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1. INTRODUCTION 

Nuc1eonic molecular orbita1s in nuc1eus-nuc1eus co11isions 
have been wide1y used in theoretica1 descriptions both in 
quanta1 mode1s /1 / and semic1assica1 dynami~a1 treatments /2/ . 
An interesting prob1em in this fie1d is the consideration of 
avoided ieve1-crossings of adiabatic nuc1eon 1eve1s of equa1 
symmetry. There are first experimental resu1ts a110wing di­
rect stu~ies of a sing1e avoided 1eve1 crossing in t.he. nucle­
ar case 3-5/ • Such pseudo-crossings betwe~n nuc1joni? molecu­
lar states generated in a two-center she11 mode11 6,7 or by 
linear combinations of' nuclear orbita1s/S/ are supposed to 
p1ay an important role for 1arge-amp1itude nuclear motion. 
So, a resonance-1ike behaviour of the in~lastic excitation 

17 0function of the first ) /2+ state of by 13 0 ions /3- 5/ 
has been interpreted first by Abe and Park /9/ , Later by 
Mi1ek and Reif /10/ and by Park et al., /11/ in various versi­
ons as an evidence for a transition mechanism between main1y 
two mo1ecuiar states. Up to now to ourknow1edge there is no 
other type of exp1anation of the experimental data•.Recent1y, 
Imanishi 'and von Oertzen /i 2/ considered the drastic change of 
angul ar distributións in the reaction 1 30(120, 12 O) t 3 O * 
(3.086 MeV, 1/2+) in a very sma11 range of the center of mass 
energy around 8 MeV as an evidence of physica1 importance of' 
an avoided 1eve1 crossing in their molecular basis. 

Such studies of the inf1uence of on1y one pseudo-cros­
sing on physica1 quantities is of basic interest for a11 ap­
p1ications of the molecular picture in 1arge-amp1itude co11ec­
tive nuclear motion. Most of the quantitative considerati­
ons /9,10/ and qua1itative. estimates /2,13/ of the nuclear two­
levei prob1em make use of the Landau-Zener formula h 4/ for 
the prqmotion probabi1ity of a partic1e, occupying initia11y 
the lower 1eve1, to the higher molecular orbit after passing 
the avoided 1evel-crossing region. The ana1Yhica1 Landau-Ze­
ne~ Mode1 (LZM) was derived a long time ago 14( under very 
restrictive conditions with the assumption of a uniform mo­
tion of the núc1ei a10ng classiêa1 tr.ajectories. . 
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The aim of the present work ia a comparison of the simple 
LZM and more refined analytical modela with numerical results 
for the same problem but with realistic aingle-particle le­
veIs, with realistic couplings between them and with realistic 
trajectories for the nuclear motion. In section 2 the problem 
is formulated and in section 3 numerical resulta are preaen­

17 13ted for the system O + C. These results are compared to 
the predictions of the LZM. The resulting discrepancies are 
explained in section 4 at least qualitatively in terms of mo­
re realistic analytical models. Finally, the phys i.ca l conseq­
uences of a new view on the nuclear level-crossing problem 
are discussed in the conclusions. 

2. FORMULATION OF THE PROBLEM 

Starting from an adiabatic two-center molecular basis I~>a: 
the time-dependent single particle wave function \l/J (t) > for 
the motion of a valence nucleon - for example the ld5/2 neu­

17 '. 
tron in O - can be expressed in the two-state problem as 

2 a
 
Il/J(t» = ~ a n(t) I cP n(R(t»> . (2. 1)
 

a=l a . a 

Here, n denotes, the projection quantum number of the total 
single.particle angular momentum on the symmetry axis of the 
systern and t he' add í t i.ona l quarrtum number a di.s t i.ngu í shes bet­
weén two different leveis with the same synnnetry. Using the 
so-called "one trajectory approximation" 7171 , the time-de­
pendent classical distance R(t) between the two colliding nuc­
lei does not depend on the motion of the valence nucleon. In 
this approximation the trajectory is fully determined by two 
inert cores which are accelerated by Coulomb and nuclear for­
ces. From the time-dependent Schrodinger equation a set óf 
two coupled liqear ~quations in time for the expansion coeffi ­
cients (aiat = R * aiaR) /151 can be d~rived 

ai = -i (1 ( R( t » . ai - RTl 2( R ( t »"&2 ' 

a 2 = - i (2 (R ( t ».a 2 - R T21 ,( R ( t ».a1 
(2~2) 

