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I. lntroduction 

Quantum inverse problem is 35 years old. Aaoording to the mo­
dern notions, the interaotion i5 caused by the exchange of particles~ 

But the potentials aro auoh a conv;nient tool for an' effective ' 
deacription of the mutual influenoe of elementary partioles and oomp­
lex objeots that they are worth inventine even if they do not really 
exist at all. 80, there will always be a su1table place for the in­
verse problem in the rapidly ohanging quantum soience., 

Bafore the appenranoe of the equationa of the genuinc inverse 
problem, the interaotions have been reoonstruoted from the scatter­
ing (speotral) data by the nonlinear fito Thia "trial and error" 
method has its advantages evcn now, but to aave the oomputar time, 
the use of linear equations of Gelfand - Levitan - Marchenko, Neutron­
- 8abatier, etc. (see /l-J/),seema more promising for oumberaome prob­
lema. 

Unt111 now the ma1n advances of the 1nverse soattering theory 
concerned a single partiole in an external field /1-4/ • But the ten­
denoy to consider more and more complex aystems beoomes rather 
clear. 

An investigation is undertaken of spherioal~y nonaymmetrioal 
interaotions /4,5/. In particular it appeared that the inverse 
problem approaoh 1s 'possible 1n the case ofaxially-deformed target/6{ 

There appeared many papera devoted to multiohannel'syst«ma/)' 7/; 
eto. Bome partioular man,-body modela were 8180 oonaidered /31. 
h1'Perapherioal-sJIDlll.tr~oal 1D,taraotions r., in' the three-body 
systema without two-partiole potentials; and three-body eoattering 
without rearrangement of partioles. But in the real oase, the reaot­
ions w1th the ohange of oomposit1on of the ool11ding oluetere are 
possible, e. g., ab + c ; ao ... b , etc. The apPlicati~n of the ' 
inverse problem approaoh to these systems was pr,vanted b~ the faot 
that after the reduction to a single variable the cq~at1ons of mo­
tion became integrodifferential. Therefore, the effective nonlooality 
of the interaction matrix, whioh cOUP1~s differ~nt ~hannels, inoludee ..·i 
into the game unknown po'te~tiáls at once, f.r~ a;1.1 the depthB of the ! 
interao~ion volume. And in the inverse problem approaoh the potential 
values we look for haTe to appear in a suoces8ive way during the 
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transition frem the known asymptotics of the V/ave function insidB 
the target under investigation. 

In the present paper we discuss a possibH1ty of avoiding thia 
difficulty using the method of description of three-body reaction 
by means of ordinary differential equations with a single hyper­
radial variable. It appears that hyperspherical ooordinates are very 
suitable for the description of asymptotio physical states: they 
transfer to the oorresponding Yaoobi ooordinates in every channel of 
three-body system at great distanoes between fragmenta. This will be 
discussed more thoroughly is Seo. 2, 

fIlL. /8-101
~lle oorrectness of the method for high energi,s i8 not 

clear now, So we modified the approaoh af Hoosl1yar-Razavy 71 to' the 
inverse problem in order to reoonatruot the potential matrix from 
the seattering data at different low enereies. In seot. J we discuss 
a possibility of restricting the enorgy vnlueo. Th1s poss1b11ity ia 
connected with the Kotelnikov thoorom on the approximation of 
functions by the harmonics with arb1trary low frequences. 

It is natural to look for the information on three-body forces 
after the two-body potentials are determined from pair oollisions. 
So, the basio functions whioh separate alI the variables except 
for the hyperradius in our approaoh take into account alI the binar 
interactions and the three-body potentials are included in the mat­
rix, that oouples the ordinary differential equations correspond1ng 
to particular ohannels. 

The stability of the method 171 and its generalization eonsi­
dered in this paper has not heen investig,ted y'et, especially in 
eombi~tion with the multiohannel method 8-101 • So, the present 
report is only the first indioatioD of the principal possibility of 
reoonstruoting three-body interaotions in the genuine inverse pro­
biem approaoh. 

