

otheamaniori MIGTMTYTA 1A이N: nceiohoianum aybia

E4-87-48

I.Brandus*, I.Bulboaca*, O.Dumitrescu, M.Horoi*

ALPHA-TYPE CORRELATIONS

IN ATOMIC NUCLEI
AT FINITE TEMPERATURE

[^0]
I. INTRODUCTION

The influence of the temperature on the structure of the atomic nucleus has been taken into account in describing the heavy ion reactions whose exit channels contain at least one nucleus excited above the yrast line $/ 1,2 /$. Since the time necessary to get the thermal equilibrium seems to be less than the deexcitation time/ , it is expected that above the yrast line the atomic nucleus could be described by mean field models at finite temperature. At the same time, the temperature seems to be the right parameter to distinguish phase transitions specific to the mean fiield. The competition between the long range correlation leading to the static deformation ${ }^{3 /}$ of the average nuclear field and the themal fluctuations and their contribution to the structure of the giant resonances $/ 4 /$ have already been studied. The possibility of superfluid - normal fluid phase transition using a model with pairing correlations has also been studied as well/5/. Taking into account the fluctuations, the sharp phase transition predicted by the mean field theory, as for infinite systems, is dramatically changed. In some cases no phase transition is observed.

In the present work the superfluid-normal fluid and auper-fluid-superfluid phase transitions described by the maan field model with pairing and alpha-type correlations/6-8/ have been anelysed with reapect to the temperature parameter.

The paper is organized as followa. In section II we formulate the model. The discussion of the gap equations and the phase

diagrams within a schematic single-particle model having equidistant twice degenerated energy levels at zero temperature is given in section III. The temperature dependence of the superfluid enhancement factors of the favoured a-clusterization processes (α^{\prime}-decay and α-transfer reactions) and two-nucleon transfer reactions is presented in Section IV. Section V shows the conclusions.

II. FORMULATION OF THE MODEL

We consider a nucleus formed as a system of nucleons moveing in a certain single-particle self-consistent field generated by a deformed diffuse-edge potential.

The free (GIbbs) energy operator of such a system of interacting nucleons is

$$
\begin{equation*}
-\widehat{\zeta}=\hat{H}-\sum_{i=n, P} \lambda_{i} \cdot \widehat{N}_{i}-k_{B} T S . \tag{1}
\end{equation*}
$$

has the form $/ 7,8 /$

$$
\begin{equation*}
\hat{H}=\sum_{i=n, p}\left(\hat{H}_{i}^{(0)}-G_{i} \cdot \hat{P}_{i}^{+} \hat{P}_{i}\right)-G_{4} \hat{P}_{p}^{+} \hat{P}_{n}^{+} \hat{P}_{n} \hat{P}_{P} \tag{2}
\end{equation*}
$$

in which

$$
\begin{equation*}
\hat{H}_{i}^{(0)}=\sum_{j ; \sigma_{i}} \varepsilon_{S_{i}} \quad a_{S_{i} \sigma_{i}}^{+} a_{S_{i} \cdot \sigma_{i}} \tag{3}
\end{equation*}
$$

is the single particle part,

$$
\begin{equation*}
\hat{P}_{i}=\sum_{s_{i}} a_{5,-} a_{5,+} \tag{4}
\end{equation*}
$$

is the pairing operator,

$$
\begin{equation*}
\hat{N}_{i}=\sum_{s_{i} \sigma_{i}} a_{s_{i} \sigma_{i}}^{+} a_{S, \sigma_{i}} \tag{5}
\end{equation*}
$$

is the particle number operator and $/ 1 /$

$$
\begin{align*}
S & =2 \sum_{i=n, p} \sum_{s_{i}} \ln _{n}\left\{\left(1-\bar{n}_{s_{i}}\right)^{\bar{n}_{s_{i}}-1} \cdot \vec{n}_{s_{i}}-\bar{n}_{s_{i}}\right\} \\
& =2 \sum_{i=n_{1} p} \sum_{s_{i}}\left\{\frac{E_{s_{i}}}{k_{B} T} \bar{n}_{s_{i}}-\ln \left(1-\bar{n}_{s_{i}}\right)\right\} \tag{6}
\end{align*}
$$

is the entropy.

$$
\begin{equation*}
{\overline{n_{s}}}=\left(1+\exp \frac{E_{s_{i}}}{k_{B T}}\right)^{-1} \tag{7}
\end{equation*}
$$

is the occupation number of the quasiparticle states, $\mathcal{E}_{S_{;}}$and $E_{S ;}$ are the particle and quasiparticle energies, λ_{6} are the chemical potentials, K_{B} is Boltzmai's constant and T is the absolute temperature. In the above formulas $n(\rho)$ stands for neutrons (protons).

