0GLEAWHEHHBIA
HHCTHTYT
ABEPHbIX
HCCABAO0BAHMA

AYOHa

E4-86-705

M.L.Shirokov

NEGATIVE-ENERGY QUANTA

Submetted to 7XKI3TD”




1. Introduction

In this paper the following effect is discussed. An atom D
(detector) was initially (=0 ) in the ground state 0, £, being its
energy. Then in an interval ( %, f, ) it is excited (e.g. by a laser
beam) up to state 1 having an energy £, . Another atom A is at a
distance R from 9 and is effectively "turned on" in a time inter-
val 47T
of this ™turning on", see subsections 3.9 and 3.3 below., At a moment
t>6 one measures the probability of finding D in the ground

, To being the interval center. As to the realization

state { . We are interested in the change of this probability induced
vy A at 0<T<t<t,<t . The exact definition of the induced proba-
bility (denoted by AA,(t) ) is given in sections 2 and 3. AN/
is here calculated by using the Heisenberg picture of the standard
quantum electrodynamics. The result is represented in the Figure as
the cependerce of ANy upon the center T

AN,

atr
%

%+RQ

of the interval ( &, * ),the interval being moved as a whole along
the time axis. It is the relativistic retardation of the A action
upon 9  that is the most important preperty of AAj for our
purpose, Atom A does not absorb the radiation emitted by D . It
plays, instead, the active rbole: A creates initially the cause of the
subsequert D' Ge-excitation.

The structure of the formulae for 4N (seeye.g. eq.(18)
below) suggests the following interpretation of the effect. The
excited atom 2 absorbs in the interval ( %, £ ) something which
has an energy X and has been emitted earlier by A, After this .J
turns out to be in the state £ . From the energy conservation equa-
tion £ +x=Eg one has X= E.—E,<( , i.e. that something
has a negative energy.
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Let us try to explain the effect using the notion of the pho-
ton., Atom D deexcites emitting in the interval ( 4., Z )a photon
of energy A4=£-& . But AAh  is the probhability induced by A ,
it vanishes if A is absent. Therefore in the effect the photon must
interact with A . But A4 is "turned off" when D is emitting the
photon (remind that O<TG<¥<5<E ). The atom A can interact
with this photon only if the photon moves hackward in time. We cannot
consider this possibility in the frame-work of the used standard QED,
because the latter allows only retarded solutions.

One may try to interpret the effect without using the words
"negative energy", e.g. as follows: A emits an clectromagnetive field
which later absorbs the 2D excitation. But let us try to interpret
the field in terms of quanta. It cannot consist of photons, because
D can only increase its energy absorbing the photon, So, we are
brought again to the notion "quantum having the negative energy".
In what follows I shall use the term "quen", the abbreviation from
French "le quantum de 1’énergie negative™".

The paper is organized as follows. The problem formulation and
its calculations are illustrated at first in sect.2 by a simplified
model: the external current substitutes the atom A and QED without
the Lorentz subsidiary condition is used. Section 3 4is devoted to
the discussion and elimination of the deficiencies of the simplified
model., The section contains no calculations but only results. In the
concluding section 4 I give main requirements which the appropriate
experiment wmust meet, argue the existence of the quens of other
(nonelectromagnetic) fields, discuss the existence of free guens
and consider the role of the quen in the particle interpretation of
quantized fields,

2. Negative energy transmission from external current

to excited atom

2.1. Let us begin with the definition of the induced probability
AN . At a moment ¢ one must measure the probability that .9 is
in the state 0 . Stress that one must not detect photons or’'the sta-
te of a%om A

to the presence of atom A (of the external current in this section)

. The part of this inclusive probability which is due

will be defined as a difference of two quantities, In this section the
first is R
N . W12
5 [<d &, U (ko1 @ 5]
(1)

Here P; is the initial state vector: "9 ig in the state f , no
photons" (for simplicity 2 is let to be now in an excited state at
the moment t=0 ; the D preparation in state 1 during ( t, é )
Zé( £, 0) is the evolution
operator when the external current is turned on at the moment %=0 .
The vectors 4%
vacuum), dt @, is the state which differs from %, by the pre-
sence of one more electron in the .2 state 0. Of course, some of
{d} @y, Uy P:) df %, differ by the

electric charge. One can rewrite eq.(1) as

T AU R A GNAB U B = ZU s, df @, )<, dy Uy )=

is considered further in subsect 2,7);

constitute a complete set of states (including the

vanish, e.g. if &y and

=) @, e dy U (60) ) = () ot dp ) ) -

(2)

The completeness Z,, lcp,,)( QD,,|=_( is used; DIJ-O (t) denotes
the Heisenberg operator uj-'(t,a) ey Us(t,0) .

