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I. INTRODUCTION

In the present paper we discuss the off-shell effects in
the coherent JT° -photoproduction analysed in the framework 61.’ )
the distorted-wave impulse approximation (DWIA). In order to
formulate the problem let us write T-matrix of the process in

terms of DWIA in the momentum space [1]
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where
Ul = (9 p It (@) p > dpdp’, 2

‘i and P(,D) are the pion and initial (finel) nucleon mo-
mente, respectively, k= Ex and A = +1 are the photon

momentum and polarization,

$(EP) :<oj§5(£’—ﬁ)8(f—ﬁ)l°> (3)

is the nuclee.r density, t)”, (w) is the pion photoproduction

t ~-matrix on the free nucleon. Here, the quantity W  has
the meaning of the full pion-nucleon ( JN ) ene:rgy in the

N -centre of-mass system when pion is on-shell (i.e. when

= [me+927% ). - To6)=T, AE)A-1) /A is the

matrix of elastic pion-nuclear scatterlng that depends on the
full energy E for a pion—-nuclear (Tt A) system (i.e.E‘E;(1°)+EA(70))-
Tris matrix can be determined by:solving the JIA -scattering
problgm[Z,B] in the KMT version of the Multiple Scattering
Theory[4 }- ’
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It follows from egs.(1,2) that to take into account the
strong JIA ~-interaction in the final state it is necessary
to perform the integration over Z from 0 to ©© , As a
consequence, the problem of determination of the f,‘,(w ) -
matrix in the off-shell region (i,e. when 1 * ‘io ) érises.
This problem is closely connected with the choice of the reac—~
tion energy @W! since different off-shell extrapolation of
the f_,,,(lU) -matrix can be realized by different determina-
tion of the parameter () . in the off-shell region. The main
task of the present wo;k is to investigate the sensitivity of
the J° -photoproduction process to the different choice of w.

Note that an analogous problem arises in the JEA -scat-
tering. In this case it has been ‘shown[S,G} that various as-
sumptions about W and its relation with the energy E
lead to different results in the ASB -region. We think that
coherent JT° ~photoproduction must be more sensitive to diffe-
rent determination of the reaction energy & since in this
brocess the nonresonant pion S -wave contribution is absent
and therefore the resonance (3,3 )-multipole dominates. As a
consequence, we have a very sharp energy dependence for the
tlr)’ (lu) matrix. In such a situation it is very important to

know the correct determination of the reaction energy W

II. ON-SHELL PHOTOPRODUCTION AMPLITUDE

For the determination of the 'éJ” -matrix in eq.(2) the
expression for the corresponding free nucleon amplitude -f.m, v
in the JTN c.m, frame is used. The on-shell relation for tm’

~r

and Ty, is

@ tpaly=-2n (G- R o GGy o

-

where M and M are the invariants for YN and N systems
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with £:K+P.,g;:(z+fl and EM(P)‘(MM +P )- The
pion (.}’E ) ;and photon ( R’ ) momenta in the c.m. frame are con-

nected With the corresponding momenta in an arbitrary frame by

the Lorents transformation

o ) ~ 9‘).‘ _?
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The general expression for )(JT and its partial decom-

position is well—known[7] . Here, we use the spin-independent
"

part of T since only it contributes in the ?“oherent e -
photoproduction on zero-spin nuclei. Keeping only P - and
6{ ~-pion partial waves, one obtains
G0 K= [(2M, 0 M) BE(3My, +2M,) 3 0 0
where ’IZ and g are the unit pion a:'ld pj—t)tzn momenta in,
the JTM/;/ c.m. frame, respectively, X = w’z:'ﬁf- .
The multipoles Mlt (IA)) are taken from refs.[?,B] .

For ‘avveraging over nucleon momentum distribution in the

nucleus for the calculation of V;”, (see eq.(2)), it is con-

venient to perform the following substitution

- _ AL —-——_A_i -9)+vU = ,"H_‘,v-, (8a)
P=-a" " 2a (Rr¥EpTAY

2y AL Y= pHau, (8b)
‘A+2A(~i)“~ff ‘

According to ref.[S] , for zero-spin nuclei linear in U terms
in ny give zero contributions and quadratic ones in ¥  are
‘of the order (er/M)zN 0.02. Consequently, for our purpose

~ netf L'Pd}
it is sufficient to neglect U in (7) and teke PP , P [,
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(the factorization approximation). Then, the plane wave part

Tfm’ can be expressed as

<1le!KD"ZM[ﬁm)]ﬂlfm(w)lo (@) /a5y

c th
where EA (&) and fP ((2) are the nuclear and proton charge
form factors, respectively, »@:*&_i is the transferred mo-

mentun.