The transformation from particle fermi operators $a_{s \sigma}^{+}\left(a_{s \sigma}\right)$ to the quasiparticle Fermi operators $\quad \alpha_{5 \sigma}^{+}\left(\alpha_{5 \sigma}\right)$ is done by the well-known Bogolubov-Valatin equation 19 :

$$
\begin{equation*}
a_{s \sigma}^{+}=u_{s} \alpha_{s-\sigma}^{+}+\sigma v_{s} \alpha_{s \sigma} \tag{8}
\end{equation*}
$$

By introducing the two-quasiparticle operators $/ 9 /$

$$
\begin{equation*}
A^{+}\left(s s^{\prime}\right)=\frac{1}{\sqrt{2}} \sum_{\sigma} \sigma \alpha_{s-\alpha}^{+} \alpha_{s \sigma}^{+} \tag{9}
\end{equation*}
$$

we have

$$
\begin{align*}
& H_{i}^{(0)}=\sum_{s \sigma} \varepsilon_{s}\left(u_{s}^{2}-v_{s}^{2}\right) \alpha_{s \sigma}+\alpha_{s \sigma}+ \\
& +\sqrt{2} \sum_{s} \varepsilon_{s} u_{s} v_{s}\left(A(s s)+A^{+}(s s)\right)+2 \sum_{s} \varepsilon_{s} v_{s}^{2} \tag{10}\\
& \hat{P}_{i}=\sum_{s} u_{s} v_{s}-\sum_{s \sigma} u_{s} v_{s} \alpha_{s \sigma}^{+} \alpha_{s \sigma}+ \\
& +\frac{1}{\sqrt{2}} \sum_{s}\left(u_{s}^{2} A(s s)-v_{s}^{2} A^{+}(s s)\right) \tag{11}
\end{align*}
$$

and $\hat{N}_{i}=\sum_{s \sigma}\left(u_{S}^{2}-V_{S}^{2}\right) \alpha_{S \sigma}^{+} \alpha_{S \sigma}+$

$$
\begin{equation*}
+\sqrt{2} \sum_{s}^{s \sigma} u_{s} V_{s}\left(A(s s)+A^{+}(s s)\right)+2 \sum_{s} V_{5}^{2} \tag{12}
\end{equation*}
$$

Defining the single quasiparticle Hamiltonian by /1/

$$
\begin{equation*}
\widetilde{H}=U_{0}+\sum_{i=p, n} \sum_{S_{i} \sigma_{i}} E_{S i} \alpha_{S_{i} \sigma_{i}}+\alpha_{S_{i} \sigma_{i}} \tag{13}
\end{equation*}
$$

and the corresponding thermodynamic average by

$$
\begin{equation*}
\langle\hat{o}\rangle_{0}=\operatorname{Tr}\left\{\hat{O} \exp \left(-\frac{\widetilde{H}}{k_{B} T}\right)\right\} / \operatorname{Tr}\left\{\exp \left(-\frac{\tilde{H}}{k_{B} T}\right)\right\} \tag{14}
\end{equation*}
$$

we have

$$
\begin{align*}
& \left\langle\sum_{\sigma_{i}} \alpha_{s_{i} \sigma_{i}}^{+} \alpha_{s_{i} \sigma_{i}}\right\rangle_{0}=2 \bar{n}_{s_{i}} \\
& \left\langle A\left(s s^{\prime}\right)\right\rangle_{0}=0 \tag{16}\\
& P_{i} \equiv\left\langle\hat{P}_{i}\right\rangle_{0}=\sum_{s_{i}} u_{s_{i} v_{i}}\left(1-2 \bar{n}_{s_{i}}\right) . \tag{17}
\end{align*}
$$