In eqs. (2.2) the common index n yas b~en ~ápp~essed. The 
ari~ing coupling matrix element T12 = < cf, 1 \ ala R I cP2 >a = - T21 

2 

contains alI non-adiabatic effects of the two-state problem 
which are related to the change of the structure in the adia­
batic wave functions I cP >& • In addition the time-derivative 
of the collective variable controlls non-adiabatic transiti ­
ons, too. TheimoLecul a'r ad i.abat í.c term (l(R) denotes the 10­
wer LeveL or 'gr ound s t at;e while (2 (R) characterizes the high­
er or excited Leve l . Initially (t -+ - oe ) the particle occupi­
es the lower Level., Le. a1 ( t -+-(0) = 1 and a 2 ( t -+-oe.)= o. Then, , 
the physical question is twofold: what is the probability Pj 
for making a jump after passing the pseudo-crossing at Rc and 
what is the final occupation probability 112 =1 a 2 ( t -++oe) 12 

after passing it twice (see figo 1)7 

e P,2 ~ 
P.lJ • 

E2 

(1 

Rc R 
Fig. 1. 'The avoided leoel-oroeeinq probl.em, 

Because in molecular physic8 one has found for a large 
number of systems that T1 2 is a very narrow function (see, 
e.g., 1161 ), i.e. alI non-adiabatic effects are localized 
in a very small region of the internuclear distance, it is 
some times convenient to introduce the so-called diabatic ba­
siso The definition of such basis is arbitrary and serves for 
a minimalization of the toupling in the new basis. Following 
the physical reason for the strong coupling in the adiab~tic 
basis, which is th~ change of the nodal structure of the wave 
functions in the pseudo-crossing region / 161 , th~ diabatic 
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basis can be chosep in such a way that it continues tpe nodal 
structure. of t he adiabatic branches before and after the cros­
sing 'region. 

, In the following, th~ .LZM will be discussed very briefiy. 
The first step is a t rans fo rmat í.on in a new basis I <p >d which 
is ~elated to ,the adiabatic basis according to: 

(t.' d dI t/J t) > = b1 1 cPl >	 + b2 I 9>2 > , (2.3) . 

.~ 

I ~ 1 >a ~ cos x/2 . I cP 1 >d + sín x/2 . IcP 2 >d	 (2.4) 

I cP2 >a = - sin x/ 2 . 1cPl >d + cos x/ 2 . l cP 2>d • 

The angle X is dete~mined by a constant interaction IH1 2 I and 
by the slope of the leveIs assuming straight lines for the 
energy leveIs E in the diabatic basis which crosses each 
other at R = Rc~ 

tan X = 2· IH 1 2 I I !:J. F . X	 (2.5) 

d , d E1 
wi th !:J. F = 1-- - __2_1and X = R - Rc • Suppo s ing a non accele­

dR dR 

rated motion of the nuclei with velocity V c the time scale is 
chosen in such a way that X is equal to v c * t • One ge ts h 7I 
for the unknown cqefficients

• 

b1 = - i IH1 2 , exp( - i	 r ~ F X dt ) . b 2 '
 
o
 

(2.6) 

b2 =-i [H12 I exp(i I ~ li' X dt ) . b .1 
o 

The system of equations (2.6) can be solved analytically in 
terms of parabolic cylindric functions. The next approxima­
tion of the LZM is the use of an infinite time-interval for 
the definition of the one-way jump probability Pj • While the 
initial conditions are given physically, the probability of 

.,	 jumping to the higher leveI after passing the crossing region 
ance ~s determined in the LZM in the limit of positive infi ­