Note that the factorization approximation guarantees the
momentum and energy conservation in the JA ’ n& and YN

systems simultaneously when ‘l = 10 . However, in the

off-shell region (where (L Xx q,o ) the total energy for the

mN -system disagrees with the total energy for the 3’”

system (i.e. W M/:F when ?, * 70 ). In this region the

physical meaning of the parameter W is uncertain,

III. OFF-SHELL EFFECTS. RESULTS AND DISCUSSION

As it has been noted above, the connection (4) between

the matrices f {“) and f (‘\’) is correct only in the on-shell

sense, While computing the principal value of integral in (1),
one postulates that eq.(4) is relevant in the off-

as well, However,

shell region
the uncertainty in the definition of the ener-

& W in the off-shell region remains, In what follows, to

study the effects of different definition of wy s we shall

use the following alternative expressions:
2 2 9y,
We =W, = [(En((tn) + E”(F’)) _»9; ] ‘ (10a)

we=[m2eMi+2 En(io)EN(P’)—Zi.!i’]/z (10D)

2 =Wy =[(E(9) +E,(p)) -7 1" | (106)

According to ref.[6] , the reaction energy W may be determined
also as wsz(WE "W{»)/?- and W, = \W: W

A1l definitions for W, ( ¢ = 0+4) are on-shell equivalent
but they provide us with rath.er different values in off-shell-
region. For the illustration of this fact the dependence of Wo,
W; and W; on pion moméntum .9 is plotteLdAei'_u Fig.1. in the
case of J° -photoproduction off ‘ZC at Ey' = 290 MeV and
QJT = 25° ( in the A c.n. frame Ex = 283 MeV, 7°=
= 1.26 fn” " and W(go) = 1200 Mev).

The off-shell behaviour of the partial amplitudes Mli (w)
at the fixed reaction energy W; ( T = 0:4) may be determined,
€.ge; from the separable model of JTN —interaction[&)] like

it was done in the A -scattering probleml_2,3}

Mye (@) = My (w0) 92(5) /952 (52). (11)

where

2
GAD=9 1 ag?Y o« o, (D
In egs. (11,12) é: is the pion momentum in NNV c.m., freme
that corresponds to the energy W); for the IV _gystem. The
appropriate threshold behaviour of the amplitude M, (W) as
g -» 0 is guaranteed by the term ie in eq.(12).
‘Notice that for W, ——M(i) , one may not introduce
the factor 5,,-” (‘Z) because in this case i ?z . The right

threshold behaviour of and its cutting off as ?"‘:’" are

¥
provided by the energy dependence of M!(W) multipolés for

which one has [7]

Mz:Ti:Z 7, M. §oeo w7 e g W (13)
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Fige 1s 1, -dependence of different definition of the reac-
tion energy & in the off-shell region correspond-
| 178
ing to the on-shell value ¢, = 1.26 fm (kLsE’ =
= 290 MeV).

The energy dependence of the multipole /‘11‘ (w) dominant
in (7) is plotted in Fig. 2. One can see that the region most
sensitive to the choice of energy W may be E;e\a, 290-340 ideV
where the real and imaginary parts of this multipole have sharp
energy dependence. Our DWIA results* corresponding to the dif-
ferent definition for the off-shell behaviour of the parameter
W (see Fig.2) are depicted in Figs.3 and 4. As it was expected,
Az_z‘, -reglion is the most sensitive to the choice of W . In

this region results may differ as much as 1.5-2 times. This sen- '
LAB
sitivity decreases with £y .

*The results of this paper differ from our previous results
(see ref,./14/). This is due to several reasons: 1) earlier, mul-
tipoles M,,(w) were calculated at fixed energy w(q.) , now w
is the variable of integration; 2) in the A3z -resonance re-
gion we use the new BD-amplitude(8] instead of BDW[7] ; 3) we
ugse the new sy A -~optical potential [3] describing not only the

differential cross sections [15] but dso & and 6, for the
elastic 54 -scattering. 2 ror el O

-

Fig. 2.

Fig.
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multipole [.8 ] .

90° 120° ©,

12 2
Angular distribution for C(#¥°) C at the photon
energy k,_ = 290 MeV obtained by using the reac-
tion energy & = W, (dash-dot), W = Wy (dashed)
end W =), (solid). The date are from ref. [10] .
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Fig. 4. The same as in Fig. 3 at K, = 230 MeV. The result
corresponding to the choice W = Wy is not shown
because it only slightly differs from that correspond-
ing to W = W, . Dotted line is the result of the
plane wave impulse approximation.

In our opinion W= W, is the most consistent choice. This
is not only because this choice provides us with the best agre-
ement with the experimental data from ref. [10] . Actually, such a

1] .

conclusion may be considered as a consequénce of the Relativistic

Potential theory [11] with the help of which one can determine

the off-shell relation between the tJTJ’ -matrix in an arbitrary

frame and the corresponding amplitude fﬂ)’ in JTA/ c.m, frame.