The Gibbs energy at finite temperature has the following form:

$$
\vec{y} \equiv<-\vec{y}>_{0}=
$$

$=\sum_{i=n_{1} p}\left\{2 \sum_{S_{i}}\left({\widetilde{\varepsilon_{5 i}}}_{S_{i}}-\lambda_{i}\right)\left[\bar{n}_{s_{i}}+V_{S_{i}}^{2}\left(1-2 \bar{n}_{S_{i}}\right)\right]-\right.$
$\left.-G_{i} P_{i}^{2}-2 K_{B} T \sum_{S_{i}}\left[\frac{\overline{n_{S_{i}}}}{k_{B_{B} T}} E_{S_{i}}-\ln \left(1-\overline{n_{S_{i}}}\right)\right]\right\}-G_{4} P_{p}^{2} P_{n}^{2}$
As a remark we gee that for $G_{4}=0$ the Gibbs energy $-\mathscr{Y}$ coincides with the expression given elsewere ${ }^{11,2 /}$, if one includes the pairing interaction term in the Hamiltonian of the nucleus. By $\quad{\widetilde{\delta_{S}}}$ we denote the following expression

$$
\tilde{E}_{S_{p(n)}}=E_{S_{p(n)}}-\frac{1}{2}\left(G_{p(n)}+G_{4} P_{n(p)}^{2}\right) V_{S_{p(n)}}^{2}-\frac{1}{4} G_{4} V_{S_{p(n)}}^{2} \sum_{S_{n(p)}} V_{S_{m}}^{2}
$$

In the following we shall neglect $/ 1 /$ these self-consistent field corrections, i.e. $\tilde{\varepsilon}_{S_{i}} \cong \varepsilon_{S_{i}}$.

Applying the variational principle

$$
\begin{equation*}
\delta \mathcal{J}=\sum_{s_{i}}\left(\frac{\partial \xi}{\partial v_{s_{i}}} \delta v_{s_{i}}+\frac{\partial \bar{\xi}}{\partial \overline{n_{s}}} \delta \bar{n}_{s_{i}}\right)=0 \tag{20}
\end{equation*}
$$

with the condition $U_{s_{i}}^{2}+V_{S_{i}}^{2}=1$, we obtain

$$
\frac{\partial \bar{y}}{\partial v_{s_{i}}}=\frac{2\left(1-2 \overline{n_{s_{i}}}\right)}{u_{S_{i}}}\left\{\left(\varepsilon_{s_{i}}-\lambda_{i}\right) 2 u_{s_{i}} v_{S_{i}}-\left(u_{s_{i}}^{2}-v_{S_{i}}^{2}\right) \Delta \Delta_{i}\right\}=O_{1}(21)
$$

he

$$
\begin{equation*}
\Delta_{i}=P_{i}\left(G_{i}+G_{4} P_{j}^{2}\right) ; i=n_{1} p ; j=p, n \tag{22}
\end{equation*}
$$

and

$$
\frac{\partial-\xi}{\partial n_{s}}=2\left\{\left(\varepsilon_{s_{i}}-\lambda_{i}\right)\left(u_{s_{i}}^{2}-v_{s_{i}}^{2}\right)+2 u_{s_{i}} \cdot v_{s_{i}} \Delta_{i}-E_{s_{i}}\right\}=0 .(23)
$$

Combining eqs. (21) and (23), we obtain

$$
\begin{align*}
& E_{S_{i}}=\sqrt{\left(\varepsilon_{S_{i}}-\lambda_{i}\right)^{2}+\Delta_{i}^{2}} \tag{24}\\
& \binom{u_{S_{i}}^{2}}{V_{S_{i}}^{2}}=\frac{1}{2}\left(1 \pm \frac{\varepsilon_{S_{i}}-\lambda_{i}}{E_{S_{i}}}\right) \tag{25}
\end{align*}
$$

for the nontrivial solution, ie. $\Delta_{i} \neq 0$. This solution is obtained from eq. (22) and the condition that the number of nucleons should be conserved on average, i.e.,

