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1. Introduction

The scattering of nucleons and composite nuclear particles,
such as deuterons, o -particles, heavy-ions (HI) and others, is a
very important tool in extracting information on the nuclear structu-
re /1/. Despite the existence of different microscopic and semimicros-
copic nuclear models, analyses of the scattering data are mostly per-
formed by the use of simple phenomenological models with many fitting
parameters, without taking into account different effects, such as
the Pauli blocking effect, the absence therein of the link with any
microscopic nuclear models, Sometimes it does happen that the results
of these phenomenological analyses for the same nucleus are in cont-
radi¢tion with each other., Therefore, different semimicroscopic
approaches to the description of nucleon and compogsite particle scat-
tering are of great interest.

Such an approach has been developed in /2,3/ for the description
of low-energy nucleon scattering. In contrast to similar approaches
/4,5/ to the nucleon-nucleus problems, in /2/ the nucleon-nucleus
potentials have been obtained in a closed form with taking into acco-
unt the exchange NN correlations in the density matrix formalism
without using a cumbersome iterative procedure /5/. Further, this
approach has been generalized to the oX-nucleus case /6/ by folding
the nucleon-nucleus potential, calculated within the scheme developed
in /2,3/, with the nucleon density of the o¢-particle. However, in
the o-nucleus potential obtained in this way, only a partial anti-
symmetrization between each nucleon in the ©-~particle and nucleons
in a target-nucleus has been taken into account. And for the HI po-
tentials such an approximation may not be sufficient since the exchan-
ge NN correlations result in full antisymmetrization between nucleons
in the projectile-nucleus and nucleons in the target-nucleus /7/.
Among other approaches to the description of composite particle scat-
tering, the double-folding model /8/ is the most popular one. Since
the exact evaluation of exchange part of the HI potential involves
many calculational difficulties, in most folding calculations the
exchange NN correlations in the HI potential are effectively estima-
ted using a zero-range pseudopotential /9/. The zero-~range pseudopo-
tential is an approximation of the exchange term in the case of
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iﬁfinite nuclear matter with a constant density /8/ and it may be too
crude for the case of collision of two finite nuclei., Moreover, an ex-—
plicit and exact treatment of exchange NN correlations /2,3,5/ can
lead to some effects which cannot be described 1n the pseudopotential
approximation. Recently; a method for calculation of the exchange
parts of ot-nucleus and HI optical potentials with full antisymmetri-
zation between nucleons in the colliding nuclei has been proposed in
/10,11/. However, this method is based on a cumbersome iterative pro-
cedure and can be used only for the analyses of elastic scattering.

In the present work, based on a generalization of the double-
folding model /8/ and the semimicroscopic approach to nucleon-nucleus
problems /2,3/, unified and closed expressions of optical potentials
and irelastic form factors are obtained both for nucleon-nucleus and
nucleus-nucleus cases with taking into account the full antisymmetri-
zation between rucleons in the projectile and nucleons in the target
nucleus. The obtained equations can be used in the microscopic analy-
ses of elastic and inelastic scattering of nucleons and composite
nuclear particles.

2. Formalism

The nucleon-nucleus potential in general must be nonlocal in
space and energy-dependent, Within the frame of a simple folding pro-
cedure /12/ this potential can be written as a sum of the local direct
term and tbe ronlocal exchange term:

URRE)=6R-RYY \QEImRRDQR R, +
n

+2 PR vexRRE)§,(R)
n ’ (1)
The nonlocality of the potential is due to taking account of the
Pauli principle and leads to the integre-differential form of the
Schrodinger equation or a system of coupled-channel equations. Ho-
wever, one can obtain the equivalent local potential in the manner

.

propoged in /13/, namely:

URE)= SU('F?,“R‘;E)AR": UPCR:E) + UEX(R.E) =
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where P(ﬁ:ﬁ’):chﬁf(ﬁ)‘ﬁ(ﬁ") is the one-body density matrix

< q;(ﬁ?) are the single-particle wave functions of the nucleons in

the target nucleus, P(E)E P(ﬁ:ﬁ)) Up and Vgy are the direct

and exchange components of the chosen effective NN interaction ,
jo(k(ﬁ?)s) ~the spherical Bessel function appeared in the localiza-—

tion procedure. The local momentum of the relative motion of the sys-—

tem k(ﬁ) i1s defined from the expression

KA(®)=m/5) [E- URE-VER)]. (3)