The second quantity (subtrahend) differs from (1) only in one
respect: the external current is absent. The evolution operator is

deroted by U (%0)

AN ={ Uy ) it oly Uy Py = UB el UD, D -

in this case. So,

(3)
This definition corresponds to the subtraction of the. background
which is used by experimentalists to obtain the part of the measured
quantity which is due to the investigated cause. The gubtrahend in
eq.(3) is simply the probability of the & spontaneous transition
from 1 to 0 . I designate (3) as A A} (¢} vecause { U P, a;*d,,uqo,)
is also the expectation value of the operator A& =a$ﬂ% of the number
of electrons in state O . ;
2.2. One can calculate (3) using the known perturbation expansion
S D7) 7"
of the interaction-picture evolution operator Texp [-Ljo dt’ Hee (£ ]
But a simpler way is to calculate (3) by finding the Heisenberg opera-
tors dJ()(t)= ZZJ’ do Uy and d,t)=UTde U by means of a perturba-
tion theory. The connection of ‘d}h/ with the Heisenberg electron-
—-positron field operator sl/{;,t)=u'¢/’/;,0)u

expansion

WE )= S, w, (5)dylt) + .5, Un(X) b (). (1)

is given by the known



Here fﬁ neans summiation over a discrete part of the spectrum of

the atom D electron and integration over its continuous part;
-&:ﬁV denotes the Heisenberg positron creation operator. Using

the orthogonality of spinors %, and 2, one gets from eq.(4)

dy ) = dx W5 Wiz .

(5)
The QED equations for Heisenberg operators (¥ and 491 are
well known (e.g. see §22 in /1 ). Their integral forms are called
the Kallen-Yang-Feldman eqs. (e.g. see /2/). If the external current

7,

T is present, the egs. are

Y (x) = @00 <ie [y SECay) A ly) pu o ty)
A ) =AL () + [y D (x-4) [ ce Gli) o) + Jots)].

(6)
Here X = {x X, }' x‘,:t; 4= iy ya - The integration over g,
runs from Yo =0 t yo‘xo , and therefore the operators ¥§(x 0)
and K%W (%, 0) coincide with the free operators tpf(x) and
/vf[ﬁ, taken at the point Xp=0 1), The latter can
be written in terms of the Schrodinger creation-annihilation operators.
To solve (6) means to find how yg(x} (and a%?&} , See eq.

(5)) 1is expressed.in terms of the Schrodinger operators. The expres-
sion allows one to calculate (3) because one knows how the Schrodinger
creation-annihilation operators act on the initial vector @&, (e.g.
see eq.{(17) below).

Note that ¢J7x) satisfies the quasifree equation which contains
potentials U (X) binding the atom 9 electron

[jpduem eifp U (5) ] Y2 (7,%) =0 -

(7)
The retarded function .SR[Y,g) gatisfies a similar eq, which
however, has [ — 5(4’[x—#‘)] in its r.h.s. The general solution
of eq.(7) can be written as
f = ¢ - ~l(En N, - Emx,
Y] =3, e "y e S oy, (e AR
(8)

where dn is the Schrodinger electron annihilation operator.
1]Equatlons (6) differ from the corresponding differential ones in
three respects: 1) egs. (6) contain initial conditions, 2) eqs. (6)
are gquivalent to the latter only when Xo2¢ ; 3) only retarded
gsolutions are taken into account in egqs, (6) while the differential
ones allow also advanced solutions,

If there is no external current, then one lets l; 0 in egs. (6}
and the corresponding operators will be denoted by VVNJ and /L.Dd

To solve integral eqs. for (/, Ay, ¥, An I insert in
the eqs. the expansions 99“)::§x eX qgmr(k) etc., and equate the
terms with the same power of € . The external current %s treated
exactly: I do not consider J; being proportional to & .