$$
\begin{align*}
& \frac{1}{2} \sum_{s_{i}} \frac{1-2 \bar{n}_{s_{i}}}{E_{s_{i}}}\left\{G_{i}+G_{4} P_{j}^{2}\right\}=1 \tag{26}\\
& \sum_{د_{i}}\left\{1-\frac{\varepsilon_{s_{i}}-\lambda_{i}}{E_{S_{i}}}\left(1-2 \bar{n}_{5_{i}}\right)\right\}=N_{i} \tag{27}
\end{align*}
$$

where N_{i} is the number of the nucleons of the sort i (n or p) participating in the superfluidity.

III. SOLUTIONS OF THE GAP EQUATIONS AND THE PHASE DIAGRAM

In the following weshall proceed in the frame of a schematic model with equidistant twice degencrated single-partiolo energy levels at zero temperature

$$
\begin{align*}
& \varepsilon_{S_{i}}=\varepsilon_{F}(i)+\frac{k}{\rho_{i}} \tag{28}\\
& \lambda_{i}=\varepsilon_{F}(i)+\frac{\sigma_{i}}{\rho_{i}} \tag{29}\\
& g_{i}=\rho_{i} G_{i} \tag{30}\\
& x_{i}=\left(\rho_{i} \Delta_{i}\right)^{2} \tag{31}\\
& g_{4}=\rho G_{4} \quad ; \quad \rho=\frac{1}{2}\left(\rho_{p}+\rho_{n}\right) \tag{32}
\end{align*}
$$

Here K are integers belonging to the interval $K \in(-20,21)$ reflecting the fact that we included in our treatment at zero temperature 42 single-particle levels. This seems to be the necessary number of levels/9/ included in the superfluidity proolem. The quantities $\xi_{F}(i)$ and d_{i} are, respectively, the Fermi energies for noninteracting and interacting fermions of the type i, and $i=p, n$.

Let us analyse, as in the previous papers $/ 7,8 /$, the symmetric situation where the protons and neutrons have the same following properties:

$$
\begin{array}{ll}
\rho_{p}=\rho_{n}=\rho & q_{p}=g_{n}=g_{2} \tag{33}\\
\lambda_{p}=\lambda_{n}=\lambda & \sigma_{p}=\sigma_{n}=\frac{1}{2}
\end{array}
$$

for which the gap equations have symetric solutions

$$
\begin{equation*}
x_{p}=x_{n}=x . \tag{34}
\end{equation*}
$$

Introducing the following notation

```
t=\rho\mp@subsup{k}{B}{}T
```

$$
\begin{align*}
& S_{ \pm 1}(t, x)=\frac{1}{2} \sum_{k=-20}^{21}\left(E_{k}(x)\right)^{ \pm 1}\left(1-2 \bar{n}_{k}(t, x)\right) \tag{36}\\
& \bar{n}_{k}(t, x)=\left(1+\exp \frac{E_{k}(x)}{t}\right)^{-1} \tag{37}\\
& E_{k}(x)=\sqrt{x+\left(k-\frac{1}{2}\right)^{2}} \tag{38}
\end{align*}
$$

the correlated Gibus energy (18) has the expression

$$
E\left(g_{2}, g_{4}, t ; x\right) \equiv \rho\left(-g\left(g_{2}, g_{4}, t ; x\right)-g\left(g_{2}, g_{4}, t ; 0\right)\right)=
$$

$$
=4 s_{1}(t, 0)-4 s_{1}(t, x)+4 x s_{-1}(t, x)-
$$

$$
-2 g_{2} x s_{-1}^{2}(t, x)-g_{4} x^{2} s_{-1}^{4}(t, x)-
$$

$$
-4 t \sum_{k=-20}^{21}\left\{t^{-1} E_{k}(x) \bar{n}_{k}(t, x)-\ln \left(1-\bar{n}_{k}(t, x)\right)\right\}
$$

Here g_{2}, g_{4} and t are the model parameters, and x replaces the gap variaule.

