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The interacting boson model (IBM)/i'sf is widely used in descri-
bing the collective states of spherical, transitional and deformed
nuclei. Undoubtedly, the model has a deep physical basis. In recent
years, the IBM is being constantly improved by introducing new types
of bosons and complicating the model Hamiltonian and transitional ope~
rators. :

The structure of nuclear states can be understood from the compa-
rison of the basic assumptions of the IEM with other models including
the quasiparticle-phonon nuclear model (QPRM)/4°8/. To find the limits
of applicability of the IBM, one should compare the IBM with other mo-
dels and the results of calculations in the IBM and the QPNM with the

experimental data.In the IBM,a small part of a large space of the nucle-

ar shell model is separated, namely a space of collective states. The
separation of a subspace of collective states is efficient if they are
weakly coupled with other states. This takes place only for the first
quadrupole and octupole states. Disregarding this coupling in the IBM
limits its applicability, and one should clarify to what states and up
to what excitation energies the IBM can be applied. It is well known
that with increasing excitation energy the state structure becomeés
complicated thus leading to the formation of compound states. Theé comp-
lication of the state structure with increasing excitation energy is
due to the coupling of collective and noncollective degrees of freedom
or to the quasiparticle-phonon interaction as in the QPNM. Just this
coupling is neglected in the IBM.

The simplicity of the IBM implying a strong limitation of the
shell model spate allows one to treat the low-1lying states in terms of
the s, d and f bosons. This simplicity becomes an essential drawback
of the model, i.e. difficulties in describing the states lying above
the first quadrupole and octupole states. Indeed, the IBM takes into
account only those two-guasiparticle states that enter intc the s, d
f bosons or sp, dp

o
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The QPNM utilizes a limited space of shell configurations: a large
number of two-quasiparticle states, mainly of the particle-hole type,
and of four-quasiparticle states of the two-particle - two-holes type repre-
In the QPNM, for the states with energies higher
than 2¢3 MeV the strength distribution of one-phonon or two-quasipar-

sented as phonons.

ticle states over many nuclear levels is calculated rather than the
wave function of each state. Thus, the limitations for the shell con-
figurations in the QPNM and IBM are different.

In the phenomenological IBM, an important role is played by the
number of nucleons (or holes) in unclosed neutron and proton shells.
The boson operators are coupled with the pairs of fermion operators.
The number of pairs of neutrons Nn and protons N in unclosed neutron
and proton shells determines in the IBM the spectra of collective
states. Thus, the nuclear level energies of the rotational bands based
on the ground, beta and gamma vibrational states with the same value of

F spin are close to each other/g/. The F spin is a boson analog of the
isotopic spin/io/. Moreover, the ratio of the energies £ /Z;l and the

for the bands based on the ground states are monotonous

energies Ezl 5
1/

depending on the product Np-Nn . Owing to an important role of the
number of valence nucleons 2N, one can compare the wave functions of
excited states in the IBM with the wave functions in the microscopic

models, for instance, in the QPNM. This comparison is the aim of the

present paper.

1. Cardinal difference between the QPNM and the IBM and improvement
of the IBM

in de~

/87

The wave functions of these states in the IBM have dominating two-boson

The description of states with x} 03, 0y, 23, 23, 47 and 43
formed nuclei within the QPNM and the IBM has been compared in ref,

components and in the QPNM the dominating one-phonon compenents, i.e.
there is a cardinal difference in describing these states in the IBM and
QPNM. In spherical nuclei, the states with dominating one-phonon compo-
nents corresponding to the second and third roots of the secular equa-
tion in the random phase approximation (RPA) lie above the two-phonon
states, and therefore, this discrepancy has not yet manifested itself
in most of the cases. The description of the above-mentioned states in
the sd IBM contradicts the experimental data for some deformed nuclei.
The discrepancy with some experimental data necessitates improving
the sd IBM, In addition to the s and d bosons, the g boson with J=4 is
introduced. The g boson is introduced along two lines: the first is the

renormalization of the boson Hamiltonian without an explicit inclusion
S " 2 B TR e S

%@&1¢

sesorngannti § s
O EAA

. Beapnipti S i



of the g boson/12/

, and the second is an explicit inclusion of the g
/13-15/

boson In the first case the space of two-quasiparticle states
does not become broader. With the explicit inclusion of the g boson in
the IBM, in deformed nuclei there appear states with dominating one-
boson components with X" = l*, 3% and 4% and additional states with
K" = 0% and 2+, i.e. the space of two-quasiparticle states with K =0
and 2* becomes broader. In the sdg IBM there are states with K" = 0‘,
2% and 4% with dominating two~boson components.