2nite times P j = I b 2( t ~ + O<l) 1 . For quasielastic or inelastic 
processes with a finite turning point of the trajectory this 
definition is not very suited. Finally, the LZM results in 
the.~ell-known formula: 

4 

LZ, G)P j = exp ( - 2 1T • with G '=' \H 12 ,,2 I L1F'. \T • (2.7~c 

Disregarding the approximatiçm of an Lnf i nite time inter"" i 
vaI, for- the case of two subse~ueht passíngs through tne'iri- ­
teraction regíon a two.:...way formula has been established by' .. 
the assumption of a sequence of independent jumps . 

LZ LZ LZ LZ LZ LZ
 
I12 = Pj (1 - Pj ) + (1 - Pj ) . P j , P 1 2 =.2· P j (1 - P j ). (2 • 8 )
 

This procedure is of course apure classical one and neg­
lects the phases of the wave functions completly. Both formu­
lae (2.7) and (2.8) ha~e been used in a large extend in nucle­
ar physics (see for example!2.9,l0,131 ) although the validity 
is rather questionable. Taking eqs. (2.7) and (2.8) seriously 
the consequences are drastically in heavy-ion co l Lí.s í one . It

LZ' . 
was stated I 21 that for real nuclear parameters ~ it prac­
ticallyalways 1 and ~2 is then equal to zero. Already at 

2T = fl/2 * v = 0.05 MeV (fl : reduced mass of the system) 'pr Z 
c c 

is larger than 90%. Consequently, in heavy-ion collisions a 
final non vanishing occupation probability could be achieved 
only under very restricted conditions when such small values 
of Tc at the avoided leveI crossing can be organized/91 . 

3. NUMERICAL RE8ULT8 IN 170 + 13 C 

The diagram of adiabatic leveIs for the oxygen + carbon
 
system exhibits a pronounced avoided level-crossing oetween
 
two n = 1/2 states originating from the asymptotic Id5/2 and
 

1702s 1/2 states in . This Aeature has been observed in the 
two-center oscillator model 71 as well as in a double wel7potential with fixed spherical Woods-Saxon potentials 16.10 
used in our previous paper / 181 on non-adiabatic effects on 
the neutron .emission in 17O + 16 O, t oo , For the finite depth 
tWQ-center potential figure 2 demonstrates the two branches 
with the same symmetry ( n = 1/2) in dependence of the dis­
tance between the nuclear cores. The corresponding coupling 
matrix element T12 can be expressed mainly analytically (for 
a detailed discussion see ref. 1181 ) and shows a strong peak 
at the region of avoided level-crossing together with a long 
range tail. 

The important role of the long range interaction (dashed 
line in figo 2) on physical quantities as the excitation func­
tion of the 17 O * 0,87 MeV Leve l has already been discussed 
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in ref. /10/ • Such a tail is not considered in the LZM at alI. 
Because the long range neighbourhoud of the two leveIs in the 
case under consideration is surely a not very general feature 
in large amplitude nuclear motion, the tail in T was cancel­1 2 
ed in the present paper.~The ramaining avoided leveI crossing 
problem with a sharp peak in T1 2 should reflect the problém 
displayed in section 2 quite well. 

'17O	 + 13C 

n =1/2 
_	 -3~ (., 

.. j 2S1l2>
OI 

- 11dS12 " :I: 
~~	 E1 - - I 

IW -5 ~	 -------­
.R' 4 I I I I I ~I Fig. 2. Real-ietric avoi-

Ided level-croBsing for 
.tihe 170+l3CsYBtem' 

(upper partJ and theí -E	 0.5 
corresponding coupl­....

ling	 between the adia­- \:------ I.E	 o~.--' ': :batic states (lo~er~--.--..._",.......-.,,;*-----

I paxrt); 
-0.5 

5 7 9 11 13
 
R{tm)
 