Denoting now the first two derivatives of expression (39)

$$
\begin{equation*}
F\left(g_{2}, g_{4}, t ; x\right)=\frac{d}{d x} E\left(g_{2}, g_{4}, t ; x\right) \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
H\left(g_{2}, g_{4}, t ; x\right)=\frac{d}{d x} F\left(g_{2}, g_{4}, t ; x\right) \tag{41}
\end{equation*}
$$

we can define the important curves (fig.1) of the phase diagram as in refs. $17,8 /$

$$
\begin{array}{ll}
F\left(g_{2}, g_{4}, t ; x\right)=0 & H\left(g_{2}, g_{4}, t ; x\right)=0 \\
F\left(g_{2}, g_{4}, t ; 0\right)=0 & E\left(g_{2}, g_{4}, t ; 0\right)=0
\end{array}
$$

$$
F\left(g_{2}, g_{4}, t ; x\right)=0 \quad E\left(g_{2}, g_{4}, t ; x\right)=0
$$

and

$$
\left\{\begin{array}{l}
F\left(g_{2}, g_{4}, t ; x_{1}\right)=0 \quad F\left(g_{2}, g_{4}, t ; x_{2}\right)=0 \tag{45}\\
E\left(g_{2}, g_{4}, t ; x_{1}\right)=E\left(g_{2}, g_{4}, t ; x_{2}\right)<0
\end{array}\right.
$$

The curve (42) separates regions in which the number of solutions of the gap equation

$$
\begin{equation*}
F\left(g_{2}, g_{4}, t ; x\right)=0 \tag{46}
\end{equation*}
$$

differs by two.

Fig. 1. Phase diagram for $t=0$ as discussed in Section III.
The curves GDECF, ADBF, $H B E I F$ and CIB are given by
eqs. (42), (43), (44) and (45), respectively.

Curve (43) separates regions in which the numper of solutions of the gap equation (46) differs by one. In the case $g_{4}=0$ this curve reduces to a point representing the ciritical value given L_{y} Selyaev's condition $/ 7,8,10 /$ for zero temperature. The crossing of curve (44) for $X \neq 0$ chanees the sign of the correlated Giobs energy (39) for one solutioni of the gap equation (46).

The region of the phase diagran delimited u_{y} the gurves (42) for $X>0$ and (43) is broken up into two rerions thy the curve (45). In these regions, the correlated Gibus energy has two minima. The deepest minimum corresponds to the ground state of the aystem and the otherone corresponds to the motastable state. These two minima define two superfluid phases of the system. The smallest solution defines the "pair" superfluid phase (the region on the left side of the curve (45) in fig. 1) and the largest one define the $\boldsymbol{\alpha}$-type superfluid phase (the region on the right side of the curve (45) in fig. 1)/7,8/. The jump from one minimum to the other occurs on curve (4b). The crossing of this curve corresponds to a first order phase transition, while the crossing of the curve (43) corresponds to a second order phase transition as in the usual pairing case ($g_{4}=0$).

Further on we have some temperature dependent properties of two hypothetical nuclei defined by the following coordinates:

	$P\left(g_{2}=0.26 ;\right.$	$\left.g_{4}=0.00180\right)$
and $\quad Q\left(g_{2}=0.26 ; \quad\right.$	$\left.g_{4}=0.00183\right)$	

in the phase diagram from fig. 1 . Such nuclei could lie in the region of S_{n} isotopes having the number of neutrons ≈ 66. The P-nucleus lies in the region of "pair" superfluid phase, while the Q-nucleus lies in the " α-like" superfluid phase.

Figs. 2 and 3 show the correlated Gibbs energy (39) as a function of x for different temperatures. The nucleus P

suffers a second order phese transition for $t=0.51$ for the ground state and its $\quad \alpha$-like superfluid metastable state disappears at $t=1.19$. The nucleus Q suffers a first order phase transition at $t=0.58$, the ground state becomes a metastable α-like superfluid state which desappears at $t=1.5$.

Figs. 4-7 show the gaps and the ground and motastable state energies as a function of temperature.

$x_{3}(\min)$

Fig. 4. The solutions of the gap eq, (46) for the P-nucleus versus temperature.

Fig. 5. The values of the correlated Gibbs energies (39) corresponding to the two minima of the P-nucleus versus tempereture.

