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I, Introduction

Quantum inverse problem is 35 years old. Acoording to the mo-
dern notions, the interaotion is caused by the exchange of particles.
But the potentials are such a convenient tool for an effective
description of the mutual influenoe of elementary partioles and comp-—
lex objeots that they are worth inventing even if they do not really
exist at all. So, there will always be a sultable place for the in~
verse problem in the rapidly ochanging quantum sclence.

Before the appearance of the equafions of the genulne inverse
problem, the interactions have been reconstruoted from the scatter-—
ing (spectral) data by the nonlinear fit. This "trial and error"
method has its advantages even now, but to save the computer time,
the use of linear equations of Gelfand - Levitan - Marchenko, Neutron-
- Sdbatier,etc. (see 1-3/), seems more promising for oumbersome prob-
lems,

Untill now the main advances of the inverse scattering theory
conterned a single partiole in an external field 14 . But the ten-
denoy to consider more and more complex Systems becomes rather '
clear.

An investigation is undertaken of spherically nonsymmetrical
interactions /4y3/ In particular it appeared that the inverse
problem approach is possible in the case of axially-deformed target
There appeared many papers devoted to multiohannel'syatcms/3' 7/;
eto, Some particular many-body models were also considered

hyperspherioal-symmetrical intsractions . in' the three-body
systems without two-partiole potentials; and three-body scattering

without rearrangement of partioles. But in the real ocass, the reaot-
ions with the ohange of oomposition of the colliding olueters are
possible, e.g., ab + ¢ ; ao + b, etc. The application of the
inverse problem approach to these systems was prevanted by the faot
tBat after the reduction to a single variable the equations of mo-
tion became integrodifferential. Therefore, the"effgctive nonlocality
of the interaction matrix, whioh couples different channels, includes
into the game unknown potentials at once from all the depths of the
interaction volume., And in the inverse préblem approaoh the potential
values Ge look for have to appear in a suocessive way during the
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transition from the known asymptotics of the wave function inside
the target under investigation.

In the present paper we discuss a possibility of avoiding this
difficulty using the method of description of three-body reaction
by means of ordinary differential equations with a single hyper-—
radial variable. It appears that hyperspherical ooordinates are very
suitable for the description of asymptotic physical states: they
transfer to the ocorresponding Yacobl ocoordinates in évery channel of
three-body system at great distances between fragments. This will be
discussed more thoroughly 1s Sec. %;8-10/

The correctness of the method for high energi?s is not
clear now. So we modified the approach of Hooshyar-Razavy 7/ to the
inverse problem in order to reoconstruot the potential matrix from
the scattering data at different low energies. In seot. 3 we discuss
a possibility of restricting the energy values. This possibility is
connected with the Kotelnikov theorom on the approximation of
functions by the harmonics with arbitrary low frequences.

It 1s natural to look for the information on three-body forces
after the two-body potentials are determined from pair collisions.
S0, the basic functions whioh separate all the variables except
for the hyperradius in our approach take into account all the binar
interactions and the three-body potentials are included in the mat-
rix, that ocouples the ordinary differential equations corresponding
to particular ohannels.

The stability of the method’’’/ and its generalization consi
dered in this paper has not heen investig?gegozet, especially in
combination with the multichannel method - . Sos the present
report i3 only the first indication of the principal possibility of
reconstructing three-body interactions in the genuine inverse pro=-
blem approach.