In order to solve the equations (2.2) for the unknowd coef­
ficients one has to fix the time dependençe of R. This has 
been done by calculating the classical trajectory for each 
relative angular momentum L (impact parameter) separately for 
a given bombarding ~nergy Eem ,utilizing a modified version 
of the code TRAJEC 19/ • The core-core interaction has been 
parametrized with a Woods-Saxon potential which was determin­
ed in ref. /20/ by fitting elastic scattering data for 12 C + 16 O 
at bombard í.ng energies of E em around 20 MeV: V = - (6.5 MeVo + 
,: 0.4* E em ), Ro = 6.55 fm and a 0.45 fm.::c 

.\ With the underlying nuclear dynamics the crossing region 
arouna R e = 6.7 ~m lies in the potential pocket of the effec­
tive core~core potential. The barrier is located around 8 fm. 
When the collective energy E cm is just overcoming the barri ­
er the relative radial kinetic energy Te at the crossing point 
Re ,is already clearly larger than 0.05 MeV which should lead. 

·6 

. 1	 d í b . . 1 • 1 • . P LZ - dto ,a maln-y la atlc slng e .partlc e motlon, l.e. j - 1 an 
Pt2 = o. But the numerical results contradict the predict­
ions of the LZM completely, not only quantitativly but also 
qualitativly. Two statements can be made: 

(i)	 Varying the bombarding energy fora fixed L-value (im­
pact parameter) already at Te = 1 MeV the one-way 
jump probab í Lí ry Pj reaches a saturation value P j 
which is constant in two or three numerical figure~. 

up to very high energies (T e ::: 30 MeV). The value for 
Pj~ is much smaller than 1. Fnr example for a partial 
wave L = 15 Pj~ amounts about 0.6 while the LZM alrea­
dy at Te = 0.7 MeV according to eq , (2.7) with IH 1J~j = 
= 0.1 MeV, dF = 21H12 11 àR , àR = Im is expected to 
be PjLZ = 0.95. 

(ii)	 Instead of a monotonic decrease of the final occupat­
ion probability -P12 with increasing energy Te the nu­
merical r esul t s exhibit an increase in P1 2 wi-th growing 
energy. Further in enntrad í.c t Ion to the two-Wqy formu­
la (2.8) P12 changes strongly while P j Ls a constant. 

In fugure 3 the final jump probability P 12 i9 shown for a 
trajectory with L = 13 (upper full curve). If the energy exce­

170	 + qc 

Fig. 3. Final occu-1P12 
pation probability 
P12	 of the exo-ited 0.5 L-13I 

Btate in dependence ---1on the energy of 
the collective mo­ ---

I 

tion for a trajec­
tory with relatrive 0.3 
anqu lar momentum 
L=13. Uppe» na: 
curves numez-ioaL 
oaloulatrione; da­
ehed curve: calou­ 2pLZ( 1-P LZ)

0.1
Lat-ione lJJith an +J • J 
added repul8ive 
potential, l~er 

fu II curve: predic­25 35 45 
tion8 of the Lan-. Ecm (MeV) 
dau-Zener modelo 
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.eds th~. potential.barrier at VB = 16.2 MeV the avoided le­
vel~cro~sing becomes ~ctive in populating the higher leveI.
 
The 'lower fuI l, curve demonstrates t.he predictions of the LZM.
 
I t fo Ll.ows a mono t on i c decreas Lng func t ion (Pj LZ::: 1): IJ. ~ 2(1­
-'prZ

' ) - (Eçm-VB)-~ • Both curve~ start ai t.he p?tentia~ 
barrier roughly at P12:::: O. 1. En Lar'g i.ng the energy the rea11s­
t.í cal l y calculated values for grow up to about 0'.5 high­P12 
ly abqve the barrier whiie the LZM gives numbers smaller than 
0,005 at these energies. 80, the difference in P12 - and in 
.related çross\sections ~ can amount two orders of magnitude! 

