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1. Introduction

A number of recent papers have been devotgd to studies of the
~dynamics of a three-level "atom" interacting with two modes of clas-

sical [1—4] or quantized [5—1@ electromagnetic field. In papers
[5,6], exact Schrodinger wave functions have been obtained for some
special initial states. Li and Bel [7] have derived, in the inter-
action picture, the explicit expression of the evolution operator.
The exact operator solutions for the level populations and photon
numbers have been found as well for both lambda [8] and ladder [9]
level structure. Moreover, the strict operator solutions for lambda
configuration of the levels in the case when the two lower levels
are coupled to the upper one by multiphoton transitions have been
obtained [10].

In the present paper we study the dynamics of a four-level atom
coupled in a lossless cavity to a three-mode resonant quantized field.
The structure of the levels is given in Fig.l. The assumed model con-
tains, in fact, three three -level subsystems with a common fourth
level; ore can distinguish here two subsystems in the ladder confi-
guration /levels 1-4-3 and 2-4-3/ and one subsystem in the lambda
configuration /1-4-2/.

Some aspects of the dynamics of a four-level atom in other level
configurations interacting with a classical field have been studied
in Refs. [11-14] .

In this paper we show that the operator equations of motion for
the model assumed can be solved eiplicitly. Applying our solutions,
we further examine the dynamical behaviour of the populations of le-
vels 1 and 2 and compare the results with those for the three-level
atom in the ladder (1-4-=3) and lambde (1-~4~2) configurations,respec—
tively, assuming in both cases ‘the mode 2 as initially unexcited.In
other words we study,in the first case,the influence of the depopule-
tion rate enhanced by the possibility of"spontaneous"trensitions of
the atom to the additional adjoined level 2 on the dynamics of the fun-
damental level 1. In the second case we compare the dynamical proper-
ties of the level 2 "spontaneously" populated ir the presence or
absence of pumping of the atom to the upper level 3.
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K Figure 1. Erergy-level scheme,
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2. The Hamiltonian of the systeuw

The Hamiltonia: for the model under consideration in the di-
pole and rotatirg wave approximation is given by

a

A » A
H=HA*HF’“!‘

/1/
where
A 4 /’2‘
= fed, . ‘e
HA ; O¢ LL /2/
ig the free atomic part,
) ¥ 2 . 1
He = Z hoy (el 3) /3/
o1 )
represents the free field Hamiltonian, and
4 L ‘e A A A AL A
Hp = fb},,(oq Ryg + 0q Ryy) + ﬁg; (2,Ruy + agRy,) +
A é A"é
+ ﬁ}g(“a sy * @5 Ruz) Jes

is the dipole interaction part; the Yo (& =4,2,3)
are atom-mode coupling constants.

The photon annihilation a and creation &% operators for
the modes & and F,satisfy the commutation rule

A A
+
[ a'uc ) a-/b] = d:l./g 5
~ A
while the atomic operators EU = /C><j/
sition of the atom from th: level j to level 1
tions

/5/
, describing tran-
, obey the rela-

A A A
EL;}' 'ekL = RI:L é;:k
A A A . A
R ‘= P \ -
Chy, k] = Rt i by iy
In turn, the operator Rii represents the population of the
level i with erergy ﬁJ»oL 3 the following conservation law is
fulfilled:

3

76/

‘l A
) Ry = 1. ' /17

e=1

3. Solution of the problem

With respect to the commutation rules /5/ and /6/, the Heisen-
berg‘equatlons of motion for the level population and photon number

¢ m, = a ﬁ.“ ) operators have the form:
R, = 4:}4 (e, R'hf - af 'Q»rt:);
2 . A 4 a A
Ry = 0 22 (a'.r, Ryy = a; Riu),
,: . a ry A A
) Faz = TE s (a3 £3, - o5 Ry) ,  /8/
’;\"4 = 'én ’;: = 'Q: ; 3
) 2 = Kaa My= ~ Ry, /9/
Operaf:isreljéfons {9/ give the following constant excitation number

4 " " .