To describe collective states of the negative parity, in the sd

IBM one introduces f bosons with J = 3/]6/

+

or f and p bosons (p boson
with J = 1) 17’18/. Thus, ¢ollective states of the positive and nega-

tive parity are described in the framework of the spdf IBM. In‘ref./ 7/,

the energies and B{E3)-values of the states with the negative parity
in 1685r have been calculated and a satisfactory description was obta-
ined. Three levels with K¥ =3~ with small B(E3)-values are treated in
ref./17/ as the two-quasiparticle ones, and therefore, are beyond the
1BM.

There are many papers on the boson representation of the pairs of
fermion operators. It is important that the boson operators s, p, 4, f,
g, etc. consist of the pairs of fermions of the particle-particle type
(or hole-hole) and only the highest terms of expansibn are additionally
multiplied by the particle-hole configurations. Just this point is the
cardinal difference between the IBM and the microscopic models for des-
cribing vibrational states whose wave functions consist of the sums of
particle-hole configurations, i.e. the IBM wave functions differ essen-
tially from the wave functions in the RPA and consequently from the
QPNM, the theory of finite Fermi systems and other models. The diffe-
rence in the Hamiltonians, operators of ¥ -transitions, etc. is due to
the afore-said., In the IBM the number N is conserved; it is half of the
sum of neutrons and protons (or holes) in unclosed shells and in the
wave functions the number of the creation operators of bosons equals N.
At the same time, in the (QPNM the wave function is represented as se-
ries over the number of phonons. The QPNM single-particle operator of
the EA -transition has terms changing the number of phonons by unity
and the term that does not change the number of phonons (of the type

d;} olgq ). The IBM operator of the EA -transition contains terms
transforming the s boson into the d boson, d boson into g boson, g bo-
son into f boson and so on. Therefore, in the IBM there are (under a
certainchoice of parameters) strong transitions between the states dif-
fering by the type of one boson. In the QPNM, the EA ~transitions bet-
ween one-phonon states proceed through the terms dq;cir,» and therefore
are strongly hindered.

It is interesting to analyse how to distinguish experimentally
excitations of the particle-hole type from those of the particle-par-
ticle type. This can be made by the one-nucleon transfer reactions a?d
allowed unhindered B-transitions but cannot be made by the ¥ -573?51—
tions from the ground states and two-nucleon transfer reactions .

In the sd IBM the whole space of two-quasiparticle states with
¥ = 2% is concentrated in the dz boson. As a result of the interaction
between bosons, the most strength of two-quasiparticle states belongs
to a gamma-vibrational state and the remaining part is distributed
among other states with K™ = 2%, Therefore, if the gamma-vibrational
state is strongly excited in a certain one nucleon tgansfer reaction,
for instance, in (d,p) and is not excited, say, in (“He,d), this should
hold for all other K =2" states.

With the g boson iptroduced, the operators d;wand %E entez with
different weights into the wave functions of the K = Zy and 22 states
/15/  As a result of the interaction between bosons a part of their
strength belongs to the K; = 2; state. Therefore, if a gamma—vﬂwat#mul

state is noteven slightly excited in any one-nucleon transfer reaction,
for instance, in (dt), the 2; and Zg states should not be excited in
this reaction as well. In a one-nucleon transfer reaction one of the
2;, 2; and 2; states should not be strongly excited and the remaining
two states should not be excited at all. These specific properties of
the sd IBM and sdg IBM can be and should be verified experimentally.

In the QPNM, the one-phonon parts of the wave functions of the
Kn = 2;, 2;, 2; and 2; states are different. Therefore, one (or two)
state can be excited in the (dt) reaction, the other in the (dp) reac-
tion, the third in (SHe, d) or (3He,d') and so on. This is a consequ-
ence of the large space of two-quasiparticle states taken in the (QPNM
into account. These cardinal differences between the IBM and the QPNM
are to be verified experimentally.