2, Basic functions for the reduotion of the three-body problem to
the system of oxrdinary differential equations

We shall consider the simplest model of two particles moving
in an externdl field: a particle 1s scattered by a potential well
in which there is another particle (see fig.1). The motion of each
particle 18 one~dimensional - this case includes already all the
maln features of the three-body inverse problem - the consideration
of more dimensions introduces complications, that do not alter
the essence of the proposed method. Pige2 shows the two-dimensional
configurational space of both the particles. The regions, where the
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Fig.l

A system of two particles moving
in eyxternal figld! potentials

A (xs and V{x,). These particles
interaot by means of Vj, (Ix,-xail).
Reactions with rearrangement are
possible: knockout of particle 2
from the target with oapture of

partiole 1 by the external poten-

tial well and stripping yith
formation of a pair (1,2).

two~body potentials are signi-
ficant, are represented by three
strips. The horizontal strip
corresponds to the infinite.
motion of the first partiocle
while the second particle is
confined in the target. The
three-body reaction takes pla-
ce near the origin where all
the strips come together and
the reaction produots diverge
along the strips. The vertical
strip ocorresponds to the se-
cond particle moving away
while the first one remains
in the  target. Along the inoli-
ned strip there spreads the
stream of (12) pairs — tho
product of the reaction of
stripping the seoond particle
by the first.

The diffioulty in describing

these reactions consist in the fact that the physical asymptotio

2
X, j;

Fig.2.

The two—~dimensional oonfigura-—
tion space of two one—dimen-—
sional partioles in an exter-
nal field. Three strips are
shown, where the two—partiole
potentials V.,V,, Vi are aoct—
ing. The sym%olgoal gchemes

of Yacobi coordinates for the
corresponding asymptotic Hamil-
tonians are given. The wavy
line marks the region where the

three-body foroes are essential?

V3(x,3X2) #0 | Wnen the
value of hyperradius 1s fixed,
he waves move along the aro

P = const).




conditions are formulated by means of different sets of Yacobl
coordinates whose schemes are symbolically marked 1n the correspon-
ding strips in fig.2. It is remarcable that the siggle set of the
hyperspherical oocrdinates p= /\(‘T’-'—"—' + xj/.'-“;" * y KX = a.rota %‘;
transfers asymptotically to the éﬁiégble'Yacobi coordinates in the *
propexr strips.

We shall restrict the energy values to be below the threshold
of the three-fragment decay of the system.

The motion in the system can be divided into two types: the
one along the arc with the fixed hyperradius value (1t 1s shown in
fig.2), and the hyperradial motion. We shall expand the wave funct—
ion ‘).'l’f(’(t,’&) = "i-/(f,u) into the set of basic¢ functions (Ps(o(,}:)
describing the motion along the arc with P =const and with account
of the two-body potentials whioh are crossed by the arc:

A(
Y(j’,“) = ; ~}J,—22 335 (o(,,:), (1)

where
LA AT Flep)
gpt A

The coefficients /g 0?) are the channel wave funotions
describing the hyperradial motion.

‘Bxpansion (1) is the combination of the Born~Oppenheimer method
(adlabatic expansion) with the K-harmonics method. In contrast with
the last one, the basic functions ;}i 6“Cf) here are not free hyper—
spheri&él harmonics but distorted by two-body potentials. The ordi-
nary K-harmonics 1Y: (x) are not sulted to describe asymptotic
scattering states with two fragments: the infinite frequency of an
angular o ~ dependence of HV{F,u) as @ - <o requires an infini-
te number of free ha.monics’}’K (x) to represent a pair of partiocles
in a bound state. At the seme time a single basic function P («,p)
which takes into account the two-body potentials can describe the
bound state of two particles with arbitrary precision. To make
the meaning of ?3'5 (x,_/o) more olear, we show the shape of the poten-
tial cross section along the arc (JP = const) in fig.3. The motion

(2)
v (Vitop) +Vlep) Vb)) B (wp)  £p) R

x> m, y M2 are the masses of the particles and //n -

is the value measured in units of mass.

e = g
A

Fig.3.

Es(P) Potential relief for the
- motion along the‘arc shown
1 in Fig.2 of the three-bod
1 system when p 1is fixed. %he
. three—body potential is not
: thown. The positive disorete
y energy levels correspond to
different partial three-—

ses the two-body potential
wells move away from one
another and their levels
E, B,y E; Dbecome stable
pLir fevePs. At the same
time the width of the
"maxi-well" 7e/z inoreases
and the centrifugal terms

£4,5 () go closer to
E = 0 (dotted arrows).