IV. SUPERFLUID ENHANCEMENT FACTOR FOR THE α-CLIUSTERIZATION

 probabllities and two-nucleon transfer reaction probabilities The α-clusterizu-ion pronailities (P_{α}) and the two-nucleon transfer reaction anss sections (σ_{2}) for the favoured processea at zero temperature can be estimated $/ 7-9 /$ as fol-lows:

$$
\begin{equation*}
P_{\alpha}=1\left\langle M_{s, p}^{(\alpha)}\right\rangle 1^{2} F_{\alpha} \tag{47}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{2}=\left.1\left\langle M_{s \cdot p}^{(2)}\right\rangle\right|^{2} F_{2} \tag{48}
\end{equation*}
$$

Here $F_{\alpha(2)}$ are the corresponding superfluid erhancement factors defined d

$$
\begin{equation*}
F_{\alpha}=P_{p}^{2} P_{n}^{2} \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{2}=P_{p(x)}^{2} \tag{50}
\end{equation*}
$$

when $P_{p(n)}$ are given by eq. (17).
In the schematic model with equidistart twice degenerated single perticle energy levels presented in section III these quantities have the following simple form:

$$
\begin{equation*}
F_{\alpha(2)}(t)=R_{\alpha(2)}(t) \quad F_{\alpha(2)}(0) \tag{51}
\end{equation*}
$$

The ratios $R_{\alpha(2)}$ have the form

$$
\begin{align*}
& R_{\alpha}(t)=x^{2}(t) S_{-1}^{4}(t, x(t))\left\{x^{2}(0) S_{-1}^{4}(0, x(0))\right\}^{-1} \\
& R_{2}(t)=x(t) S_{-1}^{2}(t, x(t))\left\{x(0) S_{-1}^{2}(0, x(0))\right\}^{-1} \tag{53}
\end{align*}
$$

and $F_{\alpha(2)}^{(0)}$ are calculated, for instance, in table 2 of ref. $17 /$ A simple inspection of eqs. $(52,53)$ shows that the superfluid enhancement factors $F_{\alpha(2)}(t)$ are monotonic decreasing to zero functions of tempersture.

However, the inclusion of α-type correlations cen produce a region of nuclei with their ground states lying in the α-type superfluid phase (figs. 3,7).

$$
\text { For such nucle1 the } F_{\alpha(2)} \text { factors are atill large for }
$$ temperatures larger than the critical one for the "pair" phase. This result may explain the large field of α-particle emission in some heavy ion reactions.

v. CONCLUSIONS

The finite-temperature pairing plus α-type BCS equations have been derived by minimising the grand potential (Gibbs free energy). These equations have the same form as for zero tomperature $/ 7,8 /$. The difference between the $T \neq 0$ and $T=0$ cases is the presence of non-zero quasiparticle occupations when $T \neq 0$. The finite temperature pairing plus α-type BCS equations were solved within a schematio model with equidistant twice degenerated single-particle energy levels. One demonstrates that a first and second order "phasc transitions"from a superfluid state to a normal state is caused by the increase of the temperature.

For x-type superfluid nuclei the enhancenent factors for favoured α-clusterization processes (α-decay and α-transfer reactions) and two-nucleon transfer reactions may be still large for larger tomperatures than the critical one for the pairing phese.

REFERENCES

 ятер, गнертоизпат, Ноские, 1983.
2. A.L.Goodman. Nuclear Physics, A252 (1981) 30.
3. A.V.Ignatyuk, I.N.Mikhailov, L.H.Molina, R. G.Nazmitdinov, K. Pomorsky. Nuclear Physies, A346 (1980) 191.
4. M. Galardo, M. Diebel, T.Dhssing, R.A.Broglia. Nuclear Physica, A443 (1985) $415 ;$
P.F.Bortignon, R.A.Broglia, G.F.Bertsch, I. Pacheco. Nuclear Physics,A460(1986) 149.
5. I.L.Egido, P.Ring, S.Iwasaki, H.J.Mang, Physics Letters 154B (1985) 1
K. Sugawara-Tanabe, K.Tanabe, H.J.Mang. Nuclear Physics, A357 (1981) 45 and 20.
6. M.Apostol, I.Bulboaca, F.Carstoiu, O. Dumitrescu, M. Horoi, JINR Communications, E4-85-934, Dubna (1985).
7. M.Apostol, I.Bulbasce, F.Carstoiu, O.Dumitrescu, M. Horoi, to be published in Europhysics Letters.
8. M. Apostol, I.Bulboaca, F. Caratoiu, D. Dumitrescu, M. Horoi. "Alpha Like Four Nucleon Correlations in the Superfluid Phases of Atomic Nuclei". Proc. 1986 Brasov International Summer School (see Rev. Roum. Phys. (1987).
9. В.T.Cоловbев. "Теория сложных ядер". Наука, Москва (I971).
10. S.T.Belyaev. Mat. Fyz.Medd. Dan.Selsk. Vidensk. Selsk. 31 (1959) No. 11.