VV:, = m, - K, , /10/
A " A

Ny, = my + Ry

By the second differentiation of eqs. /8/, one finds

>

Ay o 3 R
Rew = R0, ([‘v‘:' Ree) - T
}‘LAZ#; 00'/" s s
(o(:: 4;413)

/11/
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where, for

brevity, we have intéoduced the auxiliary operators

A A A A é Ay A 2"
Tz =Ty = Q48 2 oA, 2, i
a “a A A “ Iq
+ At
Tys = Tsy = @4 %3 Ryy + af %s Ras s
4 4 4 4 4 Ty oAt A
7;3 = T3Z = a,z a—a 252’ + a& a«a k23 .
/12/
They describe two-photon transitions between the levels ot and
Vel by the common fourth level.
The IL‘ are the operators of the one-photon Rabi frequency,
and
A 2 4
2
_O_‘ = 94 (\A/‘ + 4) 3
Az PRV
L, 0= gu(M 1)
42 F 2 ¢
D, = §s W, . /137

Differentiation of the operators /12/ leads to the following
three integrals of motion:

Cd-

where, obviously, Cup = Cpue

o A

/5= - g"“gﬁt‘/é = o Bp/& + —a/l ’ed-t ’

(aﬁ .#/3’4:113)
/14/

. One can easily check that
A2

A

these operators commute with the operators o .
With respect to eqs. /14/ and the conservation law /1/, we
finally get the following closed set of differential equations for the

level population operators

oo " N A 3 a 3 a4 Al
€ 8 (30 8%V R, 305 Reat I Chpr 2
A ﬁ*d’ /’*“
(ﬁ“'fﬂzls) ’ /15/
where

.~

3 a s
2 2,

lidad /16/

is the operator of the effective three-photon Rebi frequency.
The solution of the above equations can be found using the
Laplace transform technique. To solve }2# problem one ghould note
the commutat;gity of the operators Sl* and J)z with the
operator R, .
After some lengthy algebra we finally find
)
- A 4 a
;Qd.u (t) = ‘.Zoél Sl"n-z'%i + /;oc sim {1t __Q.: P(*) + g:—(
(d=4,113)

17/

and, owing to the conservation law /7/,

A

PA“,(E) =-‘Q&P(f) + Ry, 3

. /+8/
where the superscript ©) denotes ithe operators at t=0.
The operator P(t) is:
: D simi D A sim 201
P(t)= 2o sim® 0t + B sim .
/19/

Formally, the solutions /17-18/ resemble those for the three-
-level two-mode system [8,9] s due to the configuration of levels
assumed, the four-level atom preserves the two Rabi frequency bran-
ches f), and 20

amplitude operators are different and their form is as follows

A 3 a2 4 A A 3 2_
o= (2, 0 Ry - Q'R+ 57 57 9T, x)/z-a
=1 PRV Y )

p-4
A ag 2 A a
i, = [ 2 ‘g Y (82— #7,)+ oa,,‘fz Z% -
_"Q‘-t ZZ 9’)"7— _é"
n=1 Hp% '/”]/
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of the three-level aton [7—10] -~ However, the



Moreover, with respect to the relations /10/, we get:

A "l. A a0
-ﬂ - /5_‘ sunﬂi + _‘ Pt + n, .
Gt = A, 2,3)
/21/

o;“(t) -.Z-( sin?

4., Discussion

To start with, we shall compare the dynamical behaviour of the
fundamertal level 1 of the atom under consideration and of that of
the three-level atom in the ladder configuration /levels 1-4-3/. Let
us assume that at t=0 the four< and three~level atom is in 1ts lower
state 1> » 1.e., that the expectation value Rj, = {1/ R. [1>=1,
and that the £ield mode 2 starts from vacuum whilst the field modes
1 and 3 are initially coherent with the mean photon numbers

nS> = 7)1—: and < ny>= rp_—g , Tespectively.