% : T T T T T 1~ - —— 7 '% ~fragment decay states of
ay L T _____ _q;o\ the system. When p increa-
t

V#0|

along the aro ( 18 anologous

to oscillations in an infini-

tely deep potential well

with additional three finite

potential wells at its

bottom representing pair

potentials. If each of these

"mini-wells"™ has one energy
level as 13 shown 1n fig.3, then the oorresponding coeffioients ,fzg
will desoribe for big N -values the relative motion of different
palrs and partioles in three different channels. The higher levels
of the "maxi-well" oorrespond to the three-fragment decay states.
Their disorete parametrization is the advantage of the hyperspheri-
cal coordinates as the ordinary spherical functions with discrete
parameters éf'n desoribe continuous angular distributions in the
two-fragment systems.

Substituting expansion (1) into the Schroedinger equation for
the whole system and intergrating it with the welght of different
basioc funotions over o« , we get the system of ordinary differen—
tional equations for the channel functions /A (p) i

2 A 2
- j,’?, Gip) 2 A )+ S (- (L)) « 22 £

(3)
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Asymptotic conditions on /fgo} are naturally and easily

2 A (p) +

formulated due to the physical meaning of the corresponding basic
functions 93 (4J>) for big Ve values: properly normalised in-
coming waves 1in the entrance channel and the requirement that in
other channels incoming waves are abseat.

The rearrangement of particles is simply desoribed by the trans-—
fer of the wave stream from one chamnel to another (from one equation
in (3) to the other).

A definite diffioulty is to calculate the basic functions 52 (%,p)
for many different values of the fixed parameter £ . For some spe—
cial kinds of two-hody potentials, this can be done analytically
(exactly), e.ges; for separable or square well potentials. In the
general case 1t 1s necessary to solve many times the problem of mo-
tion of a particle in the external field of fixed potential wells.

It seems not so troublesome since we have to solve a problem of
higher degree of complexity - the three-body problem.

If there are three-body forces \/’(gla)in addition to two-body
ones, then for the purposes of the inverse problem they should not
be taken into account in basic fuPotions, so that they could appear
as new-matrix elements besides A\ (f) coupling the channel
equations for

L k) LA lp) <IN B 2690+ 1)) %t )
pr' ) S s
where

\/;:,(f)fff%fcjf(xf)\/s(«f) Bo(xp) A (6)

The region where the three-body forces are significant is shown
in fig.2 by a wavy line. The width of the maxi-well shown in fig.3
is increasing together with the ﬁyperradiua. This oauses the lowering
of energy levels Z:éP) corresponding to the three-fragment decay of
the system (nearly proportional to Qﬁp‘ ). The functions Eilp)
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appear in the systems (3), (5) as potential terms and together with
,4%k1 they play the role of centrifugal barriers which hinder at
small energles the coupling of two-fragment channels with three-
fragment decay channels.

3. Solution of Inverse Problem

Before we oonsider the method by Hooshyar and Razavy 1/ and
generallse 1t to the three-body inverse scattering problem, it is
useful to make some remarks about Kotelnikov's theorem in the theory
of information transfer.

It may seem wonderful that an arbitrary function given on a
finite interval ocan be approximated by elgenfunctions with arbitrary
low upper bounds of eigenvalues and with any required precision:
we can get exact coincidence of functions in any given number of
points. For example, to desoribe the main features of some function
having 20 osoillations, we may requlire such a coincidence at 100
points. '

" There 1s a oontinuum of linearly independent states on an arbit-
rary narrow spectral interval. A hundred of these functions gives the
desired number of linearly independefhit sets of their values in the
chosen hundred of poimts. The llnear combination of these sets
glves us an approximate function coinciding with the original ons
where we wanted. With narrowing spectral interval, the linear in-
dependence of eigenfunction values appears in further significant
figures. So that the approximation becomes more and more expensive.