One obtains in the zeroth approximation

(DJ/x) q}o)(x) ‘quly) A(O} = f‘ +‘/.$R[¥“’//\]/;/,’/)d?‘ (9)
As to the following approximations I shall need only ?;“[x)
and A{/m(x)

jﬂﬂ){x)':—[ Jd%y S¥(xg) o Y AL ) (10)
W)= W =ifdy SS(ng) gty [ate DFla-2) Jute). a1

Let us show that the first nonvanishing approximation for the quan-

tity under calculation
adolt) = {P;, [ df iy, ©) - dfte) dye) ] ) (12)

(see eqs.(2) and (3)) is of the order 2® . Insert into eq. (12) the
expansion dfo(t)—' c((')’{t){fe (”[t +e? [2}(”_*.” and the analogous

expansion for ¢, . Let Pp; _ao . LY being a no-particle
state. Taking into account the eq. d("'(t)__d(“(é/ =ol, exp(-iEo t)
see egs.(5),(9),(8) and the eq. d,d}f2=p , we ascertain that

d;)(’-’ and dg’(t) do not contribute to AN, (¢ in the erder €2 :

AN, ) =e*{ P, | [d wf{tl /t)—d‘f”*(t)c/,,(”(f)] @Dy - .
: 13

Using egs.(5), (10) and (11) one gets

a0 = oy [ Gl i AL,

D =d,' )+ €Yy [y G ) ) [ a2 90 L) o,

To obtain egs. (14), (15), I substituted § for S¥, which is
permissible if the upper limit Y= of integration over ya is

/3/

(‘)

explicitly written in eq. (10). Further I used representation
-iSlny) =S, Un(*)Unly) + S, ¥, (x) U, ly)

Un ($) = Un (V) expl-iEnre) | UsuU') (16)
and orthanormality of the spinors Wnand U, -

5 .



Now ingert egs. (14) and (15) into eq. (13); use further that
(tp,[ﬁ)/“ 129 is zero if ¢ and %,  are states with an
equal number of photons™’, finally use the equation

(B, Pl ty] ) ={d*s0, FHy) wily) ditn )-
- El(g)elfl(%,ul[j;}e-[ﬁ‘% + Sm ,D_m[y/e'—lEm#‘ 2/;”/(;/)6 [E,,,ya/ ,

(17)
As a result, one gets

1 - - 'a v ’ - "‘.F:
SHO=[2 [0y [Cag e e ™ po g™ * s 3%4-2,0] %
— L iEy, a4
Sy e T f1e Py, e e [ 9y-z) oo

(18)

2

I shall not interpret the term 5;,1 ! in the eq. because
it turns out to be small and will be neglected (see below).

Let us analyse and evaluate the obtained expression (18) for

AND (t, .
2.3. I begin with the first term of the r.h.s. of eq.(18). It
is the squared modulus of Sﬂ _I'/‘1 N where

= 3 YT it v (€~
Tu=eld'ylds @ @i dy, (*ae, e B9y 1 1)
(19)
The current %/2}:]’ (3,2,) veing a function of ¥, can be
represented as the Fouri{a“r integral

JoGa)=[de (5 we

Use the known representation

R N JE / 17-31/ -

-2)= . - - 2 oy~ 2,

D'ly-2) D(yé,ygi,,)_ml__zl SUGlfe - (4o-2)) Cen

and calculate the integral foljafdz‘,.,.i)n eq.(19), using the notation
3

tslg-3|lc and 4z E,-£, I

2) Of course I must use a representation of Ap .in terms of photon
creation-annihilation operators, It is important to take here into
account the Lorentz subsidiary condition, which allows one to elimi-
nate the nonphysical longitudinal and scalar photons and to consider
@; as a state with zero number of transversal photons (see subsect 2.6).

(20)

3) The integral over gz, is calculated by means' of the substitution
Fo=d,-"1 under the condition that ( ¢,-7 ) is inside the integration

. interval ( f, Yo ). The condition is taken into account by using the
function gy z) (see the middle of eq,(22)).

1
G

Y=J— ftd;y,e”&'g'/yihdzp $le-4 *ga)e-;‘fvga:

_ twy 't ~ty, (Wr A
—4/7;6 foa/y,, Oly,-z2)e 4 ):

e "wze ~iwra)y(te2)fy D(t-2) =1 Sen(wra)t-z),

(k2 (wea)lt -2)/y

(22)
I let in the following that 9 is localized in a region % near
the origin and the current J, is localized in |} , the distance
R vetween l{, and l./f being much greater than 1{9, %dlmensions.
Therefore, % 5(9’-5]/6 ~ R/C . Let Z %be such a moment that
t-15¢-Rjp >0 and - Rj 5> 4/a (of course also -
R>> 4 ) . Then Y| is maximal if W=-4 : one, has
WYl=(t-z)leny TF #*8=0 and
IY) < A \1_ &< t-1