The existence of collective two-phonon states is the central prob-
1em in the study of the structure of nonrotational states of doubly
even deformed nuclei. The crucial contradiction between the QPNM on the
one hand and the IBM, the Bohr-Mottelson modellzoi and its microiggpég/
analogs/z‘/ and the self-consistent collective-coordinate method ’
on the other hand consists in the existence of two-phonon collective
states. According to the QPNM, the deformed nuclei have no two-phonon
collective states whereas other predict their existence.

According to the QPNM, in the two-phonon configurations the Pauli
principle shifts the energy centroid by 1-2 MeV towards higher energies
with respect to the energy sum of two RPA phonons. As a result , the
energy centroid of a two-phonon coliective state becomes larger than



3 MeV. If one of the two phonons, for instance At = 201, turns out to
be weakly collective, then the energy shift of the state.{201,201} or
dani ,201} may be small. Nevertheless, due to a large energy of the 201
phonon the energy centroid is still larger than 3 MeV. At an energy
above 3 MeV a two-phonon state should be fragmented over nuclear levels.
The conclusion on the absence of two-phonon collective states in defor-
med nuclei has been made in ref./7/ on the basis of the above reasoning.

From the analysis of experimental data it has been concluded/24/
that there are no reliably determined two-phonon collective states in
deformed nuclei, Numerous experimental investigations in recent years
did not lead to the detection of two-phonon states.

168

2. Comparison of the description of Er in various models

The comparison of the results for the nonrotational states with
XK'= 0+. 2t and 4% calculated within various models between themselves
and with the experimental data will be performed for 163
of 168Er is caused by the rich experimental data/zs'sof and numerous
calculations’’»8,13-16,20-23,28,30-32/ gy, comparison is shown in fig1l,
the experimental data for the (t,o« ) and (t,d} reactions are taken from
ref.”27/; and for B(E2Z) and B(E4)-values (in the single-particle units),
from ref.jsof. This figure presents the results of calculations within
the QPNM/ 718232/ sq 1BM 728:30/ 444 the sag 1M/ 'Y/,

The results of calculations for 168Er in the sd IBM/28’30’31/ and
sdg IBMliS/ contradict the experimental data on 02, OZ, 2;, 2; and Z:
states. In a new version of the sdg IBM/14/ four types of the interac-
tion with new parameters have additionally been introduced into the
Hamiltonian. As a result , some discrepancies with the experimental data
including those on the 0% state excitations in the (tp) reaction were
removed. Nevertheless, in the calculations

Er. The choice

one of the two states 0;
or 0; as well as of K:= 2; or 2; is a two-phonon state, which contra~-
dicts the experimental data. Moreover, according to ref.i27/, the 2;
state having a large two-quasiparticle ppd11 +411 component cannot
exist within the sdg IBM 14 , which has long ago been predicted in the
QPNM calculations. Following ref./M , the K;=4; state has a two-phonon
nature and the K =4% state with a large one-phonon hexadecapole compo~-
nent lies at 3.8 MeV. In all the calculations within the sd and sdg IBM
the 4: state is the two-phonon one. The energies of K;=Z;, 2;, 0;, 0;
and 4; states, that are close to the experimental data, depend on the
choice of parameters of the sdg IBM.

In comparison with the calculations of one-phonon states in ref.

/32/,the calculations of '®8Er within the QPNM in ref.”33/ and the sub-
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oy,
sequent calculations redefined the constants Kﬁj and x?" (to de-

crease the B(E2)~-values for the 2+02 state excitation) and the blocking
effect. In calculating the K'=2" states the hexadecapole A*=42 forces
were taken into account together with the quadrupole Am =22 ones. The
values of the two-quasiparticle components (%) inm fig. 1 are presented
with the inclusion of the relevant phonon contribution to the wave
function normalization. A correct description of the experimental data
has been obtained. It is very important that there are no any explicit
discrepancies with them. The calculated two-quasiparticle components
of the wave functions of the K: = 0;, O;, OZ, 2; and 2% states are in
agreement with the experimental data on the (td) and (t«) reactions
/. The calculated isoscalar B(E4)-values of the 4*21 state excita-
tion are three times as less as the experimental values obtained in
ref.”3% from the (d,o) Teaction in spite of the fact that the 2;
wave function contains a large contribution from the hexadecapole com-
ponent with d# =42, By the calculations, the one-phonon éﬂi =441 com-
ponent gives an 80% contribution to the notmalization of the Kg = 4:
wave function whereas the contribution of the two-phonon iZZI,ZZI} con-
figuration is still about 1%. The 4: state energy at B(E4)=0.8 spu
appeared to be higher than the experimental one. The experimental data
/39/ on B(E4)-values for the d; state excitation indicate the presence
of a large one-phonon component in the wave function. Since the hexa-
decapole éﬂ =42 forces are taken into account together with the quad-
rupole éﬂ =22 ones, when calculating the K:=2; states, the pole of
K= 4‘{221,221} is somewhat less shifted. Nevertheless, the energy
centroid of this state is a little higher than 4 MeV. The energy cent-
roids of the two-phonon K"=2"{221,201}, 0%{221,221} and 0" {201,201}
configurations are in the interval (3.0-3.5) MeV.