Here- U(ﬁ:E) is the total nuclear potential, i.e. U(EE) =

= UP(RE) + UBX(R.E), VXR) s the Coulombd potential. For the
effective NN interaction one usually uses the translational invariant
form, i.e. UD(EX)(EF?.QE):.UD(EK)(lﬁ-ﬁ'l;E) . Further, the density mat-—
rix and potentials (2) are expanded into the multipole series:
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where C;,=4 if A#0 and C =\|‘In . After some simple transfor-
mations one can obtains the following equation for the exchange po-
tential: .
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The density matrix in (7) can be evaluated for spherical or deformed

n

nuclel by using single-particle wave functions calculated from some

nuclear model /5/. However, instead of this exact but lengthy pPro-

cedurey usually various local approximations for P( R+§’)
used. The Slater approximation /14/ is the simplest onet

P(ﬁ’:ﬁi‘?) e P(ﬁ*'g)j\« (kF(?“‘g)s)
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The direct part of the nucleus-nucleus potential can be evaluated

by a simple folding formula /8/ (see Fig.l)

UP(RiE)= SPM)CE) PRy v (s:E) Rl

(9.

Different components LJE(?;E) of the direct parts of the
nucleon~nucleus (2) and‘nucleus-nucleus potentials can be calculated
within the standard folding model /8,15/ by using appropriate transi-
tion densities for the colliding nuclei. In this work we will concent-
rate mostly on our formalism developed for the exchange potentials.
For simplicity we will omit the variable E in all expressions for
potentials hereafter, always XKeeping in mind that the obtained poten-
tials must be energy-dependent due to the energy dependence of the
chosen effective NN interaction and the local momentum of relative
motion of the considered system (see (3),(3'). The exchange part of
the nucleus-nucleus potential is the antisymmetrized matrix element

: EX, 5 .. ..
1/ URK(Ry =2 <ijlvgyljid> o
LeA,, €A,
where |i> and lj) refer to the single-particle wave func-
tions of nuclei /\* and A& , respectively, Note that the localiza-

tion procedure for the exchange nucleus-nucleus potentisl /7/ is simi-
lar to that for the nucleon-nucleus case /13/ in the plane wave repré-
gentation of tge_felative motion of nuc%sggs. By writing
liv= LR,WP (ik,"f,, ) and |J‘>: C{j &P(ik,_‘?,_) , where (P, and
¢: are the intrineic single-particle wave functions of the nuc-
leons in /\4 and Az_ with the corresponding relative coor-

—
dinates ?4 ,‘f and momenta Ea ,kz , done can get /f7,10/:

UEX(R)= SP“’(F,’:‘,’+?) PO(R,8-8) Vg (S exp [iR(RIT M] R dE
(10) )
[E- URY-VER] > M=AA (AckA) . (1)

Applying the 1oca1 approximation (8) for the den81ty matrices in (10),
after some transformations one obtains:

UFK(R)= 4r (v, (o) s%de Sg("( Re){BRR) J,(k(R)s /o) dF,

where 10?) .ZmM
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With the multipole expansion of the local density: .
P(?)=;CA<IMAF‘TM’> Ph(r)\‘/”*r;(?) . s where T and I’ are ini-

tial and final spins of the nucleus, and the folding formulae in momen-
tum space /1,8/, one can write the second integral in (11) as:
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Here i»(AR) is the spherical Bessel function of 2 -th order,
26,2 . .
kF,n("'): [3/23 Pg )(r)]% . (14) E:nd (15) include, as special
cased, mutual excitation ( [/ I, end I+ T, ), single excitation
(i 1, or If# I, ) and elastic scattering (I;=1, end /=T, ).
Putting (14) into (11), ore can obtain:

o0
CLUE"(R)= 4J‘fZ C,C, SCLarypp’) SJ,,:FI(k(R)c/M)x
. ﬁ?} °
x G (RS Vg (8)s%ds s
It can be seen that this equation is the same as equation (ﬁ) for the
nucleon-nucleus case if JM=4 . And from (6) and (6°) we will obtain
unified, equations both for the nucleon-nucleus and nucleus-nucleus
potentials, Note that in the local approximation for the density mat-
rix function (}”N (Q,Q) does not depend on the projection of the
transferred angular momentum, i,e. G-hr(R,S‘)E Gh (R,s) . The exchange
integrals (6) and (6') in general may be evaluated by an iterative
procedure. Such a procedure has been developed for the nucleon-nuc-
leus scattering in /5/. However, with increasing number of inelastic
channels under consideration, such an iterative procedure for the
nucleus-nucleus case would be too tedious and needs a lot of compu-
ting time even at big computers. That’s why in various semimicroscopic
analyses of inelastic composite particle scattering the pseudopoten-
tial is so widely used in evaluating exchange parts of inelastic form
factors, Nevertheless, it turns out that such difficulties can be avo-
ided and one can obtain closed expressions for lJE*CR) by‘using
the multiplication theorem of the Bessel function /16/ in the case of

Jo(x) $

_— . _yz \n
Jo(%é)zz jﬁ‘i J,,('ﬂ("—ﬁ—z) 5 H-y("<'1 .
"=o (16)
With the multipole expansions (5) and (5’), one can define 3 and 2
as .
4
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where k}(R): _2_"‘1;,_‘]:_1 [E - UE(R)_ VOC(R):l (18)
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and k}(R):g'%ii'{uf"(RHLZM [USR)+ UE(R)+VE(R)]YL;(E)}_(19)
Here the primed sum wmeans that the sum runs only over quc) . One
can see that k%(R) is the momentum of relative motion in ‘the centre-
-off-mass frame in the case of elastic scattering without any exchan-
ge interaction. The results of our calculations have shown that

k}(R))O for all considered cases of nucleon- and X -scatte-
ring., However, in some cases of HI scattering at energies below the
Coulomwb barrier k2Z(R)<©O and the scattering here appears to be
due to the nondirect effects (exchange, tunnel effects...) in the
colliding nuclei. We think that in such cases it is important to take
into aocount properly the Pauli principle. By using (17)-(19) expan-
sion (16) can be written as: oo

k@610 =2_ T3 jn (KON </

=0

[(k}(ﬁ)-zk}(R))s/(zmlko(RJl)]n if Kw<o
[ kAR s/(2miR]" i k}(R))c;.

(20)
It is easy to see that an n-th term in (20) is proportional to
E"(R) jUk(RIs/M) /], where 2 (R)=m/(lk.(R)]}). For the
projectile energies of about some tens MeV per nucleon, from & simple
evaluation one can find out that 2(R) v» 107 (MeV fm)™' for
nucleons, 2B(R) e» 1072 (MeV fm)™1 . for X -particles, and
107°& ®(R) £ 1072 (MeV tu)™! for HI cases. Moreover, the Bessel



function J“CX) rapidly decreases with increasing order n ,
Therefore expansion (20) converges very rapidly, and it ig sufficient
to take into calculations the first three terms in (20) (results of
our calculations show that the 4-th term in (20) can lead to a
difference in the calculated potential of about 4+2%
than the uncertainties in the effective NN forces or the nuclear tran-
sition densities themselves /1,8A, Putting (20) into (6), (6’) and neg-
lecting all terms proportional to 'ae"(g) with n> 3
the potential in the following closed form: '

U (R)= UP(R) + UEX(R) = UPR)+ 15 (R) + 2 (R)I,, (R)x

, much less

, we obtain
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431' P2 hr‘ h’!“’ CL
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*(Toa(R)~ §(R) ] + 2(R) L, (RY[ T, (R)- £ (R)] I, (R} ,

(21)
and the exchange integrals are

where \/;)(R) = UhD(R)—{- \/7?(}2)
m b
- L (R= 4% SvEx(s) Ja(RIRIS/M) G, (Re) s™2ds,  (22)
(o]

where

if  k&r)po
RRAR) o) 3 RERI<O
The direct and exchange parts of the optical potential correspond to

the term with |[=0O from (21), i.e. U,(R) . For the low-ener-
_ gy nucleons or nonrelativistic HI (with energies of about some tens

gk(R)z

MeV per nucleon), the effective NN interaction is usually taken as

the effective G-matrix for bound nucleons (see, for example /17/) which
is real. In such cases, equation (21) can be used for evaluating the
real parts of the optical potential UO(R)
factors UL(R) ( L+0) . The imaginary part may be added from
the usual optical model to the U, (R)
model to the U, (R)

and inelastic form

and from the collective
/1/. And that is the reason why we call our

s

U =

approach a semimicroscopic one., Equations (21)-(23) are obtained in
a unified form for both nucleon-nucleus (by putting M=4 ) and
nucleus-nucleus potentials with the difference only in the calcula-
tion of @, (R,8) for these cases using (7),(8) and (14),(15).