Under these conditions for the expectation values R11(t) in the

case of 8178,=8=E We find from /17/ and /20/

Bu() = 4 = > > {(_"_""_M st (fngemn o gt

no +m4 +x)*
ni=0 mY=p 1 3 )

122/

mP 2
- 1 sin® (fmg+ myex gtyp(’h,) P(n3)

(m%+m§+ x)?%

where the statistical weights 1’(41})
given by the Poissonian distributions:

'y i=1,3, are obviously

—_mt —
P(me) = : e—”f
: @ ! )
‘O

/23/

\ In eq./22/ we have introduced the parameter x in order to
present in a single expression the formulas valid for both the four-
and three-level atom, Namely, in the first case one should put
x=1 while in the latter case x=0 /then 8,=0/.

A

For great photon numbers n;o and " >> 1 the
summations over mg and 413 can be performed analytically

6

Ii'“

by using the saddle - point method as has been done for the Jaynes-
~Cumnings mode1[15]. Here, we are interested in the influence of the

" enhanced depopulation rate related to the existence of "spontaneous"
‘transitions of the atom from the level 4 to the level 2 on the time-

evolution of the fundamental level population. Thie influence will be
appreciable at relatively small photon numbers 3{3 and ;:g T .
Then,however, we cannot use the saddle - point method and we have to
perform numerical computations, The results of our numerical solutions
are presented in Figs. 2 and 3.

Fig.2. shows the short-time evolution of the fundamental level
population. It is readily seen that the initial oscillation period
is shorter for the four-level atom. This is so because the Rabi fre-
quencies in the sinusoidal factors in the sums /22/ are greater in
this case owing to the "extra™ 1 related to the "spontaneous" tran-
gitions of the atom to the‘level 2. The envelopes of these oscillati-
ons collapse to zero and the collapse time is greater for the four-
level atom, The above conclusions are ‘in qualitative egreement with
the results of 1Li and Zhu[ﬂﬂ . Strictly, they considered an N-lwvel
/N-1/-mode system with common upper level and examined the effect .of
"gspontaneous" transitions to N-2 lower levels on the dynamical beha-
viour of the level populations and photon numbers.

With the mean photon numbers assumed, the maxima of the second re-
vivals /Figs.3/ are noticeably greater than those of the first revi-
vals. In the case of a two-level atom one has a sequence of revivals
with monotonous decrease of their maxima[15]. Already in the case of
the three-level atom one deals with different kinds of revivals re-
lated to the two branches of the Rabi frequencies in the sums /22/.
The .maximum of the éubsequent,low—frequency branch revival is grea-
ter than that of the preceding high-frequency branch revivalﬂﬂ. The
greater maxima of the second revivals and the longer revival times
/Figs.3/ suggést that they are related to the low-frequency oscilla-

tions; albeit, their "irregularities™ show that they are in fact

compositions of the firstrevival of the low-frequency oscillations

and the next successive revivals of the high-frequency oscillations.
The maxima of the second revivals are practically comparable for both
atoms, contrary to the maxima of the first revivals, We conclude direc-
tly, that for the fundamental level population, the role of the high-
-frequency branch of oscillations /at small photon numbers and upward
of very short times/ is diminished in the case of the four-Ievel atom
by comparison with the three-level atom /see also eq. /22//. This
conclusion coincides with that arising from the results for the

model of Li and Zbu.ﬁ6]; namely, the amplitudes of the high-frequency

.




branch of oscillations of the fundamental level population decrease

aslthe number of levels increases.
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Pigure 2. Short-time evolution of the fundamental level population

(t) for the four-level atom (solid line, 4= 4.=4s>%>

nt° =5, 410 =0, nx° a 4

and the three-level

atom in the ladder configuration (broken line, 9, 4= 3%,

4.0, m5 =5, mg =4 )
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Let us now discuss the dynamical behaviour of the level 2 and
compare the results with those for the three-level atom in the lamb-
da configuration /levels 1-4-2/. In both cases we assume that the
level 2 is populated by "spontaneous" transitions. Here, for the
three-level atom we have to consider one pumping field only, i.e.
the field mode 1. For the four-level atom we must as previously take
into account two pumping modes 1 and 3. Under the same conditions
as assumed in the relation /22/ we find for the four-level atom

s3> g gt 1)