27t wW+a inz . (23)

if [w+A)(t—z) >>4 . So, it is the Fourier-components

i@’ w) with wW=-a that give a main contribution to
1}' , if t-Rfp s> 4, . This reflect the approximate energy con-
servation in the considered effect.
Let us choose such a current in the following: &[5:3,,):0
if 2, is out of the interval ( Z;, [ ), o< z"<g-‘<l§é and
- - ‘&a P Y
]/;(2,2,)= Ku (3,-a)e + K, (3-4)€ - 2,€(z,z,)- .
(24)
Note that ];, must be real for the interaction J,'. ﬂ/.., to be
Hermitian., The support of the function ]/'u[:?"w) , the Fourier
representation of (24), is in the vicinities of w=-4 and W=¢g.
The second term in eq. (24) gives a mueh less contribution to L‘

and a N, (¢) than the first one because it does not "conserve

the energy"™ and gives in |Y| the contribution ~ 4/44 ir
t-z>>4,  ef,  (23). Sm1 1* contributes to 4 A k)

still less than the contribution just discussed. Indeed, one hag

in Sp1 12 the integral fdy,expy(e,, +Em )Y, as compared

to  [dy, expi(E,-€0)y,y » see eq.(19). Here E,¥m, and E2m
my being the electron mass. The result is that Iyl is here !

of the order i/zm¢ R

2.4, Remind that the current must be "turned off®™ when D i4g
detected to be in the ground state (see the Introduction)., There-

7.



fore one has to have T <R/ .
Offtiy,,jdzuh_ (see eq. (19)) when the current Ju 1is given by eq.
(24 ) results in

In this case the calculation .

min(t, 5 ez)

~ 1 -tz ]
Y(ZJ:‘;—J_’—Ze Q(ML.\(f,z*,_vz)_(r,+z}}f dy, -
ez
| 0 £<Z 4y
1 -4 T4 )
24'7‘7; C g Tz ) ToeT< < T4y
(Z;'ZJJ é>z¢*7
(25)
(gee footnote 3). The contribution of the second term of eq. (24) is
neglected and this is justified if ¢—(T,+%)»> 1/, and

(see above). Therefore, the inequality Z’—(Z‘,fsz
in the second line of the r.h,s. of eq., (25) must
be understood in the sense € ~(Z,+7)>> J/A‘ .

(T -Z) »> 4

_Reming that z . in eq. (25) means 13—-5_. |/e and that
IR _and y =0 (see the text after eq.(22)).
More exactly, 2= R+2' , 121 < Q and lj[ £a,,
where as is the dimension of VY, and

Qy is the atom D dimension. Naturally one can use

the fact that &y, Gy << R
7= FZ‘F:?‘-gJ/c = R/ }
When M=m =j‘2,3

(and therefore
in order to evaluate ]}, .
one can gimply substitute Y (R/)
for Y(t) . After this I, divi-
des into three factors:1) Y ( R/c) , 2) efdi'# E‘,{é’}/m % (3)
and 3) fd':‘g K, (E‘:a) . One can show that

fd*, ﬂalj)[m uli)= (e,-c,)d,; ; dy = [d% W) x4, (,;/(2

6)

3 ~

rd 2 K‘ 2 - =/ m .\ m L - i
J m(,A) LL\dJ- , df =fd3x X Ka{)f,-d) 27

Here d,’? is the dipole moment of the transition 1-0 3
analogously, [,JJ."‘ is the dipole moment of the external charge

density4 . So,we get in the described approximation (which can be t
called the dipole approximation) .;

) e ) #.
4)Current operator Jﬂ):te. W"/’ﬂﬁ/’ " 2 e satisfies the eq.
W =0 Hence the eq. Sd'x Xm B /37 == [dx X diyJ .
follows., The matrix element of the l.h.s., of this eq. between i
{dfal and |d!'R) is equal to i(€,-€)ed,l. . '
The watrix element of the r.h.s. can be reduced to i€fd¥% Zy(xX)})m Ui (X)

by integration by parts. Equation (27)__can be proved analogously :'

gtarting with Dgfaﬁx T :_fdJ, X dey T .