The problem of large anharmonicity of the two-phonon Y- vibrati-
onal states in '68Er has been discussed in ref. 21/ and is being stu-~
died in ref./23/ by means of the self-consistent-collective-coordinate
method/zzi. A large anharmonicity is thought to be due to Y- deforma-
tion in 168Er. According to ref./23 , the energy minimum has been ob-
tained at ¥, =13% and the energy difference in comparison with f =0 is
1 MeV., It should be noted that the calculations/34f of the 108p; shape
by the shell correction method indicate the softness of the 168Er with
respect to ¥ deformation but the energy minimum is attained at I, =0.
According to calculations/zsl, the energies of the two-phonon states
4:, and 0:, are 2.25 MeV and 2.95 MeV, respectively, At the energy
3 MeV  the two-phonon state should be fragmented, and in this case for
0" there is no obviuos discrepancy with the QPNM. The inclusion of the

mode-mode coupling decreases the energies of the two-phonon 4;7 and

O;r states up to 2.1 MeV and 2.27 MeV, respectively. It is to be noted
that the mode-mode coupling is much simpler than the quasiparticle-pho-
non interaction in the (PNM. Moreover, according to ref./zséééﬂ;)<‘égﬁj
whereas in the QPNM an inverse equality gcg;);>«g(o;n) for the energy
centroids is valid since the effect of the Pauli principle for the sum
of K-values of two phonons is considerably larger than for their dif-
ference. .

The results obtained in ref./zsf concern only ¢ -vibrational and
two-phonon states 4;, and 0;, in '%®Er whereas a set of nuclear sta-
tes including R-vibrational ones are to be described. It should be ex-
plained why the two-phonon states of the type f221,201}, i221,311},
k221,321}, etc. are not observed. The contribution of the hexadecapo-
le component to ¥ -vibrational state is to be described. A large B(E4)=
=0.6 spu of the 4: state excitationiso; contradicts the conclusion

/M, 23/ on the two-phonon structure of this state.

3. Discrepancies between the spdfg IBM and the QPNM

The necessity of introducing the g boson in the case of deformed
nuclei is clearly demonstrated by the example of 168Er. The g boson is
also necessary for describing the 4; states in spherical nuclei. Ob~
viously, collective states with the positive and negative parity should
be described in the framework of one model. There is no point in desc-
ribing the states with the two-boson dominating components separately.
Indeed, the et states have the positive parity whereas the da*e¥ and
f*g* states have the negative parity. Therefore, deformed nuclei should
be described within the spdfg IBM if one does not restrict himself to
the B-, ¥- and first octupole states with the corresponding rotational
bands. Such a version of the IBM is still to be consistently formula~-
ted. For the deformed nuclei, the QPNM should be compared with the
spdfg IBM in the general form. According to the QPNM, the wave func-

+

- F +
tions of the K} = 03, 03, Oy, 15, 13, 23, 23, 25, 33, 33, 47 and 4;
states have dominating one-phonon components corresponding to the se-
cond, third and fourth roots of the secular equation in the RPA. The
experimental detection of these states with the positive parity is
exemplified in refs./s'sz/. The following experimental data are ava-
ilable on the states with the negative parity: for K; = 35 with the
energy 1.828 MeV, 15 with 1.936 MeV, 35 with 1.989 MeV and 2; with
2.230 Mev in '98Er /3% gor «T = 23 with the energy 1.567 Mev, 2;
with 1.857 Mev in '78

Hf/36/; for K; = 0, with the energy 1.237 MeV in
234 and others.

