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The investigation of scattering of a slow charged particle by a
weak-bounded charged complex i1s of a special interest. The matter is
that the nonpointlike pair charge distribution and the change of thia
distribution in the Coulomb field of the projectile cause an additio-
nal effective interaction decreasing as 7P when the distance %
between the projectile and complex c.m. increases. The power of decre~
asing P end form of this interaction essentially depend on the geo-
metry of the complex and on spectrum of its excited atates/1/. In a
low-energy 1imit ( E = h Kz/2/(~’0)e1aetic scattering of a particle
by a charged complex with the same sign of charge is generally determ
mined by a long-range behavior of the effective potential \/ .
Therefore, the peculiarities of such scattering mey be explored in
the framework of the effectively two-body (particle + complex) Shr#-
dinger equatlion. A detailed analysia of phase~-shift asymptotics as

E-0 for charged particle scattering by a superposition of the
Coulomb and polarization V, (7))~ 7-% s Z—> o2 , potentials
was first performed in paper/Z/. An elegant method of the calculation
of the leading phase-shift asymptotics for a slow particle scattering
by the Coulomb field containing the power corrections 15 with an
.arbitrary power “b >1 , has recently been built in paper/3/ In
worka/4/, for a P({ ~-gystem it was first demonstrated that the pola-
rization interaction must be taken into account in the problems of
ultralow-energy ( ~1 keV) nuclear physics. In theae papers it wag
shown that the § -wave phase shift for pci ~acattering atEs 10 keV
is defined by the polarization instead of the nuclear interaction. As
a result, the usual definition of the P(i -scattering length es a 1i-~
mit as E -+ 0 of the nuclear-Coulomb effective range function becomes
meaningless. Modification of the effective range theory in the case of
‘nuclear-Coulomb field including the polarization interaction has been
Iconsidered in a recent paper . A rich bibliography on the theory of
long-range potential scattering is presented in reviews

In the present work, the influence of tho polarisation interac=
tion on the § -wave Mi*d -ncattoring at onorgios bolow 1 keV in

otudiod within the framework of thg two-body (¥ * ' e ¥ o« e 0
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range of the polarization potential, giving & mein contribution to
the ST*d ,S -wave phase shift additional to the Coulomb one, esti-
mation of the energy intervals when this phase-shift is formed by the
pion-nuclear short-range potential or the polarization one, and esti-
mation of a lower limit of distances 7 when the gat+d -wave func-
tion may be approximated with a required sccuracy by its leading long-
range asymptotical term.

So, we shall explore the inflﬁence of the deuteron polarizability
on the § -wave Fitd -scattering within the framework of effecti-
vely-two-body Shr¥dinger equation. In the 3 +d centre-of-mass system
it has the following form *

(o} wcrky=0. ()

The effective potential is the sum \/ -\/ + L/ of two terms,. One
term is the repulsive Coulomb potential V €T)=n/T, where

n=2u (e/h)*=0.0096 fm and the other is the potential {/= V + V
The pion-nuclear potential \G decreases expongntially with increas-
ing distance and has a finite range of action ¥g which is of an
order of the deuteron size, ~ 4 fm. The potential \/P additional to

\G decreases as ()(Z‘q) with increasing distance and is due to the
electric polarizability of the deuteron. For the polarization poten-
tial we limit oursgelves to the representation

2
{a§+r< —Ve_,ff

s

VP(z)= - Ocz- 7p) - (2)

2‘(‘/
where ol = 0.7 me/B/ is the constant of electric polarizability of
the deuteron. We assume that the parameter ¥ satisfies the rela-
tions T, X7, ~ R o where R=1/n = 104 fm is the Bohr radius of
the 5T+ d -system., Purther, varying the parameter tp in wide limits,
we show that our results weskly depend on a particular value of YP -
The asymptotic

>

Ucr, k) — sén (gc(P-D) + O.CK) + Scxr) (3)

7> oo
of the regular solution of equation (1) contains the Coulomb phase
shift é% (K) and phase shift S}K) due to the additional poten-
tial L/ . Here we denote

P=xr | p=n/s2x, Q.pmr=p-nln2p,
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In the framework of the variable phase approach the phase shift S(K)
is calculated as a limit for P = o= of the phase function 5(}), K).
The latter is a solution of the following problem

Ip Scp.x> = - k% UeprrfF pnrcos Sep, kr+ G, tp,n) sin&ﬁx)]fm
S, kY= 0

>

where F:, and Go are, respectively, regular and irregular Coulomb
functions. By the symbols Og(p,K) end 8p (p, K, Tp) we denote,
respectively solutions of equation (4) at o = 0, /= VS and at

