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1. INTRODUCTION

Nucleonic molecular orbitals in nucleus-nucleus collisions
have been wide%y used in theoretical descriptions both in
quantal models and semiclassical dynam1cal treatments /2/ .
An interesting problem in this field is the consideration of
avoided level-crossings of adiabatic nucleon levels of equal
symmetry. There are first experimental results allowing di-
rect studies of a single avoided level crossing in the nucle-
. ar case’/3”5 Such pseudo-crossings between nucl/onl molecu-

lar states generated in a two—center shell modell or by
linear combinations of nuclear orbitals/8/ are supposed to
play an important role for large—amplitude nuclear motion.
So, a resonance-like behaviour of the inelastic excitation
function of the first 1/2+ state of 170 by 13C jons /3-5/
has been interpreted first by Abe and Park /9/ , later by
Milek and Reif /10/ and by Park et al./11/ in various versi-
ons as an evidence for a transition mechanism between malnly
two molecular states. Up to now to our knowledge there is no
other type of explanation of the experimental data. Recently,
Imanishi and von Oertzen/12/ considered the drastic change of
angular distributions in the reaction!3C(12C,12Cc)13C*
(3.086 MeV, 1/2%) in a very small range of the center of mass
energy around 8 MeV as an evidence of physical importance of
an avoided level crossing in their molecular basis.

Such studies of the influence of only one pseudo-cros-
sing on physical quantities is of basic interest for all ap-
plications of the molecular picture in large-amplitude collec-
tive nuclear motion. Most of the quantitative considerati-
ons /9,10/ and qualitative.estimates/243/ of the nuclear two-
level problem make use of the Landau-Zener formula /14/ for
the promotion probability of a particle, occupying initially
the lower level, to the higher molecular orbit after passing
the avoided level-crossing region. The analy ical Landau-Ze-
ner Model (LZM) was derived a long time ago/1% under very
restrictive conditions with the assumption of a unlform mo-
tion of the nuclei along c1a591cal traJectorles.
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The aim of the present work is a comparison of the simple
LZM and more refined analytical models with numerical results
for the same problem but with realistic single-particle le-
vels, with realistic couplings between them and with realistic
trajectories for the nuclear motion. In section 2 the problem
is formulated and in_section 3 numerical results are presen-—
ted for the system 170 4+ 13C . These results are compared to
the predictions of the LZM. The resulting discrepancies are
explained in section 4 at least qualitatively in terms of mo-
re realistic analytical models. Finally, the physical conseq-
uences of a new view on the nuclear level-crossing problem
are discussed in the conclusions.

2. FORMULATION OF THE PROBLEM

Starting from an adiabatic two-center molecular basis |é>*
the time—dependent single particle wave function |¢(t)> for
the motion of a valence nucleon - for example the 1d5/2 neu-
tron in 170 - can be expressed in the two-state problem as

2
W(0)> = T a0 g (RONS . (2.1

Here, (! denotes. the projection quantum number of the total
single, particle angular momentum on the symmetry axis of the
system and the additional‘ quantum number ¢ distinguishes bet-
weén two d1fferent levels with the same s etry Using the
so—called "one trajectory approximation" 17/ , the time-de-
pendent classical distance R(t) between the two colliding nuc-
lei does not depend on the motion of the valence nucleon. In
this approximation the trajectory is fully determined by two
inert cores which are accelerated by Coulomb and nuclear for-
ces. From the time—dependent Schrﬁdinger equation a set of

two coupled linear equations in time for the expansion coeffi-
cients (9/dt = R*9/9R)/15/  can be dquved

a, =—ie, (R(1)) -8, - RT,o(R(t) -8, ,

Ay =—iey (R(t)) -3, — R Ty (R(L) 4, . : (2.2)
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In eqs. (2.2) the common index ! has been sﬁppgfssed. The
ariﬁing coupling matrix element T o=<¢;[d/dR|py> = -Ty