2.	 Basie functions for the reduotion óf the three-body problem to 
the system of ordinary differential equations 

We shall consider the s1mplest model of two particles moving 
in an externaI field; a partiole i5 soattered by a potential well 
in which there i8 another partiole (see fig.l). The motion of oaoh 
particle ia one-dimensional - this oase includes already alI the 
main features of the three-body inverse problem - the oonsideration 
of more dimensions introduces complioations, that do not alt'er 
the essence of the proposed method. ~i8.2 shows the two-dimensional 
configurational apace of both the partioles. ~. regiona, whera the 
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two-body potentials are signi­
Y'E ficant,are represented by three 

strips. The horizontal strip 
oorresponds to the infinite.· 
motion of the first partiole 
while the second partiole is 
oonfined in the target. The1 

---e-­ three-body reaction takes pla­
X·	 oe near the or1gin where alI 

the strips oome together and 
the reaotion produots diverge 
along the strips. The vertical 
str1p oorresponds to the se­Fig.l 
cond partiole moving away A system of two part10les moving 

in e~ternal fi~ldl potentials while the first one remains 
Vi (XiI and vI..x" i, 'rllese partioles in the-target. Along the inoli ­interaot by means of ~2. ((", -xal). 
Reaotions with rearrangement are ned atrip there aprends the 
possible; knookout of particle 2 

stream of (12) paira - thofrom the target with oapture of 
partiole 1 by the externaI poten­ product of the ~eaotion of 
tial well and stripping ~ith 
formation of a pair (1,2). stripping the aéoond partiole 

by the first. 
The diffioulty in desoribing 

these reaotions oonsist in the fact that the physioal asymptotio 
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X2~1 
3 1 2

:Fig.2./, T.be two-dimensional oonfigura­

fY
 
tion spaoe of two one-d1men­

sional part~oles in ali exter­
o nal f1eld. Tllree strips are 

if. shown, where the twe-~artiole 
-> ·poteÍl.tials V]' V~, VI? are aot­

ing. The syJn'Dol:toal Bohemes 
of Yacobi coord1nat~a for the 
oorresponding asymp~otio Hamil­
tonians are given. The wavy 
line marks the r~gion where the 
three-body foroes are essential l 

y.J (Xi' x~) lO • When: :lLhe 
value of hyperradius is fixed,

Y2 1= O the waves move along the aro 
Xt' l.f ií oons t ) • 
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Fig.J.eonditions are formulated by means of d1fferent sets of Yaeobi 
Es{P)eoordinates whose sehemes are symbolieally ~arked in the eorrespon­ Potential relief for the 
~-.,...,- -r­ding strips in fig.2. It is remareable that the si)gle set of the 

I 
hyperspherieal ooordinates.f'= /XJ.2. ~, + x~ ;z.1 x, o( = arot~ ~, t __ ~ _ _ t. 

transfers asymptotically to the suitable Yaoobi coordinateã in the 
proper strips. 

I
(

We shall restriet the energy values to be below the threshold •

of the three-fragment deeay of t~e system. 
The motion in the system ean be divided into two types: the 

~ 
one àlong the aro with the fixed hyperradius value (it is shown in 
fig.2), and the hyperradial motion. We ahall expand the wave funet­

ion Y(J<t,>,(2):= Y(p,o<) into the set of basí,c funetions ~ «» 
deseribing the motion along the are with p =const and with aeeount E,.- _
of the two-body potentiuls whioh are erossed by the are: 

Ui" - )" ~ (f) <:D 
(1)J (f I ex ) - 7 .fJ'/2 .1 5 (0{7 f) , [VIl'OI

V2 :f. O 

where 

~2 d Z pj~ ) (2) 
- 2 .s If -to (~(Dl,J) + \{(Á1') +~:!. (<<'.f) Cf; (CII.'.f) • Fs r.J) Ps .
2.rJ olo(Z 

The ooeffieients ~ 0') are the ohannel wavo funotions 
desoribing the hyperradial motion• 

•Expansion (1) is the combí.nat í.on of the Born-Oppenheimer method 
(adiabatie expansion) with the K-harmonies method. In oontrast with 
the la~t one, the basie funetions ~ (~'jP) hera are not free hyper­

motion along the"arc shown 
in Fig.2 of' the three-bodl 
system when ~ is fixed. The 
three-body potential is not 
thown. The positive disoreta 
energy leveIs eorrespond to 
different partial three­
-fragment deeay states of I 

li 

the system. When.f" inerea­
ses the two-body potential
wells move away from one 
another and their leveIs 
E" E~, E3 beeome stable 
pair Ieve1s. At the sarne 
time the width of the 
"maxi-well" ~ /,2 inoreases 
and the centrifugaI terms 

és ~3 Cf) go eloser to 
E = O (dotted arrows). 

