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I. INTRODUCTIO~' 

The influElnce of the temperature on the structure of the 

atom;j.c nucleus has been taken into account in describing the 

heavy ion reactions whose exit chnnnels contain a.t lea.st one 

nucl\3us excited above the yrast line/ 1 •2!. Since the time neces­

sary to get the thermal equilibrium seems to be less than the 

deexcitation t:l.me/ 2/. it is expected that above the yrast line 

the atomic nucleus could be described uy mean field models at 

finite temperature. At the same time, the temperature seems to 

be the right parameter to distinguish phase transitions specific 

to the mean field. The competition between the long range cor­

relation leading to the static deformatio~J/ of the average nuc~ 
lear field and the thermal fluctuations and their contribution 

to the structure of the giant resonances/4/ have already been 

studied. The possibility of superfluid - normal fluid phase 

transition using a model with palrlng correlations has also ,been 

studied as well/ 5/. Taking into account the fluctuations, the 

sharp phase transition predicted by the mean field theory, as 

for infinite systems, is dramatically changed. In some cases no 

phase transition is observed. 

In the present work the superfluid-normal fluid and super­

fluid-superfluid phase transitions described by the mean field 

model with pairing and alpha-type correlations/6- 8/ have been 

analysed with respect to the temperature parameter. 

The paper is organized as follows. In section II we formu­

late the model. The discussion of the gap equations and the phase 
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diagrams within a schematic single-particle model having equi­

distant twice degenerated energy levels at zero temperaturc is 

given in section III. The temperature dependence of the sUpe:r­

fluid enhancement factors of the favoured ~ -clusterization 

processes ( If -decay and .-< -transfer reactions) and two-nucleon 

transfer reactions is preseni;ed in Section IV. Section V shows the 

conclusions. 

II. FORMULATION OF THE MODEL 

We consider a nucleus fqrmed as a system of nucleons mov­

ing in a certain single-particle self-consistent field generated 

by a deformed diffuse-edge potential. 

The free (Gibbs) energy operator of such a systcm of in­

teracting nucleons is 

-" ""-7= I-I-L At' HI.: Ka T S. 
(1 ),,:.. 71,p 

... 
where the Hamiltonian H has the .p~~~/7 ,8/ 

- (""" (0) -" + A -"' t- "... oj. - ""'"H ;; L. #.,.. - G,' 7?- ~.) - ~ P,. ~ ~ ~ (2)
l: JI,I' 

in which 

H,("") =: 2:. 4- a ... c5 , aC'(f. <'(f,
I "Jt 4 .)¥ f:$,'0;' (3) 

is the single particle part, 
..... 
p., =Z (;(5,_ C(5;1' (4)

s;.. / 

is the pairing operator, 

r 
+1'1.' :::: 2- C( (5 )

Cls:rr" ~'0s,'r,. 

2 

is the particle number ope~ator and/ 1/ 

71 -1 ­
5 = ::z., L..(1t ( {1-?f,J'( ,ii- ls,} 


.<.:7I,f S, S. 5" 


(6) 
= 2 ~ z I 1(-;, - -4 (~- n;.. >J 

"=>!'f 5,. Kf?, T 
is the entropy. 

Here 

£5' )-1
( 4 + e )<1' --' 

(7)"'5.' KaT 

is the occupation number of the quasiparticJe states, Es; and 

are the particle and quasiparti cle energies. A. are the,Es.' 
chemical potentials, KS is Boltzmai's cOllstant o.nd T is 

the absolute temperature. In the allove formulas ?1ft) stands 

for neutrons (protons). 
+ 

The transfol'mation from par ticle r'ermi opera tors iZ$cr (I{Str) 

to the quasiparticle J<'ermi operators o(s~ (0(:><1") is donc by 

the well-known Bogolubov-Valatin 

+ 
Us ~ of + IT \15 o(srr'4..StI" = (8)'5 - a-

By introducing the two-quasiparticle operators/91 

4- 0('. ~ (9 )-IA +(%') r:r OCS_ IT"' S rr 
{i: rr 

we have 

.f­-/1.(0) - X- ('2 ~ 
.4 - es L(s - VS ) ~'5" 0(5<1" + 

$<1" 