2

contains all non-adiabatic effects of the two—state problem
which are related to the change of the structure in the adia-
batic wave functions | ¢ >* . In addition the time-derivative
of the collective variable controlls non—-adiabatic transiti-
ons, too. The molecular adiabatic term ¢ (R) denotes the lo-
wer level or ground state while ¢p(R) characterizes the hlgh-
er or excited level. Initially (t » - o ) the particle occupi-
es the lower level, i.e. 3;(t->—o0) = 1 and 85(t »—ce)= O. Then,
the physical question is twofold: what is the probability P

for maklng a jump after passing the pseudo—cross1ng at R, and
what is the final occupation probability F , =]ay(t stoe) |2
after passing it twice (see fig. 1)?

X

-
Rc R
Fig. 1. The avotided level-crossing problem.

Because in molecular physicse one has found for a large
number of systems that Ty, 1is a very narrow function (see,
e.g., /18/ ), i.e. all non-adiabatic effects are localized
in a very small region of the internuclear distance, it is
some times convenient to introduce the so-called diabatic ba-
sis. The definition of such basis is arbitrary and serves for
a minimalization of the coupling in the new basis. Following
the physical reason for the strong coupling in the adiabatic
basis, which is the change of the nodal structure of the wave

functions in the pseudo—crosslng reglon/ls/ , the diabatic



basis can be chosen in such a way that it continues the nodal
structure of the adiabatic branches before and after the cros-
sing ‘region.

. In the following the LZM will be discussed very briefly.
The first step is a transformation in a new basis |¢>% which
is related to the adiabatic basis according to:

WY > = b gt by g, 5, (2.3) |
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|¢1>a'=cosx/2-]¢1>d+sinx/2-|¢2'>d , (2.4)
| g > = —sin x/2-| ¢, >3 4 cos x/2-l¢2>d-

The angle X is determined by a constant interaction |[Hj, | and
by the slope of the levels assuming straight lines for the
energy levels ¢ in the diabatic basis which crosses each
other at R = R,. '

tany = 2.|H,,|/AF.X (2.5)
, € €
with AF = ?ﬁg;-_-_aé}q and X=R-R.. Supposing a non accele-

rated motion of the nuclei with velocity v, the time scale is
chosen in such a way that X is equal to V,*t . One gets /17/

for the unknown coefficients
-

. t
by =-i|Hy,|exp(-i [ AFXdt). by,

o

' . (2.6)
bp=-i|Hyp | exp(i f AFXdt) . b, .

o
.

The system of equations (2.6) can be solved analytically in
terms of parabolic cylindric functions. The next approxima-
tion of the LZM is the use of an infinite time—interval for
the definition of the one-way jump probability P; . While the
initial conditions are given physically, the probability of
jumping to the higher level after passing the crossing region
once i's determined in the LZM in the limit of positive infi-
nite times Pj =|bg(t>+)|? . For quasielastic or inelastic
processes with a finite turning point of the trajectory this
definition is not very suited. Finally, the LZM results in
the wwell-known formula:

4

LZ . . )
P, = exp(-2r.G) with G=[Hy, [*/AF.v, . (2:7)
Disregarding the approximation of an infinite time inter=-’
val, for the case of two subsequent passings through the:in-
teraction region a two-way formula has been established by"
the assumption of a sequence of independent jumps

LZ LZ LZ LZ LZ LZ
Be=PF (-P )+ -P ).P; , Pip=2-Pj (1-P; ). (2.8)

This procedure is of course a pure classical one and neg-
lects the phases of the wave functions completly. Both formu-
lae (2.7) and (2.8) have been used in a large extend in nucle-
ar physics (see for example/294013/ ) although the validity
is rather questionable. Taking eqs. (2.7) and (2.8) seriously
the consequences are drastically in heavy-ion collisions.. It
was stated/? that for real nuclear parameters PjZ it prac-
tically always 1 and Pj, is then equal to zero. Already at
T,=u/2*v2 = 0.05 MeV (u : reduced mass of the system)“P?Z
is larger than 907%. Consequently, in heavy-ion collisions a
final non vanishing occupation probability could be achieved
only under very restricted conditions when such small values
of T, at the avoided level crossing can be organized/8/ .