I, S-ie a* (dy-dy) Y (%)) -

M

(28)
the approximation Y(z)— Y(R/) fails: it
due to the orthogonality of the spinors 2,
and U and due to 433 K,(22,)=0 which is true for all 2,
The latter equation follows from O:J‘[j{g To (% 2)=0 : the
conserving total charge Q must be zero also in the interval
(T, T ). 8o, in this case Y(z)=Y (IR+i-7 /) has to be ex-
panded into Taylor series in zi".—ym powers. But Y(%z) , See
eq..(25), has discontinuous derivativesand this expansion needs a
resexvation, It is permissible to let YUE*?_‘;I)"—‘U at all
(Zlcap , (7l<ay AT 4T+ Regy -
(here and in the following I 1let ¢={

In the case /u=4
results in [, =0

see eq.(25).
). Analogously, Y may
be considered to be a smooth function, equal to exp[—c'rd)[t-?,j—)Ealuju/{mz

at all essential values of 3%’ and if
TR+ +ay <t< G+ R-g;-4, . MY last, Y=exp(-c24)] 7T 1yny
at all essential 2’  and if E>T R Grg, L If

belongs to above-mentioned intervals, one may expand Y in these
intervals and to evaluate I,,. there. One cannot evaluate ];, in
such a manner only in microscopically small time intervals outside the
abpve-mentioned ones.,

For instance, a2t 7;+R tdrtQy <t < g+ R-Qp-a, One has

t-7, - R *}'—jf

'_L'IE‘#E‘*j’a f_z'_lee (R4 9
- o = e % ‘ & "
|R +g"j} R +§(2’" I {Q‘Em(‘lzgvj)e ?

+1§/2‘f._ Maziog T2 Rk ¢t R4
2z ,7)(% ‘?J)[ A »_}271 ( ?1_1)4_“ ]Q Ja * o)

In the square brackets of the r,h.s. I omit all terms which tend to
zero more rapidly ags R-—o0
vative of {xp(-[ﬂ<a) which gives a main contribution).

For the reasons discussed above after "eq.(28) both the first and
second term of expansion (29) do not contribute to I# . Only 2}y.
from the third term contribute. So, one gets in the discussed time
interval

- . —tRA - - . =
I,ztee” o (Ad )(Rd)(t-2-R)/ine , F=Fig

than the written one (it is the deri-

(30)

Finally, one has

ZL=Z 0L, = 8 [y d, ~hd )7 )] Y (TS
: (31)
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where Y (R} is given in eq. (25). The inequalities in this eq.
mast be understood in the sense described above, gee the text after
egs.(25) and (22), . 2

2.5 So, we obtain that AA/;(f)E[E/., [/ul , wherezﬂ,l}‘is given
by eq. (31),

0 E<z+R
N "
A’Vo&):equl( :;.d‘#),(;_——)le' [t“(Z',fR)]Z L+R<E< TR -
fia JB-5)? EST R (32)

Here C={ , qJ is the o component which is perpendicular
to R : (207 af-):(dw d;r).‘(ﬁ‘;(w)(’\)-l};)
in eq. (32) is described above.
Let us consider the induced probability 4 4 (¢) to find atom
9D in state { if initially D was in the ground state 0 , the
probability being induced by the same external current (24). Exactly
the same numerical value (32) can be obtained for N ACE 5). The
induced transition QO-»{

. The meaning of the inequalities

can be naturally explained as follows:
the current emits a photon of energy ~d4 , this photon travels to

D and is absorved by P . One can show that it is the positive-
~energy part ZL_(y-z) of the function jb(#-a) (that enters
into an equation of type (19)) that gives a main contribution in
this case. It is the negative-energy part éD_[y-i} of galg-é)
which gives a main contribution to the r.h.s. of eq. (19). So, one

can explain the induced transition J—=>0 as follows: the current
emits a quantum of negative energy -4 this quantum travels to

$  and absorbs its excitationS%.

The induced probabilityA A Aﬁ(t/ depends on dipole moment
components perpendicular to R in the same manner as 4 A, (¢ does,
see eq.(32). The fact can be explained by the transversality of the
photon, transferred from J 1o D . Indeed, the photon can be
emitted and absorved only by those ar, é&, components which are
perpendicular to the direction ﬁ::ﬁ/z of the photon propaga-
?}on. Analogously, one can congider the presence of Ztﬁ and
df  in eq.(32) for AN, (¢)

as an evidence for transversality
of the electromagnetic quen,

5)0f course, the "background" probability is far less in this case as
compared to the probability of gpontaneous radiation which is a "back-
ground" in the effect considered in this paper,

6)I define the energy of the quen gg -4 = E,-§ . No other defi-
nition is available., As to the photon, it can be free (unlike the

quen, Bee gection 4 ‘below) and its energy can be defined as an ‘eigén~
value of the operator [fd%x(E&2. i)