VI :tO o' 

along the aro \ i8 anologous 

to oaoillations in an infini­
tely deep potential well 
with additional three finite 
potential wells at its 
bottom representing pair 
potentials. lf eaeh of these 
"mini-wells" haa one energy 

laveI as i3 shown in fig.J, then the oorresponding ooeffioients ~~) 

nary K-harmonies ~ (~) are not suited to deseribe asymptotie 
spherioal harmonios but distorted by two-body potentials. Tb.e ordi­

will desoribe for big f -values the relative motion of different 
soattering states with two fragments: the infinite frequeney of ao pairs and partioles in three different ehannels. The highe~ leveIs 

angular '" - dependenoe of Y (j,,,,) as ..1' ...... requires an infini­ of the "maxi-well" oorrespond to the three-fragment deoay states. 

te number of free harmonies JrK (., to represent a pair of partioles 
DO 

Their disorota pararnetrization is the advantage of the hyperapheri­

in a bound stato. At the sarne time a single basie funetion ~s (<<,~) oal ooordinatea as the ordinary spherieal funetions with disoreto 

whieh takes into aeoount the two-body potentials oan deseribe the parameters t', m desoribe eontinuous angular distributions in the 

bound state of two partioles with arbitrary preeision. To make two-fragment systems. 

Substituting expansion (1) into the 8ehroedinger equation for 

tial oross seotion along the aro (f • cons t ) in fig.J. 111e mo t Lon 
the meaning of ~(~UO) more olear, we show the shape of the poten­

the whole system and intergrating it with the weight of different 
basio funotions over « , we get the system of ordinary differen­
tional equations for the channal, funotions ;:; (f) 

z 
- oI t:ry} ·IÂ (r) ~,(J') + ~ /Efp)4- ..1. )I:{,p)

- a 'ss' Ira ('.J J 'fP~ S J ~ E ';(p)oi ,jx) rrr, ,1'Y1~ are the masses of the particles and .Jl1 ­ r.f ',S' J ~Z :J.)) 
'i (Ji8 the valua measured in units of mass. 
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where 
z " _-~ j 4> ' el 2 j a> J. L ==01I\ss,ífJ-.t .1 5 (""f)oI.Ja~ 1-;J"'1')dlli- F 1;t--1)? 15'(;1) ocolf (4) 

(11 (z) 01 
:= 1\ $S/ (f) -t- ;\ ~~/fJ) 011' 

AS;Y'Ulptotic eonditions on ~ tj} are naturally and eas í.Ly 

f02~ulated due to the physieal meaning of the eorresponding basie 
funetions ~ (./.1') for big f va'lue s t properly normalised in­
eoming waves in the entrance channel and the requirement that in 
other ohannels incoming waves are absent. 

The rearrangement of partioles i8 simply desoribed by the trans­
fer of the wave streem frQm one channel to another (from one equation 
in (3) to the other). 

A defini te diffioul ty is to ealeulate the basie funotions 'T; (DC!!) 

for many different values of the fixed parameter j' .' For soma spe­
cial kinds of two-body potentials, this can be done analytically 
(exactly), e.g., for separable or square well potentials. In the 
general case it is n~ces8ary to solve many times the problem of mo­
tion of a particIe in the externaI field of fixed potential wells. 
It seems not 80 troublesome since we nave to solve a problem of 
higher degree of complexity - the three-body problem. 

lf there are three-body forces VJ(x,}"í) in add1tion to two-body 
ones, then for the purposes of the inverse problem they should not 
be taken into account in basie funotions, 50 that they could appear 
as new-ma.trãx el ement s besides A ss ' (f) coupling the channel 
equations for 

_cÁ: Fs(~) + l ÂiS/(r)~'<J) rJ; ~~~0')ffJ}~ft!~J)+'t~J{fj)=~f{(5) 
df l J s/ .5	 J 

where 

(6)~: (J) = Yi J<J;{«J} V{~l) ee'(~l) 01«. 

