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The investigation 01' scattering 01' a slow charged particle by a 
weak-bounded charged complex is 01' a apecial interest. The matter ia 
that the nonpointlike pair charge diatribution and the change 01' thia 
distribution in the Coulomb field 01' the projectile cause an additio
nal effective interaction de cz-easLng as t - P when the diatance 'l 

between the projectile and complex c.m. increaaes. The power 01' decre~ 

asing p and form 01' this interaction essentially depend on the geo-; 
metry 01' the complex and on apectrum 01' ita excited atates/1/ . In a

2. . 
low-energy limit ( E = 11 1("

2 12J< -+0) elaatic scattering 01' a particle 
by a charged complex with the sarne aign 01' charge is generally deter-o 
mined by a long-range behavior 01' the effective potential ~ff 

Therefore. the peculiaritiea 01' such acattering may be explored in 
the frarnework 01' th~ effectively two-body (particle + complex) Shr~
dinger equation. A detailed analysia 01' phase-ahift aaymptotics as 

E-+ O for charged particle scattering by a superposition of the 
Coulomb and polarization vp ('l)..... '"C -" • Z _ 00 • potentiala 
waa first performed in paper/2/ . An elegant method 01' the calculation 
01' the lead1ng phaae-shift aaymptotica for a slow particle scattering 
by the Coulomb field containing the power correctiona r -fi w-i th an 
iarbitrary power p > 1 ,has recently been built in paper/ J / . In 
'worka/ 4/ . for a pd -aystem it waa first demonatrated that the pola
rization interaction muat be taken into account in the problema 01' 
ultralow-energy (-1 keV) nuclea~ physics. In theae papers it was 

ahown that the 5 -wave phase shift for pd -acattering at E~ 10 keV 
ia defined by the polarization instead 01' the nuclear interaction. Aa 
a r-e suLt , the uaual definition 01' the pd -scattering length aa a li
mit as E~ O 01' the nuclear-Coulomb effective range function becomea 
meaningless. Modification 01' the effective range theory in the case of 
:nuclear-Coulomb field incIUdin, the polarization interaction has been 
Iconsidered in a recent paper/6 • A rich bibliography on the theory 01' 
long-range potent1al scattering ia presented in rev:iewa/7/ . 

In the present work. tho in1'luence 01' tho polQr1z~t1on 1ntorAO
tion on tho S -wave Jl. + d: -ooo.ttoring o.t onors1oo bolow 1 koV ia 
atud10d w1thin the frwneworlt 01' th.c two-body (3'r + t r( , " .,,',. C' r 
oontonta 01' tho work ia na 1'01 ) " " 'l.~r· t.', III 
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range 01' the polarization potential. giving a wain contribution t9 
the sr+d S -wave phase ahift additional to the Coulomb one , esti
mation 01' the energy intervals when thia phase-shif~ ia formed by the 
pion-nuclear short-range potential or the polarization one. and eati
mation 61' a lower limi t 01'. distancea "l. when the Ji:. + r d -wave func
tion may be approximated with a required accuracy by its leading long
range asymptotical terro. 

\ 
So. we shall explore the influence 01' the~ de~~eronpolarizability 

on the S -wave Jr+ d -scattering witr...ín the framework 01' effecti
vely-two-body Shr6d.inger equat.Lon

. 
, In the St:+d centz:e-of-roasa 

-. 
ayatem

• l 

it has the following form 

{ :::. 2 + K 2 - V (t) 1 U Ct K)=O' (1)0, J .eff • 

The effective potential ia the sum = V + U of two terms •.. OneVef f c 
term is t ne repulai ve Coulomb potential '{ <'t) = t1../t. where 

n.;;; ~fl (edi )2.::;0. 0096 fm and the other ia the potential U::: ~ + \/P' 
The pion-nuclear potential ~ decreasea exponentially with increas
ing distance and has a fini te range of action 'Cs which ia 01' an 
order 01' the deuteron aize, '" 4 fm. The potential Vp additional to 

\lS decreasea as O(Z-q) with increaaing distance ando ia due to the 
electric polarizability 01' the deuteron. For the polarization poten
tial we limit our~elves to the representation, 