10
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2.6. The calculation of AN, (¢)
did not take into account the Lorentz subsidiarylcondition. The form
" uAn (3, 8) 0=y for all X,¢" of the condition,/e4./g.
seb » i8 equivalent to two equations at a fixed ¢ , e.g.Z=( :

. - . -
g/ulq/q(i;o)cp=0 )’ [d‘.‘f E[XAD)“/U(X;O)Jq‘-’:ﬁ‘

They are equations for permissible (physical) states . The
4%==%+S2 used in subsect 2.2 does not satisfy the
second equation7). The cause is the noncommutativity of the operator

Y with dt‘vE'j., /4/-. One has to describe electrons and
positrons by another operator field which would commute with dd:E1ﬁ,.

presented in subsect 2,2

initial vector

The operator .

P%, )= w.(i:t)expf 7:5 [d g} dwﬂ(g,f)/li'.j; ]
is an example., Introducing ?’ instead of ¢I , one ;g?s the Coulomb
gauge formulation of QED 4/ or its variants, e.g. see .. The calcu-
lation of A A, (t)
But it can be shown that the resulting a A, @)
cantly from that given by eq.(32). In particular, at’ t:>a4-R
the difference of the two results is ~ (Ra)? times less than
the r.h.s. of eq.(32) and can be neglected if R is a macroscopic
distance: Rs>i/y -

2.7, Consider a possible theoretical description of the.process
of preparation of the atom in an excited state., Let atom 2 be in
the ground state at ¥=0 an external
potential V(X t) which is additional to the static potential

becomes more complicated in the formulations.
differs insignifi-

. We turn on at a moment %

Ux) binding the & electron, see eq.(7). After a moment Z
Vix ¢) is switched off, becoming zero. Such a potential
V(% ¢) can describe a laser beam. It is known that a laser

can quickly transfer the atom from the level &,
to level E;=g£,+4 . Suppose that VIix t) induces the
transference in the interval ( ¢, # ) with probability 1. This
drastically simplifies the calculations and result, At ¢ >7
exactly the same expreasion follows for A N, (¢) , gee eq.(32),in-
dependently of the position of the interval ( ¥, 2, ) on the time
axis until it is earlier than ( %, , 7, )8 . If (¢4, % ) is later )

of frequency A

7)Even the no-particle vector Q does not*satisfy it because
JQ(*,O) contains terms of the type g*¢ .

8)

1

Only the first nonvanishing approximation is implied throughout

thig paper. If spontaneous deexcitation of the atom 9 (radi-

ation damping) is properly taken into account, then of course
aMy does depend upon ( #¢,, # ) position.

11



than ( Z;, T, ) but earlier than the moment T, +R
for &M &) at t>t, approximately the same result as given by
eq.(32), independently of the particular ( %, Z, ) position in the
above-mentioned time region,

, one gets

3. Quen in atom-atom interaction

The description of the electromagnetic field source by the
external current has two deficiencies. Pirst, the functions J;(Zf/
are prescribed at all X and ¥ and describe the current which
does not alter when radiating or absorbing the electromagnetic field
while atoms change its state of course. Second, the hermiticity of

L“‘b; requ%fes real Zk . As a consequence, one has the equa-
lity T (2,~w) =I“x(§‘ w) for ]/'M Fourier representation,
see eq.(20), This equality means that if ,&1 can absorb the photon
of energy @ , then it is sure also to emit it. This must be compa-
red with the atom in the ground state which can only absorb photons.

Replacing %; by an atom A
a real electromagnetic field source.

must give a better description of

3.1, Consider the following simple variant of such a description,
Let atom A e exactly the same as the atom 9
state be a:{Lffl "both atoms are in the ground state, no photons™".
later D is excited from ¢ to { in an interval (%, # ), see
subsect 2,7, The probability a 4,7 (¢ (to find D in the state
p at a woment 7 ) induced by A is defined now as follows

and let initial

anf={atd/nldf W0 ald 2y -{ d*e|d ) dye)) dyf )

(33)
The "background" is now the probability of the spontaneous transition
of the atom 2 from { to ¢ when A is absent.

It turns out that the third order &3 df)(t/ of d;t) is
needed for the calculation of A A@”(t} in the first nonvanishin;:
approximation which has the order €? . The calculation is much harder
than in the preceding sect 2. But the result for A‘¢£4&) has the same
important qualitative feature as AN, (t) in sect.2: 4 My® (e ) is
practically zero if t<R/, .