Vs =0, (/= VP . Let us study the phase function SP (p, K, TP) y 1.e.
solutions of equation (4) with the boundary condition SP (yp, K,'tP)=0,

-PP = K‘(P and potential (/ = VP . For a hight accuracy calcu-
lation of the Coulomb functions we have used a method, described in
paper/w/. Setting 'ZP =XR and choosing the value of parameter

= 0.1,1.0,10 we have calculated the phase function S, o, K,YP)

for E = 0,01, 0.1, 1 keV. The fourth significant digits of these
functions do not change with increasing P in the region})),(SPCa
where p, = KY, and ¥.=n/K? = e?/E is the Coulomb clasgical
turning point corresponding to a given energy F . The relative ac-
curacy ~ 10"4 is quite enough for our aims, therfore, everywhere
we usé the values of phase functions SP (15})‘:, K, !P) as the values
of the corresponding phase shifts Sp (K,‘CP) . Table 1 demonstrates a
weak dependence of these phase shifts on the parameter ’CP at suf-
ficiently low energies. The graphs of the function

Bp.Kk,2p) = 0p (p, K, 250/ 8k, 2p) (5)

are plotted in Fig. 1. The values of the veriable P=KT in units
Pe =K% s where %.= €*/E is the Coulomb classical turning point,
corresponding to a givén energy, are given along the abscissa, The
Solid lines are graphs of the function (5) at E = 1 keV. The num-
bers near these lines are the values of the parameter ¥, in units
of R + If the energy is decreased, then -the dependence of the

phage funct.ion and function (5) on paremeter ¥ becomes more wesak.
So, if E = 0.1 keV, then the functions (5) corresponding to three
different values of parameter TP =3/R » Y = 0.1, 1, 10 are equal
to each other in the region P> 0‘7Pc with relative accuracy
~1O-4. The dashed line is their common graph. As follows from Fig. 1,
the roje of region P € 0.8 pc (i.e. ¥ £ 0.8 Ze ) in forming of
the phase shift O (K, %p) is small. If E <1 keV, and 7,3 01 R
these phase shifts are formed generally on the intervalg ( Q8pc.2_Pc)

-+ 4

Table 1. The phase shifts EP (K, ‘(P) (radian) as function
of the energy E (keV) and perameter Zp (fm)
§ 0R
P 01R R 1
E .
-15 =15 2,0141 10~
0,01 2,0141 10 . 2,0141 10 2.
-13 ~13 129 10713
0.1 7.5129 10 7.5129 10 Te5
- -1
0.2 4.3480 10712 4.3479 10712 . 4.3470 10”13
-11 -11 774 10=M1
0.4 2.6058 10 2.5948 10 2.5774
- -1
0.6 7.9769 10~ 7.6569 10711 7.1999 10~ 1
- . -10
0.8 1.9417 10”10 1.7003 10”10 1.3951 10
- ~10
1.0 4.1678 10-10 3.,2091 10~10 2.1325 10
B (p,k,z,)
wh P
0.6%

Fig.1. Punction (5) at E = 1 keV {sgo0-
1id lines), E = 0.1 keV (dashed line).

Numbers near solid lines are the va-
lues of parameter Zp in units of R.
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i.e. in the interval (0.8 2, , 2 Ty ). Both the boundaries of this
region depend on the energy and shift with decreasing energy to larger
distances, If E £ 1 keV and ZP E[QfR, {0R], then the region

P>2p. 1is asymptotical for the phase function SP(P, K, 'ZP).Here
it is necessary to point out that the asymptotical representation

Up (z,k) =y (p,nycos 8pk,7p) + Gop,p sin 8p (K, Tp) (6)

for the regular solution of equation (1) at U= VP and a given
energy E is valid only in the region ¢ > 2 Te = 2e2/E. As calcu-
lations show, the asymptotical representation UP (T, K) =s£n(0£+5c+5;,)
is valid with relative accuracy ~ 0.01 in the region ¢ >,10'lc + The
calculation of phase shifts SP by solving the Shr8dinger equation
is a very complicated problem. Really, if E = 1 keV, then phase
shifts 5; and SP are equal respectively to ~ 1 and .~ 10_10, the
value of the Coulomb turning point is T, = 1440 fm. Thus, the cal-
culation of the phase shift SP at this energy requires solution
of equation (1) with the relative accuracy ~ 10"‘IO in the interval

0<t<10 *(c = 14, 400 fm and subsequent extraction of phase shift
5? from a rapidly oscillating asymptotics.The calculation of the
wave-function in the interval (0, 10 'ZC .) becomes with decreasing
energy a more complicated problem. Numerical solution of phase equa-
tion (4) for E € [0.1, 1] keV has no difficulties. Moreover, if E<
1 keV and '(P>,0.‘1R , then a first iteration of this equation, i.e.
the Born approximation _P