“



In the spdfg IBM in doubly even deformed nuclei in the energy

range from 1.5 to 2.5 MeV there should be states with Kg = 05, 0%, 0;,

+ + +* *
IEY) 2;, Zg, 3; and 4:, whose wave functions have dominating two-boson

components. These states are not yet observed experimentally. Does the
spdfg IBM pretend to the description of these states? If yes, there is
an essential discrepancy of the spdfg IBM with the QPNM and with seve-
ral experimental data.

The comparison of different models should be performed for many
deformed nuclei in the rare-earth and actinide regions so that the spe-
cific features of one nucleus could not distort the general picture.
Thus, there are still discrepancies between the sdg IBM and the experi-
mental data in describing the K; = 4¥ and 45 states in 156,15854 and
]60’}640y and the KE = 3; and 3% states in 172,174yy, . The sdg IBM en-
counters difficulties in describing the K; = 2; states with large B(E2)-
values that are observed in many nuclei. The absence of two-phonon
0%{301,301} states in the Th and U isotopes, in which there is no stab-
le octupole deformation, is yet to be explained within the spdfg IBM,
the Boh-Mottelson model, the method used in ref. / and other models.
It may be asserted that many-quasiparticle or many-boson components of
the wave functions are not essential in well deformed nuclei in the
states with an energy up to 2 MeV.

It should be noted that the structure of nonrotational states of
doubly even deformed nuclei in the rare-earth and actinide regions is
correctly described within the QPNM. In these calculationsone uses the
single-particle energies and wave functions as well as the one-phonon

RPA states calculated more than 15 years ago.

4. Critical comments of giant resonances in the IBM

The attempts have been made/38’39/ to describe the isovector dipo-
le and isoscalar monopole and quadrupole giant resonances in the Sm iso-
topes within the IBM. The particle-hole operators of the p°, s” and 4"~
bosons were introduced; the operators of E1, EO and E2Z transitions were
written in the form

T, = D), Tyt D (5" *s"), Ty = D,(d” " +d") .

The relevant Hamiltonians have the terms describing the interaction of
the p”, s and 4° bosons with the s and d bosons. They are responsible
for the fragmentation of one-boson states forming giant resonances. The
parameters D, and D, in ref./39/ are found from the energy weighted sum
rule and D, is assumed in ref./387 to be a free parameter. It is to be

noted that in des%fibing giant resonances, the IBM uses particle-hole

10
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o?erators. Therefore, in this case there is no essential discrepancy
with the RPA calculations in other microscopic model as well.

In refs./38’3g/ the whole set of collective states forming the
giant resonances for each K is described in terms of one boson. It is
to be answered whether the whole variety of states forming the giant
resonance can be described in terms of one boson.

The QPNM calculations show that the giant resonances are formed
due to the fragmentation of a large number of one-phonon states. The
?iieption is the isoscalar quadrupole resonance in 9OZr, '12']205n,

Nd and other nuclei formed by two one-phonon states/40_42/. As is
shown i?1§ig. 3, in ref. 42/ the fragmentation of two one-phonon sta-
tes %n Sn is different. As a rule, five-ten and more one-phonon sta-
tes in spherical nuclei exhaust the most strength of the isovector di-
pole and isoscalar quadrupole resonance. The quasiparticle-phonon in-
teraction causes the fragmentation of one-phonon states manifesting it-
self in the resonance fine structure. Thus, a large number of 2% states
forming the isoscalar quadrupole resonance in ZOSPb has experimentally
bealobsmwedinref/usﬂlheQﬂﬂNcalculations/43; havé shown a fine struc-
;Egi.oint:izojizgriizi:ire;::ance consistent with the.results of ref.

- . y one-phonon states participate in the forma-
tion of giant resonances. Thus, according to ref. 150 one-phonon
states exhaust 80% of the energy weighted sum rule of the isovector di-
pole resonance in 238U. In calculating the giant quadrupole resonances
in the rare-earth and actinide regions, 2000-3000 one-phonon states are
taken into account.

It follows from the microscopic calculations that a large set of
two-quasiparticle states is necessary for the formation of the giant
resonance (especially in deformed nuclei). Therefore, one can hardly
expect that a large number of shell configurations forming the giant
resonance can be described by one boson for each value of K.