However, the presented variant has the following deficiency:
the source A is working all the time after the moment F£=/
withoyt being switched off. This eircumstance permits the interpre-
tation of the.efféct which does not use quen: the atom & emits a
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photon in the interval ( %;, £ ) and then Lhe photon is absorbed
by A , cf, Introduction9>.

Before going to other variants Ln which A is "switched off"
at a moment after ¢ =0 , [ nught to streus that atom A4 must
be considered as beling ahgont till the moment €=0 , Let us explain
why. Proving the quen axistence on the ground of the standard theory
T allow inevoidably tho followlng inconsistency: if quens exist, they
should be takon into account [rowm the heginning when setting and sol-
ving the problemn considered above. In particular, there are no photons
in the initial state @ , but are there the quewms? This inconsistency
is by-passed here as follows. The absence of photons at t=¢
can be secured if nothing has created them till ¢=( ., Analogously
quens are abgsent at t =0 if the external current vanishes at

t< 0 or if atom A wag "switched off" at +<Q .
Now I am going to discuss how one can realize the "turning on"
and "switching off" of the atom A .
] . A
3.2. Let atom A is not the same as 9 so that E,”-—E,, #Z4 .
but EA-E4 =4 . The atom A  is initially in the state O ,

we begin to excite it at a moment Z,'>¢
of the frequency E"“—ED“

(e.g., by a laser beam

) so that at a moment 23 atom A

turns out to be on a level Eﬂ . At a moment 7,>7; we begin to

back to 0 » this process being accomp-
lished at a moment 2, . In the interval ( Z,, Z ) )y 5T =aT,
A can emit the quen of energy -4 = EﬁA—-Q:
bed by D later: £2-EP=4.

A modification of this procedure is pogsible: being excited
on the level E]” , atom A then spontaneously radiates going
to Ef s0 that almost certainly it will be in the state ¢
after the moment 22 being then unable to emit the quen =4 ,

transfer A from 1

which can be absor-

All other details are the same as in the preceding subsect.
3.1 except for the "background" definition. It is now the probabi-
lity to find 9 at ¢ in the state ¢
that A  is always in the state ¢

under the condition

, not suffering ang excitement,
The formulated problem is much harder to calculate than that

of the preceeding subsection, It i's the following variant of the

effective "turning on" and "swiching off" of the atom A4 that has

beer. calculated,

9}H(:owever, this explanation leaves obscure why this mechanism had not

acted before the moment R/ and resulted in the A444(#) non-
vanishing for +¢< R/c .
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3.3. Let A is the same atom as 9
subsect 3.1 it moves rectilinearly with a constant velocity i},
the distance R@) between A
and 9 is minimal, being equal to R Ret)= R+v(t-7,) .

So the "turning on™ and "switching off" of the atom A is

but in distinction to

inlpassing 9 . At a woment T

realized smoothly by changing R(t) .

As compared to subsect 3.1, it is harder to calculate the in-
tegral over Y, (of the type Y , ¢f.eq.(22)). The result is
that the probability 4 A, (¢ at .57,
cally only on two time differences: 7,-Z,
deperdence on the first argument ( #-%; being fixed and (¢-%)a
«Vra ) is qualitatively described by the curve of Fig.l. An
estimate Ry (V,)-2[# -¢,)a]"™" can be given for the width of the
bump of the curve near the point ©T,+ @Q . The width is much
less than R/¢ , if t-%4,

t-t, >> 4 .

depends practi-
and #-1, . Its

is a macroscopical time interval:

4, Conclusion

4,1, The existence of ~uen 1is a logical consequence of the
effect of the retarded action of an unexcited source 4 on an exci-
ted detector 9
sence of the function jﬁ” in the formulae for the induced probabi-
lity AN () , e.g. see eg.(18). It is IF
photon propagator 9¢)

. The mathematical cause of the effect is the pre-

(but not, e.g., the
that describes the propagation of the

electromagnetic field in the effect19)
It can be shown that D

from two physical premises. The first is the inclusive character of

appearance in its turn originates

AN, which means that measurements at ¢ are performed with the
atom P only in the région of its location., Nothing more is measu-
red anywhere. The second is the subtraction of the "theoretical
background”, This secures the isolation of that part of the 9
deexcitation probabiiity which is caused by the atom A4 . There-
fore A A@ describes indeed the energy transmission from the
atom 4 location to the $  location.