This fact 1s especlally important for the finite dIfference
methods in the inverse prodblem because the spectral features of
the Schrddinger operator and its difference analog are close to one
another only for low energies., This restriction is also important
for the system (5) in order to weaken the influence of three-frag-
ment deoay states.

Now we shall remind the main points of the Hooshyar-Razavy appro-
ach to 1lnverse problem in order to explain its generalilzation
which wlll be applied to the system (5).

Bubstituting in the radial 8ohroedinger esquation the l-th
partial wave in the form 7 W) = e & (r)
we get for 75/?1 an equation with the first derlivative having
a coefficlent dependent on £ . Approximation of this equation
by the difference one gives the system of algebraio equations, each
conneoting the values of % (/) at three neighbourpoints /),

55? (rn-r), Sé (ret) . The coefficient at ;é Cn-r) is




Ca(€) =(C+L-n)//lst +n) , and for some values ~ .and &
it become s zero. This faot can be used to reconstruct the unknown
potential.

In the inverse problem we know the wave function out of the

interaction reglon as we know scattering data. From two values 221245

5? /4/41), where 4A 1s the boundary point for the nonzero va—
lues of the unknown potential (we suppose that the potential is of
finite range) V' /4//) can be determined by using equation with such
an l-value for which the coeffiolent <. (/»’/ before the unknown
value & /v-1) 1is zero ( & = A~1 ),

With another value / = A/-2 we can move one step into the
interaction region and determine V1 (4”-7). Changing l-values and
golving every time the difference Schroedinger equation beginning
from the outer edge of the interaction reglon to still deeper
points, the potential is determined on the whole interval of interac-~
tion. The generalisatlion of this procedure to a multichannel case
can be 1llustrated by an example of reconstruction
spin-orbital and ocentral potentials from the scattering data obtalned
(see fig.4).

To apply the same approach
to the system (5) with the
three-body. interaction, we ha-
ve to modify it significantly.
We shall fix not the energy,
as has been done in but
the quantum numbers s of the
hyperangular motion (along the
arc) in partial channel equa-
tions.

of tensor,

V Mev

Fig.4.

The results of the reconstruc-—
tion of interaction matrix
by method of Hooshyar and
Razavy obtained in /7/. The
original tensor Vi , spin-
—orblt V¢ and central V;
potentials are shown; dots of
a different shape designate -
the numerical solution of the
multichannel inverse problem.
This 1s the first demonstration
of the quality of reconstruotion
of interaction matrix coupling
different channels.
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The transformation % () =, % & (r) 1n 77 gives
besldes the maln result (solvability of finite-dlfference equations
with an unknown potential) also a more smooth behaviour of ?% )
in comparison with V¥ near the origin. Therefore, an analogous .
transformatlion can be done also in our case

Hr{
L) = p Xlp) K -s-7 €5

Then, another transformation is performed

K ) ~ flosp) B (),
where /' /s, £

,/a/ .1s some known functlon. We shall choose it for
solutlon of the finite-difference inverse problem in order to make
zero the coefficients before the values of unknown wave functlons

which are to be removed in order to determine the potential matrix %ﬁ
S .

(1)

45 a result, we get for ﬁé P/ a system of equations
equivalent to the original one (5):

F st p) et ]y
—_— :( *
Foep) s /7g) ®

//;,i/;) SZ Ass /f)f’ f(&éf) Falp )+ Z:

/f/‘ff)" 2/—*"/ fep)] 50

/f)

- %) - 2

—_—

Vil g
ss"/f fZ; f)
S Flbp )

alp)
Y (p) -

The finite~difference analogue of (8) is:

: '[L, o 2UXK)  2f(5E,n)
; A n-a F(55,7)
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(K'et) £/36,7) AC] (n)
ra f/f,f', ”) /,,A )s-yu

Fotr) Z (8)Y f (5,6,72) % (or

" b= ) R e
E( X)) L) %ﬁ(ﬂ/_f K(xee),

+] 2 f” s, £, 72) !
!Z K [ f/S,[,/?/ (ﬂd)l

Foae ) A

L L L, 2(Ken), 2 (ki) )
* i ] )+ i 2 s fosn) ] B ) =0

For the derivatives of the first order & ‘(a) in their "own" equa~

s

tigns we have used the symmetrical difference derivative 2?2?) 5~
/7_“ (rn) - 5%;{,,.,)]/2;, and where gé,'/f) appear in
equations for channels with S # ¢~ we used substitution gg/f),
(7 - L/ A to avoid the appearance of
té:éf;i;;gis éif g;{hZ;:; of the inverse problem.
Choosing at first one energy value </, we begln to solve
the system (9) starting from the known values of a matrix solution
// ¢//7/// for 724/ . By determining the functions f/-&ff"/o)
in order to make zero the coefficients G////rf‘ * é‘%/“’y{/""?“’/é/r/tg
at 9_%[,,/-// it is possible to find the matrix /U, > V2 o4
of the three-body interaotion at the last point A~ e Then, for
another energy value .~ “/ the functions jOG;;&in/ should make

zero the coefficlents Cs 7/): - fhe » 2L 4 JH 02 o) before the
. ver)s F A, E, 4] A
values 74, //l/fZ/ in order to determine V33 ca~-s) o Repeating

the same procedure as the next step , the whole 1nteraction inter-
val can be .treated and the inverse problem solved.

*The problem of determination of the three—body potential VJ/“,/’)
from its matrix elements V;;, (/o) is a pure mathematical one, and
can be treated by standard methods of solution' of integral egquatiomns
(111 posed problem?).

It would be interesting to apply the theory of the inverse
problem by Gelfand-Levitan-Marohenko to the system (5) and to
construct the Bargmann-type interaotion matrioes Vﬂ::(f).
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Kak mnonyuuTh HHGODPMAIIMIO O TpeXUaCTHUHBIX CHIIAX
M3 [OaHHBIX pacceAHHA

E4~86-99

NIpenoxeHo CoueTaTh MeToAd rurnepchepuyeckux GyHKUHH c angdi
abaTHYecKUM passioxeHHeM BopHa-OmmeHreimepa /cM. paboThl Maueka
®ano, MatBeeHko, BumuHuikoro, ConoBbeBa/ OfA pemeHHss O6paTHOH
33a[auu pacCcesHUA — TOHCKA TPEeXUYaCTHUHHX CHII TIPH H3BEeCTHHX
OBYXUaCTHUHIIX. YpaBHeHHe llpemuHrepa B 4acTHBIX NMPOH3BOOHLIX CBOT
OUTCA K CHCTeMe OObLIKHOBEHHbIX OubdepeHUIHMANbHBIX ypaBHEHHH, ONU-—
ChlIBAWMHUX peaKHWH C nepepacnpeneneHHeM uactuy. K 3THM ypaBHeHH
fIM TIpHMeHseTCA MHOrOKaHalbHBIH moaxon o6paTHOH 3amaud B KOHeu—
HO—-pa3HOCTHOM mnpHGmwkeHHu Xymmsapa—-PasaBu, KOTOpbil cymecTBEHHO
yCcOBepmeHCTBOBAH.

Pa6ora BeimontHeHA B JlaGopaTopHH TeopeTHUeCcKOH GU3HKH
OUAU.
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The combination of the method of hynerspherical functi-
ons with the Born-Oppenheimer adiabatic expansion gives a pos
sibility of reducing the description of reactions with rear-
rangement of particles to the solution of ordinary differen-
tial equations (Macek., Fano, Matveenko, Vinitsky, Solovi-
ev 810/ ) This formalism is used for the three-body inverse
scattering problem. The finite-difference approach by Hooshy-

ar and Razavy is generalized to reconstruct approximately the
three-body interactions.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR. '

Preprint of the Joint Institute for Nuclear Research. Dubna 1986