SUBJECT CATEGORIES

OF THE JINR PUBLICATIONS

Index
1. High energy experimental physics
2. High energy theoretical physics
3. Low energy experimental physics
4. Low energy theoretical physics
5. Mathematics
6. Nuclear spectroscopy and radiochemistry
7. Heavy ion physics
6. Cryogenics
9. Accelerators
10. Automatization of data processing
11. Computing mathematics and technique
12. Chenistry
13. Experimental techniques and methods
14. Solid state physics. Liquids
15. Experimental physics of nuclear reactions
at low energies
16. Health physics. Shieldings
17. Theory of condenced matter
18. Applied researches
19. Biophysics

Ерандуш И. и др.
E4-87-48
Корреляция типа α-частичных в атомных ядрах при конечной температуре

Вклочением парных и α-частичных взаимодействий в гамильтониан получены уравнения для щелей и химнческих потенциалов типа ЕКШ при конечных темперауравмения для щел 'КТБкш) при минимизации большого термодинамического потенииала (своторах кой энергии Гиббса). Эти уравнения имеют подобную форму как при комечных бодмой энергии Гиббса). Эти уравнения имеют подобную форму как при конечных
температурах, так и при нулевой температуре. Единственная разница мешду $T \neq 0$ температурах, так и при нулевой температуре. Единственная разница между $T \neq 0$
и $T=0$ моделями - это присутствие числа кеазичастиц при $T \neq 0$. КТБКџ уравнения были решены в рамках одночастичнон модели с 42 протонными и 42 нейтрон ными дважды вырожденными уровнями. Показано, что: 1) "фазовше переходы 1-го и 11-го рода из сверхтекучих состояний в нормальное состояние определены путем возрастания тешпературы; 2) сверхтекучие изомеры и/или их полосы элементарных возбуждений еце суцествуот при разумных больших температурах и 3) сверхтекучие факторы усиления процессов α-кластеризации и реакций двухнуклонной передачи для некоторых ядер могут иметь большие величины при температурах вше критической парной температуры.

Работа выполнена в Лаборатории теоретической физики ОИяИ.

Brandus 1. et al
E4-87-48
Alpha-Type Correlations in Atomic Nuclei
at Finite Temperature
By including the pairing and a-type interactions in the Hamiltonian the finite-temperature BCS (FTBCS) gap and Fermi energles equations have been derived by minimizing the grand thermodynumic potential (the Gibbs free energy). These equations have the same form both for the finite temperature and for the zero temperature. The only difference between the $T \not 0$ and $T=0$ cases is the presence of nonzero quasiparticle occupations when $T \rightarrow 0$. The FTBCS equations for the schematic single-particle model with 42 proton and 42 neutron twice degenerated levels have been solved demonitrating that: 1) "first and second order phase transitions" from superfluid states to a normal state are caused by raising the temperature; 2) the superfluid isomers and/or their bands of elementary excitations may survive even at large temperatures and 3) the superfluid enhancement fectors for a-clusteri eation processes and for two-nucleon transfer reactions for some nuclei may have large values for temperatures larger than the pairing critical one.

The investigation has been performed at the Laboratory of Theoretlcal Physics. JINR.

[^0]: Department of Fundamental Physics Institute for Physics and Nuclear Engineering BucharestMagurele, P.0.Box MG-6, R-76900, Romania