RGe0 MGsp (04 +m4 M)z

2,y ()

: . /24/
= sin*(Vme s ma+ a1 gt)] P(me) P(m3) =

ZE:- ;E: #013
2
nmg=0 mg (ﬂ:4m"3.,.4)

and for the three-level atom

Rys () Z -——2‘—2 sta 4 (f moe1 gf /L) P(ng)

'71-’30 ('11444) 25/

sin’ ([ omsed - gtft) Plut) PO,

where the statistical weights for coherent pumping modes are-given
by /23/. Moreover, for both atoms By,(t) = n,(t).

It is obvious from egqs./24/ and /25/ that now the amplitudes
of the high- and low-frequency branch of oscillations are reduced in
the same degree for the four-level etom and hence, contrary to the
formerly discussed case, the maxima of the first and the second
revivals are less for this atom. Fhe results of our numerical compu-
tations are plotted in Figs.4.

The maxima of the second revivals in the cases coneidered
in Pigs. 4 ere remarkably larger then those of the first revivals.
This feature, as evident from eq./24/, 18 related with the factor
4 in the term representing the low-frequency branch of the Rabl os-
cillations /the factors containing photon numbers are the same for
both branches/.

QFigure 3. The time-dependence of the fundamental level population:
N a/ the four-level atom, b/ the three-level atom., -Conditions
are the same as in the case of Figure 2.
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Figure 4. The time-dependence of the level 2 population:
a/ the four-level atom(94’9z=$;=ﬁ,ﬁT§=40, m$=0, m5=2),
b/ the three-level atom in the lambda configuration”
(39229, 4,=0 , m5 =40, m% =0) .

i

To doﬁclude briefly, we have solved the operator equations for
the four-level atom explicitly for the case of three one-photon
resonances, The quantum electrodynamical expression of the three-
~-photon Rabi frequency has been found as well. We have shown that
quantum collapse and revival are possible in the loss-free four-le- .,
vel %hree-mode system and, as in the case of the three-level atom,
we deal with different kinds of revivals due to the existence of two
branches of the Rabi frequency of oscillations, As for the fundamental
level population, we note, at small pumping photon numbers, the dimi-
nished role of only the high-frequency branch of oscillations in com-
parison with the three-level atom in the ladder configuration as
reflected in the less maximum of the first revival.
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Koseposcxu#t M., MlymoBckuit A.C. E4~86~852

IuHaMuka ueTnpexypoBHeBol TpexMomoBol
CHCTeMn, OnepaTopHue pemeHHsA

B punonrHoM npHOIHXEeHHH H B NpHOGIMXeHHH BpamawmeNcs BOTHH
HafileHn onepaTopHule pemeHHA fJjiA HaCEJIeHHOCTH YpOBHeHl H uHcen
sanonmeHnsa . [lpeacTabBneHn pesyjbTaTel YHCJIEHHHX pacueToB pla
BpeMeHHO! 3BOJlGHH HaCelleHHOCTeH YpoBHEeH B ciyuae HauyanbHON
KorepeHTHON Moam | M 3 /HauanbHasa Moma 2 B Bakyyme/ u npose-
ReHo CpaBHeHue C pesynbTaTaMM ANA TPEXYPOBHEBOTo aToMa Kac-

KagHoO# u namépa-KoHdUrypanus .

PaBoTa BumonHeHa B JlaBopaTopHH TeopetTuueckol éusuxu OHAU.

Npenpinit OGrenuHeHHOTrO MHCTHTYTa ALCpHBIX HccnepoBanyit. JyGxa 1986A

Kozierowski M., Shumovsky A.S. E4-86-852

The Dynamics of a Four-Level Three-Mode
‘System. Operator Solution .

-In the dipole and rotating wave approximation the opera--
tor solutions for the level populations and photon numbers
are found. The numerical results for the time-evolution of
the level populations for the case of initially coherent
pumping modes 1 and 3 /mode 2 initially in vacuum/ are repor}
ted and compared with those for a three-level atom in the
ladder and lambda configurations.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1986