It was found t.hat the unexpected feature of P12 depends 
sensitively on the shape of ,the potenttal pocket. The dashed 
line in figo 2 represents the same calculations but with an 
attr~ctive potential between the nuclei added (X =R-6.5 fm): 

O R > 6.5 fm 
for (3. 1) 8V~{X2 "

MeV /frp 
2
" R ~ 6.5 fm 

• I 

This additional potential causes a small change of the turn­
ing points of the trajectories. For example at E cm = 25 MeV 
the turning point U t increases from 4.34 fm to 4.60 fm. Com­
pared to these small modifications the resulting change in ~2 

is quite large. Being aware of the fact that the coupling 
matrix is localized in the avoided level-crossing region one 
can conclude that the final occupation probability is deter­
mined by the whole range of the trajectory. 

Stutlying the saturation property Pj in a little more de­
tail the coupling elenemt has been fit by a gaussian T12 =1. 12 
exp«R-Rc)/~R)2)1/fm. Leaving the strength of T12 unchanged 
the width of the non-adiabatic region has been varied. With 
Rc=6 . 7 fm and ~R= 0.34 fm the numerically found coupling of 
figo 2 is described quite well by such a gaussian. Repeating 
the calculations by solving again eqs. (2.2) a strong depen­
dence of Pt' on ~R can be observed. Figure 4 demonstrates . 
that only in a sma11 region around~R = 0.6 fm the diabatic 
property ~~ = 1 is confirmed. One has to state that a varia­
tion of ~R keeping the strength of T12 unchanged is some­
what artifical, because of course the strength can grow for 
small ~R and can falI for larger ~R. Nevertheless the per­

.;~ fo rmed calculations show that Pr' depends sensitively on the 
paramerers of the coupling element T12 . 

Finally, some consequences on physical cross sections are 
pointed out. Following refs./9 - 1L7, one can define an angle 
integrated cross section for the inelastic excitation of the 

17 0fir~ 1/2+ state in according to: 

8 

ROO 

J 
1.0 

~l 
JI 

T12 = 1.12"exp((R-Rc )f6.R )2 ) 

I I II I I 
I I II 

0.5
 

0.5 ,­

O 
• "I1OI 

O	 6.R(fm) 

Fig. 4. Satupation jump probabiZity Pj depending on 
the width oi the non-adiabatic coupZing eZement cho­
sen as a gaussian ~ith fixed strength. 

2 
o 21 = X- 7T'	 I (2 L + 1 ') P12 (L )/3 . (3.2)

L 

The notation in (3.2) stresses the fact that the final occu­
pation probability depends on the impact parameter. Figure 5 
shows results extending the sum in (3.2) from L = 13 to L = 
= 18. For energies smaller than 16.2 MeV alI considered parti ­
aI waves are scattered on the barrier. If the energy overco­
mes the L-dependent barrier the partial wave L can reach the 

~) potential pocket and the avoided level-crossing mechanism 
starts to become active in populating the upper leveI. Due to 

J the increasing final occupation probability - compare to fi ­
~I gure 3 - the cross section enlarges slightly. When the next 

partial wave becomes active the cross section jumps because 
then a quite large additional term contributes in eq. (3.2). 

:'" 
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L-13-16 

16 I 

17 
16 

15 

14 /f.. .. .....13 ..
••• • 

~ ~ 
~ '\ 1\ 
1\ I \ I \" 
I \ I \ I
I \ , , I 
I \ I . I 

10 

o I 11 I I I I I I I I I 

-.c 
E 50-U) 

30 

~ . 

I ~ .
 ,
 
1/'
n '.'; 

I 

I 
~ 

15 20 25 
Ecm (MeV) 

Fig. 5. Excitat.ion [unotdon of tihe 170 1/2+ level.,J 

Daehed ourve: experimental »eeul.te ofl'ef. /3/ fuilJ 

curve: croee eection accol'ding to eq. (3.2) extend­
ing the SUTn over L fl'om 13 to 18~ daehed tines: 
schematic illustl'ation of the injtuence of abaol'pt­
tion 

A more refined calculation should consider also the absorption
 
of the partial waves in the inner region. This couid be done
 
by introduct~ng penetration factors of optical models or by
 
inclusion of depletion of probability in eq. (2.2) aa it was
 
made in ref./11 ! . Such a procedure would appreciably diminish
 
P12 for energies well above the barrier. Schematic results 
of the inclusion of absorption are demonstrated by the dashed 

~	 lines of figo 5. Comparing this resonance-like feature with 
those pf refa./~ll/ it can be atates that the large increasing r 
final occupation probability for large energies of the syate~ ­ ti
found in contradiction to the LZM - ia capable to explain the 
irregular behaviour of the experimental data in the same ex-

r 
10	 , 

I,
l. 
I 

~ 

tend as the previous model considerations. We would like to 
stress again the fact that the L2M would give two orders smal­
ler cross'sections fõr the present model where the pseudo­
crossing is located inside the barrier. .,. 

~,i ..~f'~ '..-~ 

4. EXTENDED ANALYTICAL MODELS 

The extension and improve~ent of t?e ,2M has a long histo­
ry. For a review see for exa~ple ref. 21 • In the following 
we would líke to discuss only very briefly a small collection 
of models which can directly be related to.an overcome of the 
approximations of the L2M and which make the numerical results 
of the previous section more transparente 

4.1. Quantum Treatment of Sudden Jump Sequences 

Already at 1932/ 22
/ after publication of the L2M Stückel­

berg proposed a more realistic formula for the two-way jump 
probability P 12 • Not adding the probabili.ties but the ampli­
tudes of the two possible transition sequences between the 
basis wave functions one can easily formulate a more general 
two-'way formula It 7/ . 

P1 2 = 4· Pj ( 1 -: P j ) sín 2 cp •	 (4.1) 

The Stückelberg phase cp describes a quantal interference 
phenomenon and can be devided in two pieces ~o and ~1 • The 
phase ~1 is related to a change in the wave functions during 
the sudden transition process in the crossing region. This 
phase cannot be/derived by any general constraAnt (unitarity, 
synnnetry, etc . ) 23 • For the L2M it was found 24/ that CP1 
goes to zero for small velocities and to "/4 for Vc ~~. AI­
so for more realistic models it is restricted between O and 

tr /4/ 24/ . The other phase CPo can be understood as an adiabatic 
phase lag between the two possible transition sequences. In 
the one trajectory approximation /17/ ~o is given by 

R c 
Vt Y2
 

~o = vi 21l r [(E crn -,VL (R) - f1 (R» - (E - VL (R) -E 2(R» ] dR<4. 2)
cm 
R t 

Approximating roughly the potential pocket as an oscillator 
and the energy leveIs as straight lines with an equal slope 
F=ldE/dRI the phase lag ~o can be expanded in powers of 8 
=1-R t/R c ' A ~traightforward calculat~on leads to 

11 



-- F -Yz 2 4 cp = ' V2" -'- (E" - V B + If I) . (R ......R ) + 0(8 ) ., (4.3)o r 4 em o c t ' 

with €O=(€1(R c ) + f 2 ( R c » / 2' • Using expre s s i.orr (4.3) with 
realistic parameters for the system L 70 + 13 C the sensivity 
of the numerical results on the ,position of the t~rning point 
and also the correct tendencies' making the potential more at ­
tractive (eq. (3.1» can be well reproduced. So, we conclude 
that fOr-ffiula (4 ..... 1) is much more valid than eq. (2.8) for a 
selected., Leve'l.e-cro ss í.ng and the observed behaviour of P12 can 
m~inl~ b~ e*plained as an interference effect. It should be 
in general not only one maximum in P12 at low radial kinetic 
energies observable but also a second or even more péaks 
could existo 

4.2. Extension óf the Uniform Motion Approximation 

If the turning point is located near the crossing point 
th~ conditibn V c = const is clearly unreasonable~ But unfor­
tunatély closed simple analytical expressions could not bé 
achieveâ in the past /17/ even for a uniform aDcelerated mot­
• - Rt~ t 2 . Un er . con 1t10ns, h a .10n R d certa1n d i w en perturb at10n 
method in the coupling element jH12 I in the diabatic basis 
is valid, the final occupation probability can be expressed 
by'Airy-functions depending on two dimensionless parameters 
cu and f3 • The parameter ú.l is proportional to the hadial ki­
netic energy at the crossing point and f3 t.e I'H 1213 ~ For Large 
cu the·ahalytical result can be approximated (eq. (19.17a) 
o f ref./t7/ ) by 

Yz 2 3/2
17 • f3 . cu sín (2/3. f3 . cu + 7T/ 4 ). (4.4)P12 

Consequently, also the extension of the uniform motion ap­
proximation leads to an oscillatin, behaviour for ~2. A si ­
milar result was g~ven by Bates/25 who described after a 
first peak in P12 in the high energy region a second peak as 
an effect of the neighbourhoud between crossing point and 
turning point. 

4.3. More Refineà Shapes of the Adiabatic Terms 
~ 

The,so-called exponential model /17/ was derived for the 
one way ju~p probability for two-state prpblems where the 
straight line approximation of the interacting terms is out 
of any relevance. AlI other shortcomings of the LZM are in­

\ corporated, too. It can be formulated in a chosen diabatic 
~ 

'1 
i 
I 

,J
 
I 

: ! 
~ '~ . 

as well as in the well defined adiabatic hasis.-preferring 
the adiabatic basis the différence between the two leveIs is 
defined by /17/ ' 

'Yz ., 

(2 (R) - ~ 1 (R) =, 'tl f ( t - 2 cos 8 exp (-x) + exp C- 2x» (4.5) 

wi th x = a . (R- Rp ) ' 
The parameter tl( describes the constant difference for 

R -+ 00 ; a is a decay constant for the leveI distance and R p 

is related to the distance R c of maxírnaI approach by R p =R c + 
+ l/a In (cos (8 » . Introducing a coupling element 

= a/4. 'sin 8/(cosx - cos é) , (4.6)T12 

the model can be solved analytically. The angle ,8 is related 
to the width o f" the coupling tlR accotdíng to sin8/2 ~ tlR" . a 

'(eq , (25.8) of /17/ ). The one way jurnp probability is fu l.Ly 
given by two parameters ç'= tlda . v c and y = sín 2(8/2") 

P. = exp(-17.ç.y)sin (17ç(l-y»/sin (17Ç). (4.7)J 

Cons í.der í.ng the limit V c ... 00 , r.e. ç. ... O t he exponent i al mo­
deI predicts a saturation value of' 

p ~ = 1 - sin 2 8/2. (4'.8) .J 

For example, the not very unré8sonable parameter combination 
tlR= 0.5 fm and l/a, = 1 fm gives Pj= 0.75. Only for very 
narrow couplings when the finite extension 'of the coupling 
is negligible and 8 goes to zero the LZM limit or diabatic 
limit could be achieved. 

4.4. Finite ,Time Interval 

The limit t ... +00 for the definition of the one way jump 
probability is in most of the interesting cases not physical­
ly justified. Either a turning point exists, or a furtheJ in­
teraction at finite times could occur., A recent work / 26 has 
been devoted to the level-crossing problem at finite times 
with realistic nuclear parameters but leaves alI other appro­
ximations like straight lines, single particle terms and a 
constant veloçity of the collective variable unchanged. In 
such a model P j -at a certain distance far from the crossing 
region depenqs on two parameters as in the exponential modelo 
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It	 was found that for a given value of the collective variab­
1e the jump probability P j exhibits a saturation feature. 

So, at a distance of 1 fm from the crossing point with the 
parameters 1"12 I = 0.25 MeV and âF = 1 MeV/fm the one way 
jump probability cannot exceed Pj = 0.8 (compare with the 
tab1e 1 of ref. /26/ ') . 

5.	 CONCLUSIONS 

As was shown i~ the previous section every improvement of 
the oversimplified LZM leads to a~alytical expressions which 
in principal confirm the presented numerica1 resu1ts. It" does 
not mean that the LZM is not suited for any application. But 
if only one avoided level-crossing ia considered,quantal in­
terference between transitions at the incident and excident 
stage of the reaction requires a more general expression for 
the two-way formula. The observed saturation property for the 
one-way jump probability is related to the finite size of the 
coupling region in the nuclear case. As a con1cusion, in.nuc­
lear physics the picture of pure adiabatic motión interrupted 
by sudden "sure" hoppings addapted from molecular physics i8 
in general not valido Any avoided 1eve1-crossing p~oblem 

shoul~ be examined carefu1ly. 
The avoided 1eve1-crossing prob1em in heavy-ion co11isions 

should be viewed in a new manner. It is not in every case 
true that for high radial co11ective energies at the crossing 
point such molecular transition mechanism is ineffective in 
populating the final excited state of a reaction. So, for 
quasi-elastic col1isions a two-leve1 excitation mechanism 
could be observable even in situations when the crossing re­
gion is located inside the barrier. The present interpretati ­

+ 1 3 Con of experimental data in 12C as an evidence for the 
nuclear Landau-Zener effect/L 2/ could serve as a.n examp1e. 
According to figo 30 of ref. /~/ the responsib1e avoided 1e­
vel crossing is located behind the barrier of the effective 

~	 adiabatic potential. For bombarding energies slightly above 
the barrier the radial kinetic energy Te amounts a1ready 
10 MeV! In a simple diab~tic picture it cannot be understood 
that under these conditions the avoided level crossing cou1d 
effect any physica1 quantities in the final stage of the re­
ac tdon , 
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HKneK 6., PaAt P. E4-87-475 
nonYKnaCCM~eckoe onMcaHMe peanMc~cKOA RAePHOA aaA~M 
K8aaMnepece~eHMR ~ A8IM_ TepMaMM . 

4nR peaK~M TR..nwx MOHOa nonYKnaCC~eCKaR -AePHaR 3aAa~a K8aaMnepe­
c~eHMR Me~ ASYMR TePM8MM MCcneAYeTCR • paMKaX A8yxqeHTpoaoA ~e~HoA 
MC)Ae.nM c noT....................HOA rll)'l5MHw. Mcnonloa)'IDTCR peanloHaR TpaekTOpMR 
An.tI OTHOCMTellloHOrO A.......... Mpeam.... a.neMeHT C.RS". sa.Mc-.A OT 8peMeHM. 
PeaynbTaTW pac~eTa AeMOHCTPMPymTCR An.tI 8epoRTHOCTM npW*Ka M.epQRTHOCTM 
nepexoAe An.tI peaK,,"" l'8c(17 O. 17 0*) 18e, Id 1/2 .. 28112 ( Q • 1/2) •. PeaYllbTa­
TW He c(lOTaeTcn)'aT npeIICKaaaHM,.M ~PMYJ1IoI naHAaY - 3MHepa, nOATBePlllAilmT 
HeKoTop~ c8oAcT8a PacaMpeHHWX aHanMT~eCKHX nQAXoAo8 K 38Aa~e K.a3Mnepe? 
ce~eHMR Me~ A8IMM YP08HRMM. 

PaGoTa BWnonHeHa 8 naGopaTQPMH TeopeTH~eCKoA "'3HKH ~RM. 
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"Ilek B., Relf R. E4-87-475 
SemiclassIcal Treatment of a Realistic Nuclear 
Avoided level-Crossing Problem 

For a heavy-Ion collisIon a nuclear two-state problem referrIng to 
an avoided level crossIng of adIabatIc single-particle states of the same 
symmetry Is treated semlclasslcally within a two-center shell model with 
finite-depth mean potentials. Using a realistIc trajectory for the relatIve 
motion and a realistIc time-dependent couplIng strength, numerical results 
for the one-way and two-way jump probabIlities are presented for the tran­
sition 18C~70. 17 0* )lIe. IdS/2 .. 281/2 (0- 1/2). Tite results are not 
In agreement with the predictions of the landau-Zener formula. but confIrm 
some propertIes of extended analytical treatments of the avoIded level­
crossIng problem. 

The InvestIgation has been performed at the laboratory of Theoretical 
Physics, JINR. 
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