8ince the exchange potential is obtained from first pring¢iples
with full antisymmetrization between nucleons in the projectile and
nucleons in the target-nucleus, our model can be used first to study
single-nucleon exchange effects in elastic and inelastic scattering
of nucleons and composite nuclear particles. This 1s one of the
objects of our further study within this model.,We here show only as
an example the results of our calculations for the real optical po-
tentlal of the system o+ °Ni at energiés E = 139 and 172.5 MeV
(see the table). It can be seen from the table that our mic-
roscepic ocalculatiens using the so-called /8,11/ M3Y 1inter-
actien with a finite-range exchange term (M3Y/FRE) give
the results very closed to the phenomenologicélly adjusted potentials
/18,19/ (especially for the case of E_ =139 MeV, where the potenti-
al can be unambiguously determined as the squared Woods-Saxon poten-
tial /18/ (WS)Z). The poten%ials calculated using the pseudopotential
approximation (M3Y) are in poor agreement with the realistic potentiale
both in the interiour and surface regions.

Table. Real optical petentials for system o+ 58Ni

Ey= 139 MeV Es= 172.5 MeV
R U, (R) U, (R) U (R) (U (R) Uo(R) U, (R) Model
2 A

(£m) M3Y M3Y/FRE  (WS)</18/|M3Y M3Y/FRE Ind.Aral./19/
N (uev) (MeV)  (MeV) (MeV) (MeV)  (MeV)

0 146.7 137.9 140.5 137.1 131.0 50+ 200

4 7647 8l.1 82,3 - Tl.4 76.2 81.5

6 16.1 20.1 20.3 15.2 19.1 20.9

8 1.0 1.2 1.6 0.9 1.2 1.3

3. Conclusion

We have obtained for the first time, without using any iterative
procedyre, unified and closed expressions for the nucleon-nucleus and
nucleus-nucleus potentials with taking into account full antisymmet-



rization between nucleons in the projectile and nucleons in the target.
By using microscopic nuclear transition densities calculated from some
nuclear model (see, for example, /20/) with taking into account the
Pauli principle, this approach may be used for a detailed study of
exchange NN correlations in the elastic and ineclastic scattering of
nucleons and compogite particles.

By expressing in an explicit form the dependence of potentials
on the deformation parameters as in /2,3/, the obtained equations may
be used in the elastic and inelsstic data analyses in the distorted
wave Born approximation or in the coupled channel method for extrat-
ting the deformation parameters of the nuclear states excited in the
considered processes. ’

Along with the energy dependence of the obtained potentials,from
(21) one can extract the so-called multiple-mixing effect /2,5/ which
is absent in the pseudopotential approximation.This effect leads to
the fact that the L-component of the potential is detsrmined both by
the L-—-component and A—components with 3.2 L of the nuclear transi-
tion densities of collidiné nuclei, In the framework of coupled
éhannel analyses, the multipole mixing effect involves an . additional
coupling scheme for the considered channels, And it is believed that
this effect would be substantial in the excitation of nuclear states
with complicated structure.

This approach may be used in the description of intermediate
energy particle scattering, when the umpulse approximation is valid,
and one can choose for Vb(Ex)($5Ej the realistic t-matrix for freé
nucleors (see, for example, /21/). Our approach can also be generali-
zed to gtudy many-body NN correlations in the nucleon and HI poten-
tials by introducing into 'Ub(Q;E) a realistic density depen-~
dence /3, 22/.

And fina11§ we note that this approach is developed for systems
of spherical nuclei, but it is straightforward to obtain analogous
equations for a system of strongly deformed nuclei by using the mul-
tipole expansions from /5/ for the densities and potentials.

The authors are grateful to Prof.H.Rebel,Dr.K.V.Shitikova and

_Dr.F.A.Géreev for useful discussions and criticel remarks on some
parts of this work.
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A unified semimicroscopic approach to the description of
nucleon- and composite nuclear particle scattering has been
proposed. The optical potentials and inelastic form factors
are obtained in a closed form with taking into account the
Pauli principle in the local density approximation.
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