If the giant resonance is formed due to the fragmentation of one bo-
?on. there should follow certain regularities for the probabilities of
1Fs decay with the emission of a neutron and a proton or by ¥ -transi-
tions to the ground or excited states when passing from the low-energy
part of the resonance to its upper part. Direct indications may be gi-
ven by the one-nucleon transfer reactions if the valence particle-par-
ticle {or hole) configurations provide a large contribution to the wave
functions of states forming the giant resonance. The operators of ¥ -
tfansitions from the giant resonances proceed between the states diffe-
ring by a particle-hole boson. Thus, to the gamma vibrational states
there proceed ¥ -transitions from the components s*% or p'* or 4" mul-
tiplied by the d* boson of the wave functions of the states forming the

11 '



giant resonance. In the IBM, such probabilities of ¥ -transitions to
the beta-, gamma- and first octupole states should be calculated for
some deformed nuclei. The comparison of these calculations with the
experimental data will probably answer the question whether a giant re-

sonance can be formed by one boson.

Conclusion

Tt is a rare case in the theory of atomic nucleus that various mo-
delsdiffer essentially in describing certain nuclear characteristics.
Removing these contradictions leads as a rule to a decper understan-
ding of the nuclear structurc. In describing some states of doubly even
deformed nuclei in the excitation energy interval from 1.5 to 2.5 MeV,
the IBM, QPNM and other medels have essential contradictions. The lat-
ter necessitate new more exact experiments. First of all, the experi-
ments are necessary on the measurement of the contribution of two-qua-

siparticle components to the wave functions of rotational bands based
+ + + + + + + + +

tr_-———--—---—++
on the Kn = 02, 03, 04, 12, 13, 22, 23, 24, 31, 32, 41, 42 and other
states and on the search of two-phonon collective states.
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Conocrapnesue MORTH B3AUMOASCTRYIOmIMY G020HOB
€ KBa3UTACTHIROPOHOHHON MONeNLIO AKpa

TpoBefieHo CONOCTARNEHNE OCHOBHMIX NoJOWeRMHl KBAZHMCTHEHO-DOHOHRO Moge-
JHM ADpA ¢ MOIEITHI0 B3aumoReACTBYIOIIMX Oo3cHos. JINA eIMHOro CITHCAHHA KOIUIeKTHR-
HOTO COCTORMMA C MONOMHTENLHON H OYPHMUATENLHON YETHOCTHI0 HeoGXoZHMO paapa6o.
TaTh BApMANT MOJENH BIAMMONeAcTBYIOmmMx Gosomos c 8pdfg  Gosomamu. Tloxasamo,
NTO MMEIOTCA KSPIAMHANLHLIE DAIMYMA B OCHOBHLIX NOJIOMEHHMAX MOJened ¥ B omca-

- X z * +

HHH COCTORHMI YeTHO-YETHRIX NehOoPMHPOBAHHEIX AHep C K:- 0g. 0g, 04, 1, 25, 2;
2 f, 3 21, 3;, 4:;; 4;, JIAHA KPHTHIA ONHCAHMA MHTAHTCKEX PESOHAHCOB B MOLENH B3aHMONEH-
creyioumx GO30HOB. YTBepanaerca, uro HeobGxonumm HoBkie Gonee Towme 3xcmepu-
MEHTAMLHME HOCTISNOBRHNA CTPYKTYPLI COCTORNMIt nedo pMHEPOBARHHLIX AXED € IHePIruAMH
BosGywnenun (1,5 -2,5) MsB.

Pabora sumonHens p JlaGopaTopuu Teoperiveckoll ¢puamam OUAN.

Npespuerr O6reMmmmm0ro RECTRTYTE AepLX necnefossaud. JlyGan 1987

Soloviev V.G, E4-87-4b

Comparison of the Interacting Boson Model
with the Quasiparticle-Phonon Nuclear Model

Basic assumptions of the quasiparticle-phonon nuclear model are compared with those
of the interacting boson model. For a unigue description of collective state with the po-
sitive and negative parity, one should develop a version of the interacting boson model
with the spdfg bosons. It is shown that there are cardinal differences in the basic assump-
tions of the models and in describing the states of doubly even deformed nuclei with K7 =

=0y, 0;, 0l 13, 21, 2, 2.5 33,25, 4y and 4}. Critical comments on the description
of giant resonances within the interacting boson model are given. It is asserted that new,

more exact experimental investigations of the state structure of deformed nuclei with
excitation energies (1.5 - 2.5) NeV are necessary.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.
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