Such an expression was obtained in[12] for the N -scattering

matrix. Generalizing this method for the two-potentials probleml_13]

one can see that in expression (4) it is necessary to replace the
connected with

~o
amplitude J[NJ' by the auxiliary matrix fm,

each other as follows:

Gk G| §, ()% z,zﬂmqluwm 9>

)] ~ 1 1 ,
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8

(14)

P

— . =

P

-,

s e ——

.energy dependence of the t“,

where jlf(q,) is the reduced mass of NN -sys “em, W, /= =F (tl +E (1):
[(E (2)*5 (p) ?jlhas the meaning of the elgenvalue of the relativis-
tic free Hamiltonian of the WA/ —system(/; = A +/( )

in the c.m, frame, f]m is the g A ——scattgrlng amplitude.
Note that we neglect in (14) the terms of \?'{f)/h/- M . order
and use the first Born approximation for the electromagnetic

1nteract10n. .
I_t can easily be seen from eq.(14) that if we set up
w = -‘/\/; the contribution of the second term in eq.(14) will
be zero. As a result » We obtain the simplest off-shell connection

(4) between the 'é]r! -matrix in an arbitrary frame and the

~

corresponding amplitude f,n, in the IV - com. frame (half
off-shell comection[12] ).

IV. SUMMARY

We have demonstrated the s8trong sensitivity of the coherent
e -photoproduction off nuclei to the choice of the reaction
energy W for the elementary t),,(w) ~matrix in the off-shell
region.- The main reason for such a sensitivity is the resonant
-matrix., The best agreement with
the experimental date was obtained when W was chosen as the
eigenvalue of the free relativistic Hamiltonian for the Jl:A/ -
wz=(Ex(1)+EN(P'))Z—{?+P,)Z ). This conclusion
is consistent with the results of t;e”;elativistic Potential

theory [11,22] .

system (i.e.

Note that in our calculations performed for the charged

16 12 10
pion photoproduction off 0 N C and 5 we have observed
only 10-20% difference between the results corresponding to

various choices of the energy (J . This is mainly due to the



fact that in the case of charged pion photoproduction of the

nonresonant S -wave E;+ multipole dominates and consequently

1

Y

has smooth energy dependence.

The authors are grateful to R.A.Eramzhyan, M.Gmitro and

R.Mach for interest in the work and valuable remarks.
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HspaTenncxuft oTaen O6HLEXMHEHHOrO MMCTHTYTA SOepHHX HCchRegonanuik

- .

Yymbanos A.A., Kamanos C.C.
AddexTs! cXona ¢ 3HepreTHYecKo! IoBePXHOCTH
B IpoLeccax KOrepeHTHOro (pOTOPOKIEHHsA
7 ° -Me30HOB Ha AIpax

IIponeMoHcTpHpOBaHa CHIbHAsA YyBCTBHTEIBHOCTh IIpOLIECCa
KOrepeHTHOro (hOTOPOXAEHHA 7°-MEe30HOB Ha AApaX K pa3HOMY
BBIGOpDY 3HEprHM DeaxliMH w B 3JIeMEHTapHON aMILIUTyHe t,,y(w ).
PasHbple mpemnonoxkeHMA O NOBENEHHMH © BO BHEJHEPreTHUECKOM
obnactu MoryT uameHATs audpepeHIManbHble cedeHHn B 1.5-2 pa3a.
Haunyuwee cornacue DWIA-pe3ynbTaToB ¢ 3KCnepuMeHpaTbHBIMH
JaHHBIMH MOJIyYE€HO MpPH @ paBHOM COOGCTBEHHOMY 3HAYeHHIO CBO-
6omHOro pPeNATHBHUCTCKOrO raMHIbTOHHAHA MHOH-HYKJIOHHOH CHCTe-
Mbl. Takoil pe3ynbraT HaXOOHUTCA B COIJIACHH CO CJIEICTBHAMH
PEeNATHBHUCTCKOMN NOTEeHIMAILHOM TEOPHH.

Pa6ora Bbinonnena B JlaGopaTopuu TeopeTuyeckoil (PHIMKH
OHAN.

Ipenpuit O6benuHEHHOrO HHCTHTYTA ANEPHBIX UccnenoBaHM. [ly6Ha 1987
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The strong sensitivity of the coherent 7% photoproduction to
the choice of the reaction energy @ in the elementary t 7y(w )-matrix
is demonstrated. The best agreement of the DWIA-results with the
experimental data is achieved when @ is chosen as an eigenvalue
of the free relativistic Hamiltonian of the #N-system. This is in ag-
reement with the consequences of the relativistic potential theory.
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