The region where the three-body foroes are significànt i8 shown 
in fig.2 by a wavy line. The width of the maxi-well shown in fig.3 
is increasing together with the hyperradius. This oausos tha lowering 
of energy leveIs ~sP) oorresponding to the three-fragment decay of 
the system (nearly proportional to ';I~~ ). The functions i:.(~) 

6 

appear in the systems (3), (5) as potential terms and to~ether with 
PfPz they play the role of oentrifugal barriers whieh hinder at 

small energies the coupling of two-fragment ehannels with three­
fragment deoay ohannels. 

3. Solution of Inversa Problem . 

Before we oonsidar the method by Hooshyar and Razavy /7/ and~J'I'\ generalise it to the three-body inverse seattering problem, it is . useful to make some remarks about Kotelnikov's theorem in the theory 
of information transfere 

It may seem wonderful that an arbitrary function given on a 
finite im erval oan be approximated by eigenfunctions with arbitrary 
low upper bounds of eigenvalues and with any required precision: 
we can get exact ooinoidence of functiona in any given number of 
points. For example, to desoribe the main features of aome f~ction 

having 20 osoillations, we may require such a coincidence at 100 

points. 
There i5 a oontinuum of linearly independent states on an arbit ­

rary narrow spectral intervalo A hundred of these functions gives the 
desired number of linearly independent seta of their values in the 
chosen hundred of points. The linear combination of thes8 sets I" 

gives us nn approximate function coinciding with the original one 
where we wanted. With narrowing spectral interval, the linear in­
dependence of eigenfunction values appears in further aignificant 
figures. So that the approximation becomes more and more expensive. 

This fact i8 especially important for the finite difference 
methods in the inverse problem because the spectral features of 
the Schrõdinger operator and its differenee analog are close to one 
another only for low energies. This restriction i8 also important 
for the system (5) in order to weaken the influenee of three-frag­
ment deoay states. 

Now we shall remind the main points of the Hoosbyar-Razavy appro­
ach to inverse problem /7/ in order to explain its generalization 
which wl11 be applied to the 8ystem (5). 

Substituting in the r~dial S~hroedingar equation the l-th
 
partial wave in the form ,( 'fJ(r) = r L'.., ? (r J
 

j we get for ~(r) an equation with the first derivative having
 

1~11	 a ooefficient dependent on ~ • Approximation of this equation 
by the differenee one gives the systam of algebraio equations, each 
conneoting the vaãue s of ~ Ir) at three neighbourpointa '?t' [/T J 1J,, ~(/7-r)J ~ (n~l) • 'lhe coefficient at ~ (/l-r) i5 

I 
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c , (I') ,., (t!'..,1- n)//é' .. f -+ n ) , and for some values I? .and é" 

it becomes zero. This faot cari bé used to reconstruct the unknown 
potential. 

In the i~erse problem we know the wave function out of the 
interaction region as we know 8cattering data. From two values ~~J*(;j/.,t), where "r'A is the boundary point for the nonzero va­
lues of .. the unknown potential (we SUppOS6 tha t the potentia1 Ls o f 

finite range) 1/(A/) can be determined by using equation with suoh 
an l-value for whioh the ooeffioient C,t' (,,-,/) before the unknown 
value 9f: (/V-i) ia zero ( ~ = /V-i ). 

With another value é'::o ,/(/-2 we can move one step into the 
interaction region and determine V ( /\/,-j). Changing l-values and 

aolving every time the differanco Sohroedinger equation beginning 
from the outer edge of the interaction region to still deeper 
points, tile potential is determined on the whole interval of interac­
tion. T.he genera1isation of this procedure to a multicbannel case 
can be illustrated by an exemple of reconstruction /7/ of tensor, 
spin-orbital and oentral potentials f~om the scattering data obtai~ed 

(see fig.4). 

