,

Suoun M. E4-87-655
Ilpepnoxena HoBasa GOPMYNHMPOBKAa TEOPHH BOo3MymeHul Pajren -

llpepuHrepa. Ilens +pabGoTh '— wH36aBUTHCSA OT mpobieM

C MOCTpOeHHEeM HeBO3MYNEHHOro mponararopa. KoHkperHo pdc-—

cMaTpUBalTCA«raMUNIbTOHHAHK C NATHO OUATOHAJIAMH, W cHadana

HCHONBb3YWTCA Tak HasbhBaeMble BeKTODHHE lemnHeie apobu. Ioc—

"
KHMMU TpHGITIKEeHHsAMH /THIIA ACHMITOTHYecKOTO ''mpubmkeHus

TenpHHE AaHHbe /THrna o606meHHOrO HeBO3MYmMEHHOro cmeKTpa/.
HonyuaeTcsa obmass HOBasA cxeMa BO3MYTHTEJIbHBIX BbIUHCIIEHHIT,
IpUMeHeHHas [OJiA WUNOCTPAaudH K NIpUMepy aHTapMOHHYeCKOTO
OCHHUIIIATOPA.

Pabora BhmoaHeHa B JlaGopaTopuu TeOpeTquQKOﬁ‘QﬁS%FH

Coo6ienne O6bLeNMHEHHOro MHCTUTYTA AREPHBIX Hecnenosanuit. [ybua 1987
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- A New Preturbative Treatment of Pentadiagonal

Hamiltonians ) ‘
A new formulation of the Rayleigh - Schroedinger per-

"turbation theory is proposed. It is inspired by a recur-
' rént construction of propagators, and its main idea lies

in a replacement of the auxiliary matrix elements (genera-

" lised continued fractions) by their non-numerical approxi-
+|.mants. In a test of convergence (the anharmonic osc111§-
' tor), the asymptotic fixed-point approximation scheme is

used. The results indicate a good applicability of this

* fixed-point version of our formalism to systems with a

band-matrix structure of the Hamiltonian.

The investigation has been pérformed at the Laboratory
of Theoretical Physics, JINR.

Communicdtion of the Joint Institute for Nuclear Research. Dubna 1987

*)