. SPB(}),K,TP)=-K_2 Sdp' Vpcp'/K) E;z(_pfg) (7)

reproduces the corresponding phase function with a relative accuracy
not worse than ~ 1073, Therefore the behavior of functions (5) with
increasing P is explained so as the dependence of integrals (7) on
their upper 1limit, The asymptotical representation%(p,g): Co( )-_p %
is valid in the region p&{ . The factor Cy(n)={2mn/(explzrin)-1)
rapidly decreases as K-0 « Therefore the contribution of this
region to the integral (7) is small, and the value of the Born phase
shift 69 (‘15})‘:, K, TP) slightly depends on the value of parameter

at sufficient low energies when the inequality K%, & 1 is valid.

A main contribution to integral (7) comes from the region (O.Byc,Z‘pc),
where the function Fg. has a first local maximum, of an
order of O(DVG). It is lmown/"/, that the representation of Cou-
lomb funtions in this region does not contain the factor C (/g) There-
fore, the leading term of the Born-phase-shift as;yrmp‘t:o'cics?2

B ' -

So(e=, K Tp) = = «K5R? (8)

P o 15
K-+0

also does not contain the function Co (9) . The phase shift SS(K)

owing to a rapid decrease of the potential VS as T+~ & | ig formed

in a finite distance range ¥ < ‘[S independently of the energy. If

the energy is sufficiently low, i.e. iif Ps =K‘CS « 1 , then from

the asymptotics F; ~CO-P s G~ Co‘ in the region p € pg & 1

there follows the representation

Ss¢xy=-ag K COZ(D) , ' (9)

where as is the pion-nuclear scattering length. In the framework
of the variable phase approach and our agsumptions TS < ‘ZP ~R
on the values of parameter 7 , the calculation of the phase shift-
O(x) in the general case U=V + VP .V, VP #0 is possible
without knowing & concrete shape of the potential VS) . Really, the
phase function SCP,K) at point p=pg is equal to the phase
shift (9), which we calculhte using the experimental value ag=
= 0.079 fm/12 . The inequality |\4(z)l<‘fvp(7)| is valid for ¥ 2> ?p.
Therefore, for P),})P we substitute (/= VP into equation (4)and
further solve this equation with the boundary condition S(PP,K,TP)=
SS (K)Y. Thus, we have calculated the phase shift &'¢ K,"(P) =
= 8”5})“.(, YP)_ The value of phase shift (9), at point pPp , i.e.
the boundary value of the phase function S(_p, K, 'zP) , is suffici-
ently small, ~ 10'8 at energies below one keV. Therefore ifE < 1 keV
and 7, »0.1R , then the phase shifts &¢ K,¥p) are approximated
with a relative agccuracy not worse th&én '«10—3 by the corresponding
sums SS(K) + SP (K,%p) , where é-P (K,'tp)is the value of integral
(7) at point p=15p. . Both the phase shifts S(K,‘(P) and SP(K,'(P)
slightly depend on the parameter ?P . Obviously, the same properties
are characteristic of the functions of phase shifts S(K,z‘ ), for
instance, .

u

-1
ACE &) =- K Ea)=-{k C:(O)cig §ck, 2>+ nhap] (10)

and the § -wave croas sec‘tion of 7£+d ~-acattering, connected with

the amplitude -f(x)= 2ikY {exp (2¢ (5C+ 5)-1 } by the equality
6 (E)=9%5% - | {(K)-IZ.

Following works/4/, we consider the behavior of function (10)

as E -0 . The solid line in FPig. 2 is a common graph of three
functions (10) calculated at Tp=yR , )y = 0.1, 1, 10. The dash-



dotted line is a graph of function (10), calculated in our previous
work/13/ by the WKB-method, If the polarization potential is swit-
ched off ( o =0, &= 55 ), then A(E,0) is the negative of the
inverse effective-range Coulomb function. This function slightly de-
pends on the energy in the considered energy region and has at point
E = 0 a finite limit equal to &g . The graph of the function
A(E,0) 1is plotted in Fig, 2 by the dashed line. If d# 0 , then
the graph of the function A (E, o) (10)at 0.8 keV deviates from
its horizontal asymptote A(E,O)'—‘ Qg . 1t means that the upper boun-
dary of the energy intérval, where polarization effects occur in the
S -wave Xtd -scattering, is equal to ~ 0.8 keV, With further de-
creaging energy the phase shift 5P decreases more slowly than the
phase shift 5:5 of opposite sign. Therefore, the phase shift &
and function A vanish at E 2 0.4 keV. At the slastic scattering
threshold, the conditions X3 SP > 5;- are valid owing to diffe-~

