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The investigation 01' scattering 01' a slow charged particle by a 
weak-bounded charged complex is 01' a apecial interest. The matter ia 
that the nonpointlike pair charge diatribution and the change 01' thia 
distribution in the Coulomb field 01' the projectile cause an additio­
nal effective interaction de cz-easLng as t - P when the diatance 'l 

between the projectile and complex c.m. increaaes. The power 01' decre~ 

asing p and form 01' this interaction essentially depend on the geo-; 
metry 01' the complex and on apectrum 01' ita excited atates/1/ . In a

2. . 
low-energy limit ( E = 11 1("

2 12J< -+0) elaatic scattering 01' a particle 
by a charged complex with the sarne aign 01' charge is generally deter-o 
mined by a long-range behavior 01' the effective potential ~ff 

Therefore. the peculiaritiea 01' such acattering may be explored in 
the frarnework 01' th~ effectively two-body (particle + complex) Shr~­
dinger equation. A detailed analysia 01' phase-ahift aaymptotics as 

E-+ O for charged particle scattering by a superposition of the 
Coulomb and polarization vp ('l)..... '"C -" • Z _ 00 • potentiala 
waa first performed in paper/2/ . An elegant method 01' the calculation 
01' the lead1ng phaae-shift aaymptotica for a slow particle scattering 
by the Coulomb field containing the power correctiona r -fi w-i th an 
iarbitrary power p > 1 ,has recently been built in paper/ J / . In 
'worka/ 4/ . for a pd -aystem it waa first demonatrated that the pola­
rization interaction muat be taken into account in the problema 01' 
ultralow-energy (-1 keV) nuclea~ physics. In theae papers it was 

ahown that the 5 -wave phase shift for pd -acattering at E~ 10 keV 
ia defined by the polarization instead 01' the nuclear interaction. Aa 
a r-e suLt , the uaual definition 01' the pd -scattering length aa a li­
mit as E~ O 01' the nuclear-Coulomb effective range function becomea 
meaningless. Modification 01' the effective range theory in the case of 
:nuclear-Coulomb field incIUdin, the polarization interaction has been 
Iconsidered in a recent paper/6 • A rich bibliography on the theory 01' 
long-range potent1al scattering ia presented in rev:iewa/7/ . 

In the present work. tho in1'luence 01' tho polQr1z~t1on 1ntorAO­
tion on tho S -wave Jl. + d: -ooo.ttoring o.t onors1oo bolow 1 koV ia 
atud10d w1thin the frwneworlt 01' th.c two-body (3'r + t r( , " .,,',. C' r 
oontonta 01' tho work ia na 1'01 ) " " 'l.~r· t.', III 
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range 01' the polarization potential. giving a wain contribution t9 
the sr+d S -wave phase ahift additional to the Coulomb one , esti­
mation 01' the energy intervals when thia phase-shif~ ia formed by the 
pion-nuclear short-range potential or the polarization one. and eati­
mation 61' a lower limi t 01'. distancea "l. when the Ji:. + r d -wave func­
tion may be approximated with a required accuracy by its leading long­
range asymptotical terro. 

\ 
So. we shall explore the influence 01' the~ de~~eronpolarizability 

on the S -wave Jr+ d -scattering witr...ín the framework 01' effecti­
vely-two-body Shr6d.inger equat.Lon

. 
, In the St:+d centz:e-of-roasa 

-. 
ayatem

• l 

it has the following form 

{ :::. 2 + K 2 - V (t) 1 U Ct K)=O' (1)0, J .eff • 

The effective potential ia the sum = V + U of two terms •.. OneVef f c 
term is t ne repulai ve Coulomb potential '{ <'t) = t1../t. where 

n.;;; ~fl (edi )2.::;0. 0096 fm and the other ia the potential U::: ~ + \/P' 
The pion-nuclear potential ~ decreasea exponentially with increas­
ing distance and has a fini te range of action 'Cs which ia 01' an 
order 01' the deuteron aize, '" 4 fm. The potential Vp additional to 

\lS decreasea as O(Z-q) with increaaing distance ando ia due to the 
electric polarizability 01' the deuteron. For the polarization poten­
tial we limit our~elves to the representation, 

(2)V. Ct) = - cI.. n (-) ('l- t p ) , 
P z r« 

where c:I.. = 0.7 frnJ/8/ is the conatant 01' electric polarizability 01' 
the deuteron. We assume that the parameter ~p satisfies the rela­
tiona L's. :5 "rP "- P-. o • where R::: 11 n.. • 104 fm ia the Bohr radius 01' 
the 'J(+ a -syat em. Purther , varying the paramet er "t. p in wide limita. 
we ahow that our reaulta weakly depend on a particular value 01' '(P • 
The asymptotic 

U r r, K) -­ scn (4- (P,!» + ~(lO + 6(K)) (J) 

'l- """ 

01' the ~egular solution 01' e~uation (1) containa the Coulomb phase 
shift' c\. 00 and phaae a,hift ~(K) due to the addi tional poten­
tial {J • Here we denote 

.p =K'l. ~ = n 12 K , Bc ('p.!J) = P - 9 l ri 2'p • 

·DtfbCAC:U'. '<4~W~~· "~ricT~r'yi , 
11":!f~WI HtCJ!~IOllud .~I 
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T a b 1 e 1. The phase shifts 5p (K, "lp) (radian) as function
In	 the framework of the variable phase approach the phase shift E(k) 

of	 the energy E (keV) and parameter 'lp (fl11 )is	 calculated, as a limit for j> - QO of the phase function 5 (P, K). 

The latter is a solution of the following problem 

J-p Ô(y. K) == - K-
2 U('p/K)fr;ry,~J>cos8'(-p,K)+ 4- ly,'J>SinÓ9'.K)J~ (4)o

5 <0, K) = O, 

where ~ and 4-0 are, respectively, regular and irregular Coulomb 

functions. By the symbols ~ (P, K) and 5p (y, K, "ip ) we denote, 
respectívely solutions of equation (4) at ri.. = O, U zz V and at s 
~ == O, U~ Vp • Let us study the phase function Õp (.P, K, "cp ), i. e. 

solutions of equation (4) wi th the boundary condi tion 8 (.Pp,~, "cp )=0,p
Pp = K"'c p and potential U = Vp • For a hight accuracy calcu­

lation of the Coulomb functions we have used a method, described in 
/ 10I 

paper • Setting "cp =XR and choosing the value of parameter 

X • 0.1.1.0,10 we have calculated the phase function dp (P, K, "cp) 
for E = 0.01, 0.1, 1 keV. The fourth significant digits of these 

functions do not change wi th increaaing'p in the region p ~ 15"Yc' 
where Pc == K'tc and 'te =n/~2. == e2./E ia- the Coulomb classical 
turning point corresponding to a given energy E • The relative ac­

4 curacy - 10- is quite enough for our aims, therfore, everywhere 

we' use the values of phase functions Sp (15yc, K, 'r. p ) as the values 

of the corresponding phase shifts s, (K, "cp) • Table 1 demonstrates a 

weak dependence of these phase shifta on the parameter ~p at suf­

ficiently low energies. The graphs of the function 

B(P, K, ~p) == Ôp (P, K,"lp) I Óp 0<, 't,,> (5) 

are plotted in Fig. 1. The values of the variable p = f( "{ in units 

Pc = I< "cc ,where "cc = e 2 tE is the Coulomb classical turning point, 
corresponding to a giv~n energy, are given along the abscissa. The 

solid lines are graphs of the function (5) at E = 1 keV. The num­

bera near these Lf.ne a are the values of the parameter 't in units 
p

of R " If the energy is decreased, then -the dependence of the 

phaae func\ion and function (5) on parameter "cp becomes more weak. 

So, if E = 0.1 keV, then the functions (5) corresponding to three 

different va'lues of parameter "rp == t R , t = 0.1, 1, 10 are equal 

to each other in the region p > 0.7 Pc wi th relati ve accuracy
4• ...	 -10- The dashed line is their common graph. As follows from Fig. 1, 

the r~e of region .p ~ 0.8 P« (i.e."{ ~ 0.8"lc ) in forming of 

the phaae shift 5 (K, "cp) ia small. If E ~ 1 keV, and "lp: ~ af R 
theae phase shifts are fOl"Jlled generally on the intervals ( 0.8Pc'2yc)' 
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f \ 
10-130.1 7.5129	 7.5129 

0.2 4.3480 10-12 4 ..3479 

0.4 2.6058 10-11 2 ..5948 
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0.8 1.9417 10-10 1.7003 

1.0 4.1678 10-10 3.2091 

10-15 

10-13 

10-12 

10-11 

10-11 

10-10 

10-10 

, 10R 

2.0141 

7.5129 

. 4.3470 

2.5774 

7 ..1999 

1.3951 

2.1325 

10-15 

10-13 

10-13 

10-11 

10-11 

10-10 

10-10 

BCj),J(~,p) 

Fig.1. Function (5) at E = 1 keV (so­

lid lines), E = 0.1 keV (dashed line)• 

Numbers near solid lineB are the va­

lues o~ parameter ~p in units of R. 
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i.e. in the interval (0.8 "e ' 2' ~t ). Both the boundaries of this 

region depenei on the energy and shift wi th decreasing energy to larger 

dfs tances , If E ~ 1 keV and "p E[a1R, 10R], then the region 

.P ~ 2 Pc is asymptotical for the phase function Sp(P, K, 'r p) . Here 
it is necessary to point out that the asymptotical representation 

U (~,K) =F;, (P, 'J) COS 8'p(K, 'lp) + CO (P,~) sin 8p (K, "lp) (6) 
p 

for the regular solution of equation (1) at U = Vp and a given 

energy E is valid only in the region Z ~ 2 "'cc == 2 e2./E. As calcu­

lations show, the asymptotical representation Up (t.K) =sin(el'+~+5p) 
is valid wi th relative accuracy "" 0.01 in the region l ~ 10 'te • The 

calculation of phase shifts ()p by solving the Shr~dinger equation 

is a very complicated problem. Really, if E = 1 keY, then phase 
~ r'" -10h . 

s ~fts De and 0p are equal respectively to - 1 and ,IV 10 , the 

value of the Coulomb turning point is lc = 1440 fm. Thus, the cal­

culation of the phase shift Õp at this energy requires solution 

of equation (1) with the relative accuracy - 10- 10 in the interval 

O ~ Z ~ 10 "Cc = 14, 400 fm and subsequent extraction of phase shift 
Õp from a rapidly oscillating asymptotioa.The calculation of the 

wave-function in the interval (O, 10 ~c .) becomes with decreasing 

energy a more complicated problem. Numerical solution of phase equa­

tion (4) for E E [0.1, 1) keY has no difficulties. Moreover, ,if E~ 

1 keV and 'rp~0.1R , then a first iteration of tMs equation, i.e. 

the Bom approximation y 
2&: (P, K,"lp) = - K- ) dp' V (píK) ~ 2(y: !J} (7)p 

J'p 
reproduces the corresponding phase function with a relative accuracy 

not worse than - 10-3. Therefor~ the behavior of functions (5) wi th 

increasing JP is explained ao as the dependence of integraIs (7) on 

their upper limit. The asymptotical representation r:;, (P,!J)'=' Co (9.) ..9 ~ 
is valid in the region'p ~ f • The factor Co <!»:fz:rt!)/(exptZ3i.!) )-1)1 
rapidly decreases as K~ (J • Thereforé the contribution of this 

region t~ the integral (7) is small, and the value of the Born phase 

shift 8 P (15'pc :l K, "lp) slightly dependa on the value of parameter 

at sufficient low energies when the inequality K "t p ~ 1 is valid. 

A main contributiop to integral (7) comes from the region (0.8pc,2JPc\ 

where the f'unction 1=0' has a first local maximum, of an 
~rder of 17(~f6). It is known/ 11/, that the representation of Cou­

10mb funtions in this region does not contain the factor C, (}J>' There­
fore, the leading term of the Born-phase-shift asymptotics 2 

~ 

6 
:' ., 

8 . 
bp(OO,K,"r.p) - 1~ O<K5 R2 

(8) 

K"'O 

also does not contain the function Co (?) • The phase shii't SS(K) 

owing to a rapid decrease of the potential Vs as "l - dIO , is i'ormed 

in a finite distance range ~~ ~S independently of the energy. If 

the energy is sufficiently low, i.e. if Ps =K'tS ~ 1 , then from 

the asymptotics r;, "- Co'p , ~o '" C - f in the region p ~ ..PS ~ 1 o 
there follows the representation 

rl &s (K) = - a.s K C0 
2 

( ~) , (9) 

where as is the pion-nuclear scattering length. In the framework 

of the variable phase approach and our assumptioná "rS ~ "t p "'- R 
on the values of parameter ~p. ' the calculation of the phase shi~t· 

5'(K) in the general case' u= ~ + Vp ; ~. Vp ~ O is possible 

without knowing a concrete shape of the potential ~ • Really, the 

phase function 5 (.p. K) at point .p=Ps is equal to the phase 

shift (9), wh1ch We calcul~te using the experimental value a s = 
= 0.079 fm/ 12 / . The inequality '~('t}li.l:IVp("t)1 is valid for "l~"rp. 
Therefore, for .P~.Pp we substitute U= Vp into equat Lon (4)and 

further solve this equation with the boundary condition S(Pp,K,"rp) = 
= 55 ( K) • Thus, we have calculated the phase shift li ( K, "r. p) = 
= Ó(15Yc,K,"cp ) . The value of phaae shift (9), at point Pp ,i.e. 

the boundary value of the phase function Õ(P, K, 'l P > , is suffici­

ently small, "10- 8 á.t energies below one keV. Therefore ii' E~ 1 keV 

and "l"p ~ 0.1 R , then the phase shifts C( K, Yp) are approximated 

with a relative ~ccuracy not worse than -10-3 by the corresponding 

sums Ós(fO +- Õp (K,"lp) , where &~(K,'tp)iS the value of integral 

(7) at point p == 15yc • Both the phase shifts Ô(K,"tp) and 5p(f<,~p) 
slightly depend on the parameter 't • Obviously, the sarne propertiesp 
are characteriatic of the functions of phase shifts 5 (K, t p), for 

instance, 

f 2 ?-i 
( 10)A(E. c/.) = - K- (E. o( ) =- fK Co (~) Cta S(K, 'Zp ) +- ri h (!J) J 

and the 5 -wave cross section of 1C + d -scattering, connected wi th 

the amplitude f (K)= (2iK)-1 {exp (2i (ôc + 8) - i J by the equality 

t)( E) = ~.i<: . 11(10.1 2• . . 

Following works/4/, we consider the behavior oi' function (10) 

'! as E - O • The solid line in Fig. 2 is a common graph of three 

functions (10) calculated at 'l.p =~ R, ~ .. 0.1, 1, 10. The dash­
\1 
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dotte~ line ia a graph of function (10), calculated in our previous 
workf 13/ by the WKB-method. If the polarization potentia1 is Bwit­
ched off ( cI.. =0, Õ =S5 ), then A CE,O) is the negative of the 
inverse effective-range Coulomb function. Tliis function slightly de­
pends on the energy in the considered energy regiori and has at point 

E = O a fini te 1imit equal to' a S • The graph of the function 
A(E, O) is plotted in Fig. 2 by the dashed line. If J..:/= O , then 

the graph of the function A (E, cJ.) (10)at 0.8 keV deviates from 
its horizontal asymptote ArE,o>z as • It means that the upper boun­
dary of the energy interval, where polarization effects occur in the 

5 -wave J,r+d -scattering, ia equal to ~ 0.8 keV. With further de­
creasing energy the phase shift 5p decreases more alowly than the 
phase shift ~ of opposite signo Therefore, the phaae shift fi 
and function A vanish at E ~ 0.4 keV. At the e'LaatLc aca't t er-Lng 
threshold, the conditions 5 ~ 5p » Ós are valid owing to diffe­
rent asymptotics (8) and (9). The fu'nction A(E.el) approaches 
negative fnfini ty as f - O • Let us study the influence of the 
polarization potential on the :Jí.+d. S -wave cross section. The 
latter may be represented by the sum 

d(E) = ~(E)+ &:1 sin~.sin<f.cOS(~+Õ)+dsp(E) 

of three	 terms. The first term is the Coulomb cross aection. When 
E - O it, oscillating, tenda to infinity as 1/E. The second, 

also oscillating, terro has a threshold behavior O(K3) ~ The third 
terro, i.e. a smooth part of the total crose section, or the nuclear­
Coulomb-polarization cr-oea section t:r;p(E )=('fJi..IK~ ) sin2.Ó(K~"(f)ia 
plofted in Fig.3 by the solid line. -If E ~ 0.35 keV, then SP» c\ 
õ~ C5p • Therefore scattering on the polarization potent1al gives 

a dominant contribution to the cross section ~ p • The cross !3ection 
of the polarization potential scattering ap = ('1.741<2. )~ÜtzÓPiS plott ­
ed in Fig.3. by the dash-dotted 11ne. In the intervalO. 35keV<E < 
0:8 keV the values of phase ahifta Sp and Õ5 are comparable, 

and both the potentials V and Vp give a comparable contributions 
to the scattering. If E ~ 0.8 keV, then the cross section OSp is 
equal to the croas section ~=ftJZ/K2)sin2~ ' plotted in Fig.3 by 
the dashed line. The relations 5;::: 5s »S-p take place -Ln this 
energy region, and therefore the influence of deutron polarizability 
on 3i..t:d -scattering is neg1igible. 

1'1Studying	 the phase shifts ~(k.tp) we have estab11shed that they
1) 

sli~tlY depend on a single free parameter ~p used, by us. The
 
phase sh~ft [; was normalized to i ts experimental value (9) in the \ 'I'
 

I 

i 8 
:l 

Function (10), calculated at o( = 0.7 fm3 in the frame­
works of variable phase approach (solid line) and of WKB­
method (dash-dotten line). The graph of function (10) at 

cJ.. = O plotted by dashed Lãrie , 

.... 
10-3 

0.'1 E(Kev) 0.8 

Fig. 3.	 Nonoscillating part of S-wave Jl+d cross aect í on, Solid 
line - ~p (E) , dash-dotted 1ine t1p (E) , ~ (E)­

dashed line. 

energy region E ~ 0.8 keV, when one may neglect the pol~ization 

interaction. Therefore we believe that the above determined energy 
intervals, where a dominant contribution to the ~p cross section 
comes from the polarization potentia1 or short-range potential, are 
quite exact. The most interesting result is the existence of a deep 
and sharp minimum of the cross section ~p (E) at E ~ 0.4 keV; 
this minimum is due to the interference of scattering on potentials 
~ and Vp • The same phenomenon in atomic pbysics is known as 

the Ramsauer effect/15f. 

In conclus1on we point out the existence of such a minimum of 
the 6Sp cross section is evidently a common property of scatter­
ing of an arbitrary positive-charged particle (for exemple, the pro­
ton) on the H.2 -nucleus if of course the phaae shifts ~ and 8p 
at low energies opposite in sign. The experiment~l investigation of 
the cross section ()sp at sufficiently low energies should a1low to 
directly define a value of co~stant oi , i.e. electric polarizabi­
lity of deuteron. 

0.3 f (1< ev) 0.6 

..... 
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ITynbEeB B.B., ConOB~oBa O.IT. E4-87-467 
ITonflpH3yeMocTb AeHTpOHa H S-BOnHOBOe 
n+d-pacceflHHe npH 3HeprHflX.H~e 1 K3B 

MeToAOM ~a30Bb~ ~YHK~HH HccneAyeTcfl BnHHHHe nonflpH3ye­
MOCTH AeHTpoHa Ha S-BonHOBoe n+d-pacceHHHe B npeAene HH3­
KHX 3HeprHH. IToKa3aHo, qTO HeOC~HnnHpyw~aH qaCTb S-BonHO-
Boro CeqeHHH n+d-pacceHHHH HMeeT rny60KHH pe3KHH MHHHMYM 
B 06nacTH 3HeprHH ~ 0,4 K3B. 

Pa60Ta BwnonHeHa B ITa6opaTopHH TeopeTH,ecKoH ~H3HKH 

OHHH. 

Ilpenpaar Ü6'benHHeHHOrO HHCTHTYTa anepasrx accrrenoaaaaã. ,D;y6Ha 1987 

Pupyshev V.V., Solovtsova O.P. E4-87-467 
Deuteron Polarizability and S-Wave 
n+d-Scattering at Energies Below 1 keV 

The influence of deuteron polarizability on the S-wave 
n+d-scattering in a low-energy limit is explored in the 
framework of the variable phase method. It is shown that 
the nonoscillating part of the S-wave cross section of 
n+d-scattering has a deep and sharp minimum in the energy 
region ~ 0.4 keV. 

The investigation has been performed "at the Laboratory 
of Theoretical Physics, JINR. 
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