+Ji E'$ t< s Vs ( A ("5) -r A+($ S ) + z. f t's vs< .. 
( 10) 

+1'.: = L «s V'S .z. Us vs- "<51:7" ~5tr + 
S 'Str' 

# L (t(sz. A (S$) _ ~ a A +-(SS)) ( 11)+-
Vi s 
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and N,' = ( 1.454 
- \1$"2) 0($: o(so- + 

(12 ) 

+ Ii"' X UsVs (A (ss) + A+(£S)) +2. VSz.· 
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Defining the single quasiparticle Hamiltonian 


,.- ­
U. E o(+q:= (') -t . $; S;o;· S.. rr; (13 )("'=PI"" 5,' v,. 

and the corresponding thermodynamic average by 

<5>0 = '/'",10 e"p(- « )3/1"'... {-exp(-±!-)} (14)K~T K~T . 

we have 

(15 )L 0(+ 0( ')- 11< 
($'". 

$.(]". I. 0 2 5 , 
i, 

$.(f. ­, 

< A C sst) > o (16) 
o 

-p. = <: ;po .>. == L /.('" VS (~- 2 i1 ) (17 ) 
\. - t 0 '5 ~ ,( 5.. • 

• 
The Gibbs energy at finite temperature has the following 

form: ...,

7=: < -j- >c 


_?- l~L (r;,.-).i) [71-;. + VS~ (~-2ii;,)J
(=n,p 5,' ,,01, 

~ [ 'Its' _ ..e - J} G ~ ~ (18) 
Jo\.G.P.. - 2 KaTL -' [s' (c-lts ,) - 4'P.P P.". 

r , 5,' Kq T' • 

As a remark we see that for GIj" 0 the Gibbs energy -1 coinci­

des with the expression given elsewere/1 ,2/. if one includes 

the pairing interaction term in the Hamiltonian of the nucleus. 

"" By C<;,' we denote the following expression 

,....=~ -L(G -t-G.~:l..)v.:2._.!GV..z.LV2.
Cj6('101 '-Sf""} .2. 1>("', It .... Cf'l Sf""') '1 4 Spf.", s",'f»s.... Cf/ (19) 
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In the following we shall nee;lect/'3/ these self-consistent 

field corrections, i.o. ~ ts.' 
t 

Applying the variational principle 

s --s- = L (~ ~ f Vs -+ d-Y f 11 ) =- 0 
5/. 0 VS'. ,''d . 5,' 

(20) 

with the condition U:.o\-"s~; 1, we obtain. , 

';;1" = 2 (~ 2 l)(C -~')2t( .Vc, _ (fA :-v,;~)11~~q(21)
<l L 5,' .s, 5, 5, , • 

t7Vc;. US, '
-. , 

where 

L).. = 1? ( G· + GE. p~) . .i=1t (,) . t=p :n...(,. ~ ... ~ J ) 'I) II" I (22 ) 

and 

8~ -.2 i (Es,. -,.l .. )( Us> ~,:) + 2 lIs,,~. Ll, - t;;, j='0.(2 3)-- .
d~: 

Combining eqs. (21) and (23), we obtain 

£s,· j (£5," - ~,.)~ t,/" (24) 

Es," _ A; ) 
(25)(~:n = ~ ( 1 + 

. t-s; 
for the nontrivial solution, Le. 1.::.., i O. This solution is 

ootained from eq.(22) and the condition that the number of 

nucleons should lie cons8rv8d on avera[~e, i. e. I 

1-2ll"
$;~ {,G,. -+ G4 l'/"J :;! (26)

5,' E51• 

Cs· - AI' ( - )} N . L { 1 - , \ - 2. n" -= " (27)
S·. 

where 1'4; is the number of the nucleons of the sort .:. (n or p) 

participating in the superfluidity. 
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III. SOLUTIONS OF THE GAP EQUATIONS AND THE PHASE DIAGRAM 