(2)V. Ct) = - cI.. n (-) ('l- t p ) , 
P z r« 

where c:I.. = 0.7 frnJ/8/ is the conatant 01' electric polarizability 01' 
the deuteron. We assume that the parameter ~p satisfies the rela
tiona L's. :5 "rP "- P-. o • where R::: 11 n.. • 104 fm ia the Bohr radius 01' 
the 'J(+ a -syat em. Purther , varying the paramet er "t. p in wide limita. 
we ahow that our reaulta weakly depend on a particular value 01' '(P • 
The asymptotic 

U r r, K) - scn (4- (P,!» + ~(lO + 6(K)) (J) 

'l- """ 

01' the ~egular solution 01' e~uation (1) containa the Coulomb phase 
shift' c\. 00 and phaae a,hift ~(K) due to the addi tional poten
tial {J • Here we denote 

.p =K'l. ~ = n 12 K , Bc ('p.!J) = P - 9 l ri 2'p • 

·DtfbCAC:U'. '<4~W~~· "~ricT~r'yi , 
11":!f~WI HtCJ!~IOllud .~I 
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T a b 1 e 1. The phase shifts 5p (K, "lp) (radian) as function
In	 the framework of the variable phase approach the phase shift E(k) 

of	 the energy E (keV) and parameter 'lp (fl11 )is	 calculated, as a limit for j> - QO of the phase function 5 (P, K). 

The latter is a solution of the following problem 

J-p Ô(y. K) == - K-
2 U('p/K)fr;ry,~J>cos8'(-p,K)+ 4- ly,'J>SinÓ9'.K)J~ (4)o

5 <0, K) = O, 

where ~ and 4-0 are, respectively, regular and irregular Coulomb 

functions. By the symbols ~ (P, K) and 5p (y, K, "ip ) we denote, 
respectívely solutions of equation (4) at ri.. = O, U zz V and at s 
~ == O, U~ Vp • Let us study the phase function Õp (.P, K, "cp ), i. e. 

solutions of equation (4) wi th the boundary condi tion 8 (.Pp,~, "cp )=0,p
Pp = K"'c p and potential U = Vp • For a hight accuracy calcu

lation of the Coulomb functions we have used a method, described in 
/ 10I 

paper • Setting "cp =XR and choosing the value of parameter 

X • 0.1.1.0,10 we have calculated the phase function dp (P, K, "cp) 
for E = 0.01, 0.1, 1 keV. The fourth significant digits of these 

functions do not change wi th increaaing'p in the region p ~ 15"Yc' 
where Pc == K'tc and 'te =n/~2. == e2./E ia- the Coulomb classical 
turning point corresponding to a given energy E • The relative ac

4 curacy - 10- is quite enough for our aims, therfore, everywhere 

we' use the values of phase functions Sp (15yc, K, 'r. p ) as the values 

of the corresponding phase shifts s, (K, "cp) • Table 1 demonstrates a 

weak dependence of these phase shifta on the parameter ~p at suf

ficiently low energies. The graphs of the function 

B(P, K, ~p) == Ôp (P, K,"lp) I Óp 0<, 't,,> (5) 

are plotted in Fig. 1. The values of the variable p = f( "{ in units 

Pc = I< "cc ,where "cc = e 2 tE is the Coulomb classical turning point, 
corresponding to a giv~n energy, are given along the abscissa. The 

solid lines are graphs of the function (5) at E = 1 keV. The num

bera near these Lf.ne a are the values of the parameter 't in units 
p

of R " If the energy is decreased, then -the dependence of the 

phaae func\ion and function (5) on parameter "cp becomes more weak. 

So, if E = 0.1 keV, then the functions (5) corresponding to three 

different va'lues of parameter "rp == t R , t = 0.1, 1, 10 are equal 

to each other in the region p > 0.7 Pc wi th relati ve accuracy
4• ...	 -10- The dashed line is their common graph. As follows from Fig. 1, 

the r~e of region .p ~ 0.8 P« (i.e."{ ~ 0.8"lc ) in forming of 

the phaae shift 5 (K, "cp) ia small. If E ~ 1 keV, and "lp: ~ af R 
theae phase shifts are fOl"Jlled generally on the intervals ( 0.8Pc'2yc)' 

'\ 
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o.1R?§:	 R 

~.~ , 
0.01 2.0141 10-15 2:,0141 

f \ 
10-130.1 7.5129	 7.5129 

0.2 4.3480 10-12 4 ..3479 

0.4 2.6058 10-11 2 ..5948 
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0.8 1.9417 10-10 1.7003 
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Fig.1. Function (5) at E = 1 keV (so

lid lines), E = 0.1 keV (dashed line)• 

Numbers near solid lineB are the va

lues o~ parameter ~p in units of R. 
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i.e. in the interval (0.8 "e ' 2' ~t ). Both the boundaries of this 

region depenei on the energy and shift wi th decreasing energy to larger 

dfs tances , If E ~ 1 keV and "p E[a1R, 10R], then the region 

.P ~ 2 Pc is asymptotical for the phase function Sp(P, K, 'r p) . Here 
it is necessary to point out that the asymptotical representation 

U (~,K) =F;, (P, 'J) COS 8'p(K, 'lp) + CO (P,~) sin 8p (K, "lp) (6) 
p 

for the regular solution of equation (1) at U = Vp and a given 

energy E is valid only in the region Z ~ 2 "'cc == 2 e2./E. As calcu

lations show, the asymptotical representation Up (t.K) =sin(el'+~+5p) 
is valid wi th relative accuracy "" 0.01 in the region l ~ 10 'te • The 

calculation of phase shifts ()p by solving the Shr~dinger equation 

is a very complicated problem. Really, if E = 1 keY, then phase 
~ r'" -10h . 

s ~fts De and 0p are equal respectively to - 1 and ,IV 10 , the 

value of the Coulomb turning point is lc = 1440 fm. Thus, the cal

culation of the phase shift Õp at this energy requires solution 

of equation (1) with the relative accuracy - 10- 10 in the interval 

O ~ Z ~ 10 "Cc = 14, 400 fm and subsequent extraction of phase shift 
Õp from a rapidly oscillating asymptotioa.The calculation of the 

wave-function in the interval (O, 10 ~c .) becomes with decreasing 

energy a more complicated problem. Numerical solution of phase equa

tion (4) for E E [0.1, 1) keY has no difficulties. Moreover, ,if E~ 

1 keV and 'rp~0.1R , then a first iteration of tMs equation, i.e. 

the Bom approximation y 
2&: (P, K,"lp) = - K- ) dp' V (píK) ~ 2(y: !J} (7)p 

J'p 
reproduces the corresponding phase function with a relative accuracy 

not worse than - 10-3. Therefor~ the behavior of functions (5) wi th 

increasing JP is explained ao as the dependence of integraIs (7) on 

their upper limit. The asymptotical representation r:;, (P,!J)'=' Co (9.) ..9 ~ 
is valid in the region'p ~ f • The factor Co <!»:fz:rt!)/(exptZ3i.!) )-1)1 
rapidly decreases as K~ (J • Thereforé the contribution of this 

region t~ the integral (7) is small, and the value of the Born phase 

shift 8 P (15'pc :l K, "lp) slightly dependa on the value of parameter 

at sufficient low energies when the inequality K "t p ~ 1 is valid. 

A main contributiop to integral (7) comes from the region (0.8pc,2JPc\ 

where the f'unction 1=0' has a first local maximum, of an 
~rder of 17(~f6). It is known/ 11/, that the representation of Cou

10mb funtions in this region does not contain the factor C, (}J>' There
fore, the leading term of the Born-phase-shift asymptotics 2 

~ 

6 
:' ., 

8 . 
bp(OO,K,"r.p) - 1~ O<K5 R2 

(8) 

K"'O 

also does not contain the function Co (?) • The phase shii't SS(K) 

owing to a rapid decrease of the potential Vs as "l - dIO , is i'ormed 

in a finite distance range ~~ ~S independently of the energy. If 

the energy is sufficiently low, i.e. if Ps =K'tS ~ 1 , then from 

the asymptotics r;, "- Co'p , ~o '" C - f in the region p ~ ..PS ~ 1 o 
there follows the representation 

rl &s (K) = - a.s K C0 
2 

( ~) , (9) 

where as is the pion-nuclear scattering length. In the framework 

of the variable phase approach and our assumptioná "rS ~ "t p "'- R 
on the values of parameter ~p. ' the calculation of the phase shi~t· 

5'(K) in the general case' u= ~ + Vp ; ~. Vp ~ O is possible 

without knowing a concrete shape of the potential ~ • Really, the 

phase function 5 (.p. K) at point .p=Ps is equal to the phase 

shift (9), wh1ch We calcul~te using the experimental value a s = 
= 0.079 fm/ 12 / . The inequality '~('t}li.l:IVp("t)1 is valid for "l~"rp. 
Therefore, for .P~.Pp we substitute U= Vp into equat Lon (4)and 

further solve this equation with the boundary condition S(Pp,K,"rp) = 
= 55 ( K) • Thus, we have calculated the phase shift li ( K, "r. p) = 
= Ó(15Yc,K,"cp ) . The value of phaae shift (9), at point Pp ,i.e. 

the boundary value of the phase function Õ(P, K, 'l P > , is suffici

ently small, "10- 8 á.t energies below one keV. Therefore ii' E~ 1 keV 

and "l"p ~ 0.1 R , then the phase shifts C( K, Yp) are approximated 

with a relative ~ccuracy not worse than -10-3 by the corresponding 

sums Ós(fO +- Õp (K,"lp) , where &~(K,'tp)iS the value of integral 

(7) at point p == 15yc • Both the phase shifts Ô(K,"tp) and 5p(f<,~p) 
slightly depend on the parameter 't • Obviously, the sarne propertiesp 
are characteriatic of the functions of phase shifts 5 (K, t p), for 

instance, 

f 2 ?-i 
( 10)A(E. c/.) = - K- (E. o( ) =- fK Co (~) Cta S(K, 'Zp ) +- ri h (!J) J 

and the 5 -wave cross section of 1C + d -scattering, connected wi th 

the amplitude f (K)= (2iK)-1 {exp (2i (ôc + 8) - i J by the equality 

t)( E) = ~.i<: . 11(10.1 2• . . 

Following works/4/, we consider the behavior oi' function (10) 

'! as E - O • The solid line in Fig. 2 is a common graph of three 

functions (10) calculated at 'l.p =~ R, ~ .. 0.1, 1, 10. The dash
\1 
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dotte~ line ia a graph of function (10), calculated in our previous 
workf 13/ by the WKB-method. If the polarization potentia1 is Bwit
ched off ( cI.. =0, Õ =S5 ), then A CE,O) is the negative of the 
inverse effective-range Coulomb function. Tliis function slightly de
pends on the energy in the considered energy regiori and has at point 

E = O a fini te 1imit equal to' a S • The graph of the function 
A(E, O) is plotted in Fig. 2 by the dashed line. If J..:/= O , then 

the graph of the function A (E, cJ.) (10)at 0.8 keV deviates from 
its horizontal asymptote ArE,o>z as • It means that the upper boun
dary of the energy interval, where polarization effects occur in the 

5 -wave J,r+d -scattering, ia equal to ~ 0.8 keV. With further de
creasing energy the phase shift 5p decreases more alowly than the 
phase shift ~ of opposite signo Therefore, the phaae shift fi 
and function A vanish at E ~ 0.4 keV. At the e'LaatLc aca't t er-Lng 
threshold, the conditions 5 ~ 5p » Ós are valid owing to diffe
rent asymptotics (8) and (9). The fu'nction A(E.el) approaches 
negative fnfini ty as f - O • Let us study the influence of the 
polarization potential on the :Jí.+d. S -wave cross section. The 
latter may be represented by the sum 

d(E) = ~(E)+ &:1 sin~.sin<f.cOS(~+Õ)+dsp(E) 

of three	 terms. The first term is the Coulomb cross aection. When 
E - O it, oscillating, tenda to infinity as 1/E. The second, 

also oscillating, terro has a threshold behavior O(K3) ~ The third 
terro, i.e. a smooth part of the total crose section, or the nuclear
Coulomb-polarization cr-oea section t:r;p(E )=('fJi..IK~ ) sin2.Ó(K~"(f)ia 
plofted in Fig.3 by the solid line. -If E ~ 0.35 keV, then SP» c\ 
õ~ C5p • Therefore scattering on the polarization potent1al gives 

a dominant contribution to the cross section ~ p • The cross !3ection 
of the polarization potential scattering ap = ('1.741<2. )~ÜtzÓPiS plott 
ed in Fig.3. by the dash-dotted 11ne. In the intervalO. 35keV<E < 
0:8 keV the values of phase ahifta Sp and Õ5 are comparable, 

and both the potentials V and Vp give a comparable contributions 
to the scattering. If E ~ 0.8 keV, then the cross section OSp is 
equal to the croas section ~=ftJZ/K2)sin2~ ' plotted in Fig.3 by 
the dashed line. The relations 5;::: 5s »S-p take place -Ln this 
energy region, and therefore the influence of deutron polarizability 
on 3i..t:d -scattering is neg1igible. 

1'1Studying	 the phase shifts ~(k.tp) we have estab11shed that they
1) 

sli~tlY depend on a single free parameter ~p used, by us. The
 
phase sh~ft [; was normalized to i ts experimental value (9) in the \ 'I'
 

I 

i 8 
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Function (10), calculated at o( = 0.7 fm3 in the frame
works of variable phase approach (solid line) and of WKB
method (dash-dotten line). The graph of function (10) at 

cJ.. = O plotted by dashed Lãrie , 

.... 
10-3 

0.'1 E(Kev) 0.8 

Fig. 3.	 Nonoscillating part of S-wave Jl+d cross aect í on, Solid 
line - ~p (E) , dash-dotted 1ine t1p (E) , ~ (E)

dashed line. 

energy region E ~ 0.8 keV, when one may neglect the pol~ization 

interaction. Therefore we believe that the above determined energy 
intervals, where a dominant contribution to the ~p cross section 
comes from the polarization potentia1 or short-range potential, are 
quite exact. The most interesting result is the existence of a deep 
and sharp minimum of the cross section ~p (E) at E ~ 0.4 keV; 
this minimum is due to the interference of scattering on potentials 
~ and Vp • The same phenomenon in atomic pbysics is known as 

the Ramsauer effect/15f. 

In conclus1on we point out the existence of such a minimum of 
the 6Sp cross section is evidently a common property of scatter
ing of an arbitrary positive-charged particle (for exemple, the pro
ton) on the H.2 -nucleus if of course the phaae shifts ~ and 8p 
at low energies opposite in sign. The experiment~l investigation of 
the cross section ()sp at sufficiently low energies should a1low to 
directly define a value of co~stant oi , i.e. electric polarizabi
lity of deuteron. 

0.3 f (1< ev) 0.6 

..... 
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ITynbEeB B.B., ConOB~oBa O.IT. E4-87-467 
ITonflpH3yeMocTb AeHTpOHa H S-BOnHOBOe 
n+d-pacceflHHe npH 3HeprHflX.H~e 1 K3B 

MeToAOM ~a30Bb~ ~YHK~HH HccneAyeTcfl BnHHHHe nonflpH3ye
MOCTH AeHTpoHa Ha S-BonHOBoe n+d-pacceHHHe B npeAene HH3
KHX 3HeprHH. IToKa3aHo, qTO HeOC~HnnHpyw~aH qaCTb S-BonHO-
Boro CeqeHHH n+d-pacceHHHH HMeeT rny60KHH pe3KHH MHHHMYM 
B 06nacTH 3HeprHH ~ 0,4 K3B. 

Pa60Ta BwnonHeHa B ITa6opaTopHH TeopeTH,ecKoH ~H3HKH 

OHHH. 

Ilpenpaar Ü6'benHHeHHOrO HHCTHTYTa anepasrx accrrenoaaaaã. ,D;y6Ha 1987 

Pupyshev V.V., Solovtsova O.P. E4-87-467 
Deuteron Polarizability and S-Wave 
n+d-Scattering at Energies Below 1 keV 

The influence of deuteron polarizability on the S-wave 
n+d-scattering in a low-energy limit is explored in the 
framework of the variable phase method. It is shown that 
the nonoscillating part of the S-wave cross section of 
n+d-scattering has a deep and sharp minimum in the energy 
region ~ 0.4 keV. 

The investigation has been performed "at the Laboratory 
of Theoretical Physics, JINR. 
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