rent asymptotics (8) and (9). The function ACE,d) approaches
negative infinity es E-=0 . Let us study the influence of the
polarization potential on the Jitd § -wave cross gection., The

latter may be represented by the sum

O(E) = 6, (E)+ % sc’néz.-s[n&cos(éké')+o’sP(E)

of three terms. The first term is the Coulomb cross section. When
E—- 0 it, oscillating, tends to infinity as 1/E.. The second,
also oscillating, term has a threshold behavior O¢k3®) | The third
term, i.e. 2 smooth part of the total cross section, or the nuclear-
Coulomb-polarization cross section O;P (EY=(95/k? )Sinzé-(K,‘tF)is
plofted in Fig.3 by the solid line. If E £ 0.35 keV, then é\P»SS
. 8= é"P . Therefore scattering on the polarization potentiel gives
a dominant contribution to the cross section 5;- . The cross section
of the polarization potential scatiering 0;; = (9..’:‘[//<2 ).gt'nz&f;is i)lott-
ed in Fig.3. by the dash-~dotted line. In the interval 0.35 keV<E <
0.8 keV the values of phase shifts SP and SS are comparable,
and both the potentials VS and VP give a comparable contribution
to the gcattering., If E > 0.8 keV, then the cross section Og, is
equal to the cross section O, =@J%/K?) sin?&; , plotted in Fig.3 by
the dashed line. The relations & =& >>5;, take place-in this
energy region, and therefore the influence of deutron polarizability
on Jttd -scattering is negligible.
Studying the phase shifts &¢ K,zp) We have established that they
alig,htly depend on a single free perameter ZP used, by us. The
phase shift 8 was normalized to its experimental value (9) in the

Fig. 2. Function (10), celculated at ol = 0.7 fm> in the frame-
works of variable phase approach (solid line) and of WKB-
method {(dash-dotten line). The graph of function (10) at

o = 0 plotted by dashed line.
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Fig. 3. Nonoscillating part of S-wave .7{+d cross section. Solid

line - Og, (E) , dash-dotted line O (E) 65 (E) -
dashed line,

energy region E > 0.8 keV, when one may neglect the polarization
interaction. Therefore we believe that the above determined energy
intervals, where a dominant contribution to the 6-;P cross section
comes from the polarization potential or short-range potential, are
quite exact. The most interesting result is the existence of a deep
and sharp minimum of the cross section 6;P (E) at F = 0.4 keV;
this minimum is due to the interference of scattering on potentials

VS) and V, « The same phenomenon in atomic physics is known as
the Ramsauer effect’ 19/,

In conclusion we point out the existence of such a minimum of
the 63 cross section is evidently a common property of scatter-
ing of an arbitrary positive-charged particle (for axample, the pro-
ton) on the H‘z ~nucleus if of course the phase shifts Ss and SP
at low energies opposite in sign. The experimental investigation of
the cross section 6’5 at sufficiently low energies should allow to
directly define a value of constant ol , i.e. electric polarigzabi-
lity of deuteron.
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OymemeB B.B., ComoBumoBa 0.I. E4-87-467
IlonsspH3yeMOCTh OeHTpoHAa U S—BOJIHOBOE
n+d-pacce33He TIIpH SHepruax Huke | ksB

MeTtomoM ¢as30BbIXx GYHKIIMH HCCIegyeTCss BIHSHHE MOoJIspusye-—
MOCTH OeHTpOHA Ha S—BONHOBoe TTd-paccesiHue B mpejerne HH3—
Kux sHepruii. IlokaszaHo, 4YTO HeOCUHWIHpYyWWAs 4YacTb S—BOJIHO-
BOTO ceueHMs T d-paccesHHs MMeeT TIyGOKHil De3KHH MHHHUMYM
B o6nactu sHepruit ~ 0,4 k3B,

Pab6oTa BhIIONIHeHa B JlaGopaTopuu TeopeTngecxoﬂ bu3UKH
OUMU.

ITpenpust O6benMHEHHOrO HHCTUTYTA ANEPHBIX HeClenoBaHwmit. Jly6ua 1987

Pupyshev V.V., Solovtsova O.P. E4-87-467
Deuteron Polarizability and S-Wave
rntd-Scattering at Energies Below 1 keV

The influence of deuteron polarizability on the S-wave
ntd-scattering in a low-energy limit is explored in the
framework of the variable phase method. It is shown that
the nonoscillating part of the S-wave cross section of
ntd-scattering has a deep and sharp minimum in the energy

| region ~ 0.4 keV.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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