This paper discusses the quen existence in the framework of QED.
The corresponding experiment ought to- reveal whether quens exist
in Natufe (in the sense as photons exist). Two necessary circumstan-

10)y, pierz has noted in /7/ that if D¢ is replaced by another func-
tion, then there arise "Quanten negativer Energie™. The term of
Fierz is used in this paper.
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ces must be ensured in tho oxporiment: the "turning on" of the sour-
ce ACe.g. ses Bubseote ). 'nd 3.3)and confident detecting of the
retardation of the atom A aotion on atom 2 , It seems to be
necessary for ihin purpoun that 4 A, be comparable with the proba-
bility of the spontnnnous §) radiation (there must be sufficiently
many atoms A around @ ),

4,2. Ono onn nrpuo oxlulonco of the quens of other fields, e.g.
as followo. A noulrhlno (leld Jo gonerated by an external spinor so-
urce h which In locallzed in o opaco region Lé
gside the interval AT , T,  Dbolng ito centre (in analogy with the
external curront in oool 2)., Tho oource changes the probability of
the decay of a neutron which 1o in the region V)
between \Q and % boing R (tho 7 nction on the neutron can
be described as n+ h>pte” or Vin-»3re” ) At a momentt>€ofﬁone
measures the number of pairs pe” having a kinetic energy less than
(Mma-mp-m, ) (the pair total enorgy in lens then /M, ). One
can show by calculations analogous to thous usad in /8/ that »

and vanishes out-

, the distance

induces a contribution to this number which mainly i1s due to qﬁanta.
of the neutrino field having negative energy. let us stress that

these quanta are not antineutrinos because each of them has the

same lepton number as the neutrino (or electron). Ir an analogous man-
ner ore can demonstrate the existence of the quens of other fields
which mediate the interaction between observable particles.

4.3, Quens exist if besides their source A there is their
abgsorber & . Unlike the virtual particles quens exist during
macroscopic time intervals of the order R/¢ . But what about the
free quen, can it exist in the same serse as does the radiated
photon? ‘

Remind at first how the question is resolved in theories of
the direct interaction of charges, using no electromagnetic field
, Hoyle and Narlikar/ 10/
other references see in 11{L In this‘theory an excited atom can

(Wheeler and Feynman/9 the review and
emit a photon going "to infinity"™ only if there exists the Univer-
se which is abuorbing basically. The energy radiated by the atom
is absorbed in the end by another atom of the Universe.

Using analogous arguments one can infer that a free quen would
need the Universe which would be excited on the whole.As the:contempo—
rary Universe is mnot of this kird,the free quens do not exist now,cf{7/,

4.4. The known particle interpretations of & quantized field
deal with pbsitive-energy particles which can be free. Being not
free, the quens ought not to be taken into account if one considers
the "bare" or in-out fields.
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The induced probability AW, (¢) considered here is defined
by using the evolution operator Ul 0) rather than the S-mat-
rix. This elucidates why there arises the problem of describing the
quen abserce at =0 , see the end of subsect. 3.1.

The quen would be reasonable to use if one considers such a
particle interpretation of the field which properly takes into
account that real fields are interacting ones. In particular, one
may take quens into account when considering the particle inter-
pretation of the gluon field which canrot be free.

I am grateful to Drs. V.Liuboshitz, A.Pisarev and E.Kapuscik
for valuable discussions.
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KBaHThI ¢ oTpHuaTeNLHON 2110pruoH

KBaHTOBO-3/I8KTPORHIIAMUUOCKIAM pacueToM oOHapyskeH 3@ deKT 3anas-
IBIBAOLIEro meicTnun 11ono3bysuneHHoro aroma A Ha BO3OYKEEHHBIHA
arom D. Onexrpomariinriioo nNone, KOTopoe CHauaja HCI[yCTHII A W KOTO-
poe D motroM norsoiunor, He MOKET COCTOATh M3 (POTOHOB, IOCKOJILKY
KB&HTB!I JTOTO MO JOMKXHbL! MMETh OTpHNATeNbHylo 3Hepruio. Iloxasano,
UTO CYLICCTDYIOT OTPULATENILHO-IHEpreTHUeCKHe KBaHThl IPYTHX [I0JIeH,
Hanpumop QopmuonHoro, OBCyIAIOTCA COOTBETCTBYIOUIMIA 3KCIIEPUMEHT
M CIIGACTOMS CYLIOCTBOBAHUA TAKHX KBAaHTOB.

PaGorn pninoniena B Jlabopatopuu Teoperuueckoil ¢usmxkun OHAU.

Mpenpuir OBLOAHKHONIIOrO MHCTUTYTA ANEPHBIX HcCnedoBaHHH. JlyGHa 1986

Shirkov M.I.
Negative