In the following we 31£111 proceed in the frame of a schema­

tic model with equidistant twice degenerated single-partiule 

energy levels at zero temperature 

€:s,, - EF (,) + 
k 

S',, 

(28) 

Ai ::::: cF (i) + '\\,' 
~.. (29) 

dt' :; ~. G-c.: 
I 

UO) 

Xc: .... ( ~;Aj"<l· (1) 

~4i ::. ~ G~ ~ = t (~I' '1"5'", 1· (2) 

Here I<. are integers belongine; to the interval K E. (-20,21) 

reflecting the fact thut we inclUded in our treatment at zero 

temperature 42 single-particle levels. This seems to be the ne­

cessary nwnber of levels/9/ included in the superfluidity prob­

lem. The quanti ties EF (I) and --I.. are, respectively, the ]'ermi 

energies for nonintera.cting lind interacting fermions of the 

type i , and " =p,-n. 
Let us analyse, a.s in the previous papers/7 ,8/, the sym­

metric situation where the protons and neutrons have the same 

following properties: 

~f' :- f", = ~ If> ;: J,., = 3L (33) 

A~ "" ). ... '" A Of. a; { 
for which the gap equations have symmetric solutions 

(34)Xp =: )(", "" x. 

Introducing the following notation 

i:: S' "6 T US) 

6 

21 :!:: 1 
S±! (t.)()=i-L (EI«(1I.)) (1-Zn::<.t..,'lC)) 

(6)
" "'-2" 

E",(xJ )-.1l'ii<. Lt,,,::) "" (~+ e."'p ~ un 

(8)( 'I.) :: J}( + (~- ~ )L 

the correlated Gibbs energy (18) has the expression 

E (~1\J,,)t)x)=o~ (-j(;£','J",t.;x) -J(~):l,lt;O))=C 

= 4~:;(-t.oJ - 4:::'1 (t,x) -+4)< J Ct-,x) 


">q ('2. (1) _ q X2..s4 (fx)

- (...0<. X _c_\ .\..,x. 04 -4' I (9) 

t'-f.t .£ {i-i E",b.) ;;:1<. (-t,») - -tM (l-llk.lt,X)ij. 
1(: ZQ 

Here and tare tnc model parameters, and Xg.2. ' :)" 
replaces the gap variable. 

Denoting now the first two derivatives of expression (39) 

J 
F ( d 2. , 'J-4 ) .( i )( ) E (~l- \ ~ to It', )( ) (40) 

and 

d
t\(q q t iX) -=- ~ .. f (a 4 -t. 1\)<1, \ ~." c, X ctL) <1',,) ) ( 41) 

we can define tHe important curves (fig.l) of the phase diagram 

as in refs. F( ,8/ 

F(q 4 t).)():o
Ol-. -:I" I +1 (~"~4JtiX) ==0 (42) 

fCq tl t·o) "'"0
d'2. I <1-.. I ) t. (q "\ t·o)'=. 0 

Ill-I 04/ ) (43) 

F (~1.111.j It )X )=-0 E (~l. I ~ lot I -i. ; )( ) :0. 0 (44) 
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---- ---

and 

F (~l. I ~It It iX,)::' 0 F C';!l.ld-L, Ii i xl.)::: 0 

{ (45) 

E ('I ~ t i )(~ ) -:::: E (q ~ 1.j )(2.,) < 0 . 
dL.\ 'II~l. 1 ~"I 

The curve (42) separates regions in which the number of 

solutions of the gap equation 

F (~'2.1 ~Lj ,-i \ x) == 0 (46) 

differs by two. 
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Fig. 1. Phase diagram for i = 0 as discussed in Section III. 

The curves GDECF, ADBF, HE ElF and ClB are given by 

egs. (42), (43), (44) and (45), respectively. 

8 

Curve (43) separates r"'gions in which the num~uer of solutiOl.s 

of the gap equation (46) differs be' one. Ii. che case d- = 0., 
this curve reduces to a point representing the critical value 

given iJy .3elyaGv's ccndition/7 ,8,101 for ZiCro temperature. The 

crossing of curve (44) for X I 0 chrui~~s the sign of th~ cor­

If relate,j Gious enE'lgy (39) for one? solutiod of the gap equation 

'46). 

The regioIl of the phase diagrar.1 delimit "d ,JJ the qurves (42) 

for X) 0 and (43) is iJroken up into tWD i'eeion3 t<f tIl" curve 

(45). In these regions, the correlat e?d Gi iJ8S e1.e1'/;'/ has two mi­

nima. 'fhe deepest minimum correEiPonds to the groulld state of 

the system and the otherone? corresponds to the m'Jtastable state? 

These two minima define two superfluid phases of the system. 

'fhe smallest solution defines the "pair" superi'luid phaSe? (the 

region on the left side of the curve (45) in f:i{,.1) £Iud the? lar­

gest one defines the 0( -type supcrfluid phase (the region on 

the right side? of the curve (45) in fig.1 /7,81. The jump from 

one minimum to the other occurs on curve (4J). The crossing of 

this curve corresponds to a first order phaSe? transition, while 

the crossing of the curve (43) corresponds to a se?cond order 

phase transition as in the usual pairing case (:J't =' 0). 

Further on we have some temperature dependent properties 

of two hypothetical nuclei defined by the following coordinates: 

t' 0.26 ; 0.00180)32­ 3" 
and 0 0.26; 0.00183)d>, J" 
in the phase diagram from fig.1. Such nuclei could lie in the 

region of S>'\ isotopes having the number of neutrons 66.~ 

"1 The P -nucleus lies in the region of "pair" superfluid phase, 

" while the Q -nucleus lies in the " 0(, -like" superfluid phase. 

Figs. 2 and 3 show the correlated Gibbs energy (39) as a 

funct~on of X for different temperatures. The nucleus P 
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P(9(t,x)- ~(t,O»= E 

m2>0 

'mz<O 

-2 

-I 

li'ir;. 2. I Tho corre10. t cd 

diffl!rcmL 

nucleus -p ( ;j " o. 

9 

8 

7 

6 

5 

~---.:.......;--- t =1.19 

M 
~ 

M I : ""- ~ ('\ 

2 M I I. 
:...- f 

M 

2. 
,MIJE ~ 

-1 

t2 
8 

suffers a second order phasetransi tion for t 0.51 for the 

ground state and its 0( -like superfluid mctastallle stat 

'"disappears tit t 1.19. 'rhe nucleus Q suffers a first order 

phase transition at -t 0.58, the ground state oecomes U lllO­

tastaole ~ -like superfluid state which desuppears at * " 1.5. 

Figs. 4-7 show the gaps and the ground and mc;tastallle state 

energies as a function of temperature. 

80l Xi 

60~ x3 (min) 

1.0 
20 I X 2 (max) -
I. 

P(9 2 =0.26,94 =0,0018)~ t x,(min)­

0.2 0.6 0.8 1.0 1.2 

:B'ig. 4. '1'he solutions of the gap eq. (46) for tho l' -nucleus 

versus temperature. 

E 
WI P 

0.2 

Em,(X,) 

5: The values of 

0.26, 9, =0.0018)
8 

6 

I. 

2 

0.4 
t 

-2 

Fig. the correlated Gibbs energies (39) 

corresponding to the two minima of the P -nucleus versus 

temperature. 
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Gi b 0 S ) versus )( -: ("IAJ'- for 

t'aluI"es in tllG cnse of a hypothetical 

d 0.(01130).
'1 
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1=15 

Fig. 3. '['he same as fil.;.2 
for anothl!r nucleus ( 0.26, 
;] '" 0.00183). 
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Fig. 6. 'rtle same as in fi[;.4 for the Q -nucleus. 

3 

2 

1.2 	 t 

-1 

-2~\".1Ems 

-3 . 	 7 'rileFlg. • as in fig. ') for the Q - nucleus. 

IV. 	SUPERFLUID ENHANCEMENT FACTOR FOR THE c6. -CLllSTERIZATION 

PROBABILITIES AND TWO-NUCLEON TRANSFER REACTION PROBABILITIES 

The <>( -Clu3:.(·1'i",,;1.011 prolHl0ili ties ( Po( ) aad the tWO-llUC­

leon tI'lll1sfer r0ac1;it';:l sections ( (f2. ) for the favoul'e<l 

processes at zero Lempc~atlll'e Oilll De estimated/1- 91 as fol­

lows: 


2...

.( M lCl) > \ F'"'1>"" \ s.~ c/ (41 ) 

and 
<:: \V\<.~) \z,<rz.. ".\" > \ FL' (48) 

12 

Here f(l( (1..1 are the corresponding superfluid enhancement 

factm's defined by 

1'. '2.1! '-	 (49)FoI. 	 -= 'I' '" 
and 

~ 1>,('1\) 	 (50)F2. 

~ 

when 1>f{-l\} are gi VEin by eq. (17), 

In the schematic model with equidistant twice degenerated 

single particle enol'gy lovels presented in section III those 

quantities have the following simple form: 

(51 )
RQ('t:t.} Lt) f Cl( (,1 (0) . 

FO((;/.) l-i) = 

The 	ratios ~~(~) have the form 

r t4 
)(.2(t,) S_~ (i,xCt)) {~'2(O) '5_ 4 (ol'XCc>J)J (52)

R0( 	 li) = 
1 

y.. (.i) S_~ (1:, )((-1-)) l y.(o)5_~ (oJ I(O»)f (53)R4 ct) ::.­

and fO«(t\Oke calculated, for instance, in table20f ref./7/. 

A simple inspection of eqs.(52.53) shows that the super­

fluid enhancelllent factors "fo(t&.\,I::) are monotonic decreasing to 

zero functions of temperature. 

However, the inclusion of ~ -type correlations can pro­

duce a region of nuclei with their ground states lying in the 

" 0( -type superfluid phase (figs. 3,7). 

For such nuclei the FO«<-) factors are still large for 

temperatures larger than the critical one for the ~pair~ phase.,J 
ThiS result may explain the large y181d of 0( -particle emiS­

sion in some heavy ion reactions. 

l:J 

http:eqs.(52.53
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(1981) 45 and 20. 
The finite-temperature pairing plus 0( -type BeS equations 6. M.Apostol, I.Bulboaca, F.Carstoiu, O.Dum1trescu, M.Horoi, 

have been derived by minimising the grand potential (Gibbs free JINR Communications, E4-85-9J4, Dubna (1985). 

energy). These equations have the same form as for zero tempe­ 7. M.Apostol, I.Bulhoaca, F.Carstoiu, O.Dumitrescu, M.Horoi, 

,8/. The difference between the T" 0 and T = 0 cases is to be published in Europhysics Letters. 

the pl'esence of non-zero quasiparticle occupations when T " O. 8. M.Aposto1, I.Bulboaca, F. Oaratoiu, O.Dumitrescu, M.Horoi. 

The fini te temperature pairing plus 0( -type BCS equations were "Alpha Like Four Nucleon Correlations in the Superf'luid 

solved within a schematic model with equidistant twice degenerat­ Phases of Atomic Nuclei". Proc. 1986 Brasov International 

ed Single-particle energy levels. One demonstrates that a first Summer School (see R@v. Roum. Phys. (1987). 

and sGcond order "phase transitions" from a superfluid state to a 9. 	 B.r .COJIOBheB. "TeopHff CJIOlitHl:.lX iU\ep". HaYI<8,MoCKBa (197I). 
normal 	state is caused by the increase of the temperature. 10. S.T.Belyaev. Mat.Fyz.Medd.Dan.Selsk. Vidensk. Selsk. 11 

]<'01' IX -t:fpe superfluid nuclei the enhancement fac Lars for (1959) No.11. 