To apply the sarne approaoh 
to the system (5) with the 
three-bodY. interaction, we ha­
ve to modify it significantly. 
We shall fix not the energy, 
as has been dane in /7/ but 

the quantum numbers .5 of the V MeV 
hyperangular motion (along the 
are) in partial ohannel equa­
tions. 

F~g.4. 

The results of the reoonstruc­
tion of interaction matrix 
by method of Hooshyar and 
Razavy obtained in /7/. T.he 0m 
original tensor \TT , spin­
-orbit "YL, and central "\'e 
potentials are shown; dots of 
a different shape designate . 
the numerical solution of the 
multichannel inverse problem.
T.bis i8 the first demonstration 
of the"qual1ty of reoonstruotion 
of 1nteraction matr1x ooupl1ng
di+ferent ohannels. 

I 

\i 
! 

~ /7/The transformation YJ (r) = r,P.,/ y,; (r) in gives 
besides the main result (solvability of finite-difference equations 
with an unknown potential) also a more smooth behaviour of ~ ('r) 

in comparison wi th 1V near the origino Th'erefore, an analogous . 
transformation ean be done alao in our caseI.­

.1 
.r .7("., , 
~ /;(j) ;:./ ~ (?) %=s-;/z (7) 

Then, another transformation is performed 

/s rr) • j' (.1/ E/f) ~ (r) , <1' ) 
where ~(sIE/~) .is 80me known function. We shal1 choose it for 
solution of the finite-difference inverse problem in order to make 
zero the co.effioients before the values of unknown wav~ functions 
which are to be removed in order to determine the potential matrix ~J. 

. ". 
As a rasul t , we get for;Z; /,/') a system of e qua t í.ons 

equivalent to the original one (5): 

Y>/ij ) 2! .f'(V,./') r .7(- I } v:(j) • 
(8)

/(S,0/) ./ 

'I _1- L A!>s/(JJf:;f(~Xj(s:~f) <f,IIj) + 1; ~s~(f J ffi:'l~ 
/(s,~.f) s ' ~ f S-~' f~,E,j7) 

. 'i;,Ij) - j}is,Ej') f ·2!j'/J.!'(s,E/)];:~;/ 7 Afj} -E ' (,J 
. tfs (J) :: O . 

The finite-difference analogue of (8) is: 

2(J(+/)-(.1. .,. 2fl(.5/E/l )'j (Oi ) r J /Í;E,nJ;1:~, {nJ ta
ÃI. -I 7i. nl-J ~ ~/(")~-4- s-s'n'A f (s,$, .11 ) .s' tf(sf-"') (/7.6) 

, I 

I (9) .,. I f (J ~ EIn) /\(~~ (n ) I:
, ~ 

t.fJs I( n ,.,) - 'f,,(n~ r fIJ:EI/f)~~;~(n)/~(r) 
~ I ( 
I 

.s' f{s,E, I1 } {n.6)S-S' f L- S-$' 7$' "t:
1 A .Y / (i, E; n) (n.6)

H· 
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_ r (X'~').:fI.5:.E,n) /1~:,(n) 
L--	 . 
s' /rS,E,n) (nt1)S-.s'+1 

+ ! 2.. .f/l(S,E, n) g (x.,.,) . 
4 . .:fis,E,n) n~ 

..L.--J r .i. ++ 

ro ) + L 
7 c' {n 

.s S' 

./' ',(.=,n-) .,. 
..!"ts,E,n) 

II 

I 
I 
i 
l 
: 

V;:,(n} //s:E,nJ I'" (n) 
, 'S' f'

(n6).s-~ /(J,f,n) 

2 /j; (n) -E_~/x;.'}+ 
z /'.s (/lLJY'

~ 

2(XH) y- 2/~E,nJ ] Y? ­
+- 4-(n~)t ~(n) ,óz -a;;;- AJ/S,F,n} s ('l-f) - O. 

For the derivatives of th~ first order ~~) in their nownn equa­
ti~ns we have used tho symmetrioal differenoe derivative ~Ú) ~ 

Lt (n1"'} - >ijfn ., )} / dA and where ~,'(j) appear in 
equations for ohannels with .s ~ .s / we used substitution 5fl'(j)~ r1;,/nn} - 9f,{/,"J]/~ to avoid the appearanoe of 
that hinders the solution of the inverse problem. 