1 H
3. NUMERICAL RESULTS IN 7O + 13C

The diagram of adiabatic levels for the oxygen + carbon
system exhibits a pronounced avoided level-crossing between
two 1 = 1/2 states originating from the asymptotic 1d45/2 and
251/2 states in 70 . This feature has been observed in the
two-center oscillator model /7”/ as well as in a double wel
potential with fixed spherical Woods-Saxon potentials /6:10
used in our previous paper’/!8/ on non-adiabatic effects on
the neutron .emission in 70 + 0, too. For the finite depth
two-center potential figure 2 demonstrates the two branches
with tHe same symmetry ( &t = 1/2) in dependence of the dis-
tance between the nuclear cores. The corresponding coupling
matrix element T;o can be expressed mainly analytically (for
a detailed discussion see ref. /18/ ) and shows a strong peak
at the region of avoided level-crossing together with a long
range tail.

The important role of the long range interaction (dashed
line in fig. 2) on physical quantities as the excitation func-
tion of the !70* 0,87 MeV level has already been discussed

L3
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in ref. /10/ | such a tail is not considered in the LZM at all.
Because the long range neighbourhoud of the two levels in the
case under consideration is surely a not very general feature
in large amplitude nuclear motion, the tail in T;, was cancel-
ed in the present paper. The ramaining avoided level crossing
problem with a sharp peak in Ty should reflect the problém
displayed in section 2 quite well.

0 =1
3 /2 ‘, |
> 2s1/2
w [~ - .
= Vds/,
w -5 - 47 7
e ‘F'zlg. 2. Realistic avoi-
1H | ded level-crossing for
— the 170 + 13C system’
T~ 05 (upper part) and the
E I ecrresponding coupl—
T~ 0 . | ing between the adia—
= e ' batic states (lower
05 'part).
) 1 | | ] 1 t I |
. 5 7 9 " 13
R(fm)

In order to solve the equations (2.2) for the unknown coef-
ficients one has to fix the time dependence of R. This has
been done by calculating the classical trajectory for each
relative angular momentum L (impact parameter) separately for
a given bombarding /energy Eim » utilizing a modified version
of the code TRAJEC 19/ " The core—core interaction has been
parametrized with a Woods—Saxon potential which was determin-
ed in ref./?0 by fitting elastic scattering data for !2C+1€0
at bombarding energies of E., around 20 MeV: v, =- (6.5 MeV +
+ 0.4*E. ), R, =6.55 fm and a = 0.45 fm.

With the underlying nuclear dynamics the crossing region
around R, = 6.7 fm lies in the potential pocket of the effec-
tive core*core potential. The barrier is located around 8 fm.
When the collective energy E¢y 1s just overcoming the barri-
er the relative radial kinetic energy T, at the crossing point
R, ¢tis already clearly larger than 0.05 MeV which should lead .

6

to a mainly diabatic single particle motion, i.e. PJLZ =1 and
P122 = 0. But the numerical results contradict the predict-
jons of the LZM completely, not only quantitativly but also
qualitativly. Two statements can be made: ‘

(i) Varying the bombarding energy for a fixed L-value (im-
pact parameter) already at T, = 1 MeV the one-way
jump probability Pj reaches a saturation value P?
which is constant in two or three numerical figures
up to very high energies (T, =30 MeV). The value for
Pj“ is much smaller than 1. For example for a partial
wave L = 15 Pj°' amounts about 0.6 while the LZM alrea-—
dy at T, = 0.7 MeV according to eq. (2.7) with[Hyg| =
= 0.1 MeV, AF =2[H;, |/AR , AR = fm is expected to
be PJZ = 0.95.

(ii) Instead of a monotonic decrease of the final occupat-
ion probability Pjp with increasing energy T. the nu-
merical results exhibit an increase inP;, with growing
energy. Further in contradiction to the two-way formu-—
la (2.8) P g changes strongly while P; is a constant.

In fugure 3 the final jump probability P;p is shown for a
trajectory with L = 13 (upper full curve). If the energy exce-

- 1 13

70 + 3¢
Fig. 3. Final occu-lPI — B
pation probability
Pyy of the excited . 05| L=13

state in dependence
on the energy of
the collective mo-
tion for a trajec—
tory with relative
angular momentum
L=13. Upper full
curve: numerical
ealeulations, da—
shed curve: calcu-
lations with an
added repulsive
potential, lower
full curve: predic-
tions of the Lan—e
dau-Zener model.




.eds the potential. barrier at Vg = 16.2 MeV the avoided le-
vel-crossing becomes active in populating the higher level.
The lower full curve demonstrates the predictions of the LZM.
It follows a monotonic decreasing function (IﬁLz: 1): %% 2(1-
~'P?Z ) ~ (Egm——VB)"% . Both curves start at the potential
barrier roughly at Py, = 0.1. Enlarging the energy the realis-
tically calculated values for P;, grow up to about 0.5 high-

ly above the barrier while the LZM gives numbers smaller than ?
0,005 at these energies. So, the difference in Py, — and in
related cross sections — can amount two orders of magnitude! y

It was found that. the unexpected feature of P, depends
sensitively on the shape of the potential pocket. Thé dashed
line in fig. 2 represents the same calculations but with an
attractive potential between the nuclei added (X = R-6.5 fm):

R> 6,5 fm

0
5v—_-{ 2 ) 0 for (3.1)
XY Mev/fm® R> 6.5 fm

3

This additicnal potential causes a small change of the turn-
ing points of the trajectories. For example at Ecm = 25 MeV
the turning point Rt increases from 4.34 fm to 4.60 fm. Com-
pared to these small modifications the resulting change in 4
is quite large. Being aware of the fact that the coupling
matrix is localized in the avoided level-crossing region one
can conclude that the final occupation probability is deter-
mined by the whole range of the trajectory.

Stullying the saturation property P? in a little more de-
tail the coupling elenemt has been fit by a gaussian Tyg=1.,12
exp((R-R,)/AR)2)1/fm. Leaving the strength of Tig unchanged
the width of the non-adiabatic region has been varied. With
Re=6.7 fm and AR= 0.34 fm the numerically found coupling of
fig. 2 is described quite well by such a gaussian. Repeating
the calculations by solving again eqs. (2.2) a strong depen-
dence of P;’ on AR can be observed. Figure 4 demonstrates
that only in a small region around AR = 0.6 fm the diabatic
property P° = 1 is confirmed. One has to state that a varia-
tion of AR keeping the strength of T;, unchanged is some-
what artifical, Dbecause of course the strength can grow for
small AR and can fall for larger AR . Nevertheless the per-
formed calculations show that P? depends sensitively on the
parameters of the coupling element T,

Einallf, some consequences on physical cross sections are
pointed out. Following refs.’/9 17, one can define an angle
integrated cross section for the inelastic excitation of the
first 1/2% state in 170 according to:

8
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Ty, =112 -exp((R-R. /AR))

(o0}

N

0 0.5 1.0
AR (fm)

Fig. 4. Saturation jump probability Pj  depending on
the width of the non-adiabatic coupling element cho-
gsen as a gaussitan with fixed strength.

by = Kom 3 (2L + 1) P, (L)/3. (3.2)

The notation in (3.2) stresses the fact that the final occu-
pation probability depends on the impact parameter. Figure 5
shows results extending the sum in (3.2) from L = 13 to L =

= 18, For energies smaller than 16.2 MeV all considered parti-
al waves are scattered on the barrier. If the energy overco-
mes the L-dependent barrier the partial wave L can reach the
potential pocket and the avoided level-crossing mechanism
starts to become active in populating the upper level. Due to
the increasing final occupation probability - compare to fi-
gure 3 - the cross section enlarges slightly. When the next
partial wave becomes active the cross section jumps because
then a quite large additional term contributes in eq. (3.2).

=
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L=13-18

G (mb)

Fig. 5. Excitation function of the 179 , 1/2% level.
Dashed curve: experimental results of ref./s/ , full
curve: cross section according to eq. (3.2) extend—
ing the sum over L from 13 to 18, dashed lines:
schematic tllustration of the influence of absorpt-
tion .

A more refined calculation should consider also the absorption
of the partial waves 1in the inner region. This could be done
by introductdng penetration factors of optical models or by
inclusion of d?yletion of probability in eq. (2.2) as it was
made in ref./117 . Such a procedure would appreciably diminish
Pio for energies well above the barrier. Schematic results

of the inclusion of absorption are demonstrated by the dashed
lines of fig. 5. Comparing this resonance-like feature with
those of refs,/%11/ it can be states that the large increasing
final occupation probability for large energies of the system -
found in contradiction to the LZM - is capable to explain the
irregular behaviour of the experimental data in the same ex-

y
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tend as the previous model considerations. We would like to
stress again the fact that the LZM would give two orders smal-
ler cross sections fér the present model where the pseudo-
crossing is located inside the barrier.

-

R

%

4. EXTENDED ANALYTICAL MODELS

The extension and improvement of tbe }ZM has a long histo-
ry. For a review see for example ref./?!/ . In the following
we would like to discuss only very briefly a small collection
of models which can directly be related to.an overcome of the
approximations of the LZM and which make the numerical results

of the previous section more transparent.

4.1. Quantum Treatment of Sudden Jump Sequences

Already at 1932/22/ after publication of the LZM Stiickel~
berg proposed a more realistic formula for the two-way jump
probability P;o . Not adding the probabilities but the ampli-
tudes of the two possible transition sequences between the
basis wave functions one can easily formulate a more general
two-way formula il
P, = 4-Pj(1—:Pj)sin2¢. G.1)
The Stiickelberg phase ¢ describes a quantal interference
phenomenon and can be devided in two pieces ¢, and ¢é; . The
phase $; is related to a change in the wave functions during
the sudden transition process in the crossing region. This
phase cannot be d%;ived by any general constr%}nt (unitarity,
symmetry, etc.)/23 . For the LZM it was found /2% that by
goes to zero for small velocities and to #/4 for v -+ o, Al-
so for more realistic models it is restricted between O and
n /4 /24 The other phase ¥, can be understood as an adiabatic
phase lag between the two possible transition sequences., In
the one trajectory approximation /17/ ¢, is given by

Re

—. % %
o =Ver [ UBg —VL(R)-—¢ (R) —(E p— VL (R) - 5(R)) 1dR(4.2)
Ry

Approximating roughly the potential pocket as an oscillator
and the energy levels as straight lines with an equal slope
F =|d¢/dR| the phase lag &, can be expanded in powers of & =
=1-R,/R,. A straightforward calculation leads to

o
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$o,=V2mu T(E‘cm-»VB+|eOI) (R, ~R )"+ 0067 ), (4.3)
with eo=(e(Ry) + eg(R,))/2 . Us1ng expre551on (4.3) with
realistic parameters for the system!70 + !3C the sensivity
of the numerical results on the position of the turning point
and also the correct tendencies making the potential more at-
tractive (eq. (3.1)) can be well reproduced. So, we conclude
that formula (4=1) is much more valid than eq. (2.8) for a
selected level-crossing and the observed behaviour of Py can
mainly be explained as an interference effect. It should be
in general not only one maximum in P;p at low radial kinetic
energies observable but also a second or even more péaks
could exist.

4.2. Extension of the Uniform Motion Approximation

If the turning point is located near the crossing point
thée condition V¢ = const is clearly unreasonable. But unfor-—
tunatély closed simple analytical expressions could not be
achieved in the past /!7/ even for a uniform accelerated mot-
ion R - R~ t®. Under certain conditions, when a perturbation
method in the coupling element {Hy, | in the diabatic basis
is valid, the final occupation probability can be expressed
by Airy-functions depending on two dimensionless parameters
® and B . The parameter « is proportiomal to the/;adial ki-
netic energy at the crossing point and 8 to]lilz 2 For large

® thevanalytical result can be approximated (eq. (19.17a)
of ref./17/ ) by

c 3/8
P,=nBo” sin®2/38. 8.0 + n/d). (4.4)

Consequently, also the extension of the uniform motion ap-
proximation leads to an osc1llat1n§ behaviour for B g. A si-
milar result was given by Bates/ who described after a
first peak in P;, in the high energy region a second peak as
an effect of the neighbourhoud between crossing point and
turning point.

4.3. More Refined Shapes of the Adiabatic Terms

The, so—called exponential model'“7/ was derived for the
one way jump probability for two-state problems where the
straight line approximation of the interacting terms is out
of any relevance. All other shortcomings of the LZM are in-
i corporated, too. It can be formulated in a chosen diabatic

12
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as well as in the well defined adiabatic basis. Preferring -
the adiabatic basis the différence between the two levels is
defined by /17/

€g(R) —¢;(R) = Ae (1~ 2 cos@exp(-x) + exp(,—2x)j #

. (4.5)
with X = a - (R— Rp)

The parameter Ae describes the constant difference for
R+ ; a is a decay constant for the level distance and Rp
is related to the distance R, of maximal approach by Rp=R .+
+ 1/aln(cos(6)) . Introducing a coupling element
Typ = a/4-'sing/(cosx - cosd) " (4.6)
the model can be solved analytically. The angle ‘0 is related
to the width of the coupling AR according to sing/2 . AR . a
(eq. (25.8) of /17/ ). The one way jump probability is fully
given by two parameters {=A¢/a-v, and y = sin®(6/2:)
P, = exp(-n-£.y)sin (& (1-y))/sin (n¢). 4.7)
Considering the limit Vo » o , i.e. & » O the exponential mo-
del predicts a saturation value of

P =1 - sin® 9/2.

(4.8)-
For example, the not very unreasonable parameter combination
AR = 0.5 fm and 1/e. =1 fm gives P{"= 0.75. Only for very
narrow couplings when the finite extension of the coupling
is negligible and 6 goes to zero the LZM limit or diabatic
limit could be achieved.

4.4, Finite .Time Interval

The 1limit t> +e for the definition of the one way jump
probability is in most of the interesting cases not physical-
ly justified. Either a turning point exists, or a further in-
teraction at finite times could occur., A recent work/26 has
been devoted to the level-crossing problem at finite times
with realistic nuclear parameters but leaves all other appro-
ximations like straight lines, single particle terms and a
constant velocity of the collective variable unchanged. In
such a model Pj -at a certain distance far from the crossing
region depends on two parameters as in the exponential model.

13



It was found that for a given value of the collective wvariab-
le the jump probability P; exhibits a saturation feature.

So, at a distance of 1 fm from the crossing point with the
parameters [Hyjo | = 0.25 MeV and AF = | MeV/fm the one way
jump probability cannot exceed P;’ = 0.8 (compare with the
table 1 of ref. /%/"),

5. CONCLUSIONS

As was shown in the previous section every improvement of
the oversimplified LZM leads to analytical expressions which
in principal confirm the presented numerical results. It does
not mean that the LZM is not suited for any application. But
if only one avoided level-crossing is considered,quantal in-
terference between transitions at the incident and excident
stage of the reaction requires a more general expression for
the two-way formula. The observed saturation property for the
one-way jump probability is related to the finite size of the
coupling region in the nuclear case. As a conlcusion, in.nuc-
lear physics the picture of pure adiabatic motion interrupted
by sudden "sure'" hoppings addapted from molecular physics is
in general not valid. Any avoided level-crossing problem
should be examined carefully.

The avoided level-crossing problem in heavy-ion collisions
should be viewed in a new manner. It is not in every case
true that for high radial collective energies at the crossing
point such molecular transition mechanism is ineffective in
populating the final excited state of a reaction. So, for
quasi-elastic collisions a two-level excitation mechanism
could be observable even in situations when the crossing re-
gion is located inside the barrier. The present interpretati-
on of experimental data in !2C +!3C as an evidence for the
auclear Landau-Zener effect/!® could serve as an example.
According to fig. 30 of ref.’?’ the responsible avoided le-
vel crossing is located behind the barrier of the effective
adiabatic potential. For bombarding energies slightly above
the badrrier the radial kinetic energy T amounts already
10 MeV! In a simple diabatic picture it cannot be understood
that under these conditions the avoided level crossing could
effect any physical quantities in the final stage of the re-
action.
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Munex B., Paiip P, E4-87-475
flonyknaccuueckoe onucauwe PEANMCEMUECKOR AACPHON 3anaum :
KBa3unepeceueHna MENAY ABYWMA TEPMAMM

Rnn peakymu TamEnMX MOHOS NOAYKNACCHMUECKAN AREpHAR Safjaua KBasunepe-
CEUCHMA MENAY ASYMR TEDMAMM WCCHEAYETCA B DaMKax ABYXUEHTPOBOH ofonoueuHod
MOAEMM C NOTENYHANBMN KOHEUHOH raylurs. HCRONsaywTCA DeAnsHaR TPAEeKTOPMA
ANA OTHOCHTENRHOTD AEMNEHUA M PEAALHMA JNEHEHT CBASH, JABHCANMWA OF BPEMEHM.
PesynuTaTu pacuera ReMOMCTPMPYOTCA ANA BEPOATHOCTM NPUNKA M BEPOATHOCTH
nepexoga ann peaxumt 3C(170, 170%)18¢, 14 5/2+ 231/2 ( Q = 1/2)..Peaymta-
Th HE COOTBETCTBYOT NpeAcxasatnam gopMyns JNlangay - 3uHepa; nograepwpact
HENOTOPWE CBOHCTSA DACEMPEHHHX AHANMTHUECKMX NOAXOAOR K 3afaue KBa3unepe-
CeveHHR MeNAy ABYMM YPOBHRAMM.

Pabora sunonueda 8 Nalopatopuu Teoperudecxoid $uanxm OHAK,

cooﬁnm OB aIEHENHOTO HHCTHTYTS AXSPHLIX HCCAEROBAHN, Jl;.vﬁng 1987

Milek B., Relf R. E4~B7-475
Semlclassical Treatment of a Reallstic Nuclear
Avolded Level-Crossing Problem

For a heavy-lon colllsion a nuclear two-state problem referring to
an avolded level crossing of adlabatlc single-particle states of the same
symmetry Is treated semiclasslcally within a two-center shell model with
finlte~-depth mean potentlals. Using a reallstic trajectory for the relatlve
motion and a reafistic time-dependent coupling strength, numerical results
for the one-way and two-way jump probabiilties are presented for the tran~
sitlon 3¢cd%0, 170" Y8¢, 1d5/2 » 2s1/2 (= 1/2). The results are not
In agreement with the predictions of the lLandau-Zener formuia, but confirm
some properties of extended analytlcal treatments of the avolded level-
crossing problem.

The Investigatlon has been performed at the Laboratory of Theoretical
Physlcs, JINR.
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