favoured of -clusterization processes ( 0( -decay and 0( -trans­

fer reactions) and two-nucleon transfer reactions may be till 

large for larger tmnpEJratur8S than the critical one for the 

pairing phase. 
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6paHAYW H. H AP· E4-87-48 
KoppenA~HA THna a-4aCTH4HWX 8 aTOHHWX AApax 
npH KOHe4HoH TeHnepaType 

BKn~4eHHeH naPHWX H a-4aCTH4HWX 83aHHQAeHCT8HH 8 raMHnbTOHHaH nony~eHw 
ypa8HeHHA AnA ~eneH H XHHH4eCKHX noTeH~Hano8 THna EKW npH KoHe4HWX TeHnepa­
Typax 1 KT6KW) ~PH MHHHMH3a~HM 6onbWoro TepHQAHHaMH4eCKoro noTeH~Hana (c8o-
60AH0H 3HeprHH fH66ca) . 3TH ypa8HeHHA MHe~T nQAo6HY~ ~PHY KaK npH KOHe4HWX 
TeMnepaTypax, TaK H npH HYne8oH TeHnepaType. EAHHCT8eHHaA paaHH~a He*Ay T rO 
H T = 0 HOAenAMH - 3TO npHcyTcT8He 4HCna K8a3H4aCTH~ npH T r 0. KT6KW ypa8-
HeHHA 6wnH peweHW 8 paHKaX OAH04aCTH4HO~ HOAenH C 42 npOTOHHWHH H 42 HeHTPoH­
HWHH A8a*AW BWPO*AeHHWHH YPOBHRHH. 00Ka3aHO, 4TO: I) 1 ~a308We nepexOAW 1-ro 
H I 1-ro POAa H3 CaepxTeKy4HX COCTOAHHH B HOpHanbHoe COCTOAHMe onpeAeneHW 
nyTeH 8oapacTaHHA TeHnepaTypw; 2) c8epxTeKy4He H30Mepw H/HnH HX nonocw ane­
HeHTaPHWX 8036Y*AeHHH e~e c~eCT8y~T npH paayHHWX 6~WHX TeMnepaTypax 
H 3) caepxTeKy4He $aKTopw ycHneHHA npo~ecco8 a-KnaCTePM3a~HH H peaK~HH A8Yx­
HYKnOHHOH nePeAa4H AnA HeKOTOPWX AAep MOryT MMeTb 6onbWHe BenH4HHW npM TeH­
nepaTypax 8WWe KPHTM4eCKOH naPHOH TeMnepaTypw. 

Pa6oTa awnonHeHa a na6opaTOPHH TeopeTH4eCKoH $H3HKH OHRH. 

Coo&q- 06wuuatemoro lllllcnnyft QepHUlt JIC:CJIII.IlOMIId • .l(y6u 1987 

Brandus I. et al. 
Alpha-Type Correlations In Atomic Nuclei 
at Finite Temperature 

E4-87-48 

By Including the pairing and a-type Interactions in the Hamiltonian 
the finite-temperature BCS (FTBCS) gap and Fermi energies equations have 
been derived by minimizing the grand thennodynamic potential (the Gibbs free 
energy). These equations have the same form both for the finite temperature 
and for the zero temperature. The only difference between the T ~ 0 and T •0 
cases is the presence of nonzero quasiparticle occupations when T ~ 0. The 
FTBCS equations for the schematic single-particle model with 42 proton and 
42 neutron twice degenerated levels have been solved deMOnstrating that: 
I) "first and second order phase transitions" from superfluld states to 
a normal state are caused by raising the temperature; Z) the superfluid 
Isomers and/or their bands of elementary excitations May survive even at 
large temperatures and 3) the superfluld enha~ement factor.s for a-clusterJ 
zatlon processes and for two-nucleon transfer reactions for some nuclei may 
have large values for temperatures larger than the pairing critical one. 

The investigation has b~n perfonmed at the Laboratory of Theoretical 
Physics, JINR. 
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