Choosing at first one energy value Et/J, we begin to solve 
the system (9) starting from the known values of a matrix Bolution 
/I ~ (t7),f for n 3-d' • By determining the funotions ./(.s,E~/) 

in order to make zero the ooefficients GW}.-.l~ -#- .E'!:;"; + ..?/~P"'?~if/f,.r.M 
at ~ ('/f/-f) it is possible to find ~he matrix /I L{s~ ("y')# 

of the three-body interaotion at the last point ~ • Then, for 
another energy value f/~J the funotions //S,EIZ/./') should make 
zero the ooeffioients ("~ {N'"-,): -};:íz T 2j)ró,J + 2.(//1j#-f/ _bafore the 

.	 {~lj~ /~E~~~A 
values ~ (#-.2) in order to determine ~~: t'A/-fJ • Repea.ting 
the same prooedure as the next step , the whole interaotion inter­
val oan be ·treated and the inverse problem solved. 

3 
o The problem of determin~tion of the three-body potential V / .....r) 

from it,~ matrix elements V$5' if) Ls apure mathemat10al one, and 
oan be treated by standard methods of solution' of integral equations 
(111 posed problem?). 

It, would be interesting to apply the theory of the inverse 
problem by Gelfand-Levitan-Marohenko to the system (5) and to 
oonstruot the Bargmann-t.Yl'e interaot1on matrioes VJ~' (f) . 
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3axapbeB :S.H. 
KaK IIOJIYl.I:HTb HH¢OpMa~HJO 0 TpexqacTHl.I:HbiX CHJiaX 
H3 p;aHHbiX pacce.RHHH 

E4-86-99 

ITpep;Jio~eHo coqeTaTb MeTop; rHrrepc¢epHl.l:eCKHX ¢YHK~HH c ap;H 
a6aTHl.l:eCKHM pa3JIO~eHHeM BopHa-OrrrreHreHMepa /eM. pa60Tbi Mal.l:eKa 
~aHo, MaTBeeHKo, BHHHH~Koro, CoJioBbeBa/ p;JIH pemeHHH o6paTHOH 
gap;aqH pacce.RHHH - IIOHCKa TpexqacTHl.J:HblX CHJI IIpH H3BeCTHbiX 
p;ByxqaCTHl.I:HHX. YpaBHeHHe Illpep;HHrepa B qacTHbiX rrpOH3BO,ll;HbiX CBO 
)J;HTCH K CHCTeMe OOb!KHOBeHHbiX p;HIP¢epeHIJ;HaJibHbiX ypaBHeHHH, OIIH­
CbiBaiOIIIHX peaK~HH c rrepepacnpep;eJieHHeM qacTH~. K 3THM ypaBHeHH 
HM IIPHMeH.ReTCH MHOrOKaHaJibHb!H IIOp;XOp; OopaTHOH 3ap;aqH B KOHeq­
HO-pa3HOCTHOM rrpH6JI~eHHH XymH.Rpa-Pa3aBH, KOTOPbiii CYIIIeCTBeHHO 
yCOBepmeHCTBOBaH. 

Pa6oTa BbiiiOJIHeHa B Jla6opaTopHH TeopeTHl.l:eCKOH ¢H3HKH 
O.lliiH. 

llpenpHHT 06'bep;HHeHHOfO HHCTHTyta Jl,llepHbiX HCCJle)J;OB3HHii. .lly6Ha 1986 

Zakhariev B.N. 
How to Get Information on Three-Body 
Forces from Scattering Data 

E4-86-99 

The combination of the method of hynerspherical functi­
ons with the Born-Oppenheimer adiabatic expansion gives a oos 
sibility of reducing the description of reactions with rear­
rangement of particles to the solution of ordinary differen­
tial equations (Macek, Fano, Matveenko, Vinitsky, Solovi-
ev ~-lO/ ). This formalism is used for the three-body inverse 
scattering problem. The finite-difference approach by Hooshy­
ar and Razavy is generalized to reconstruct approximately the 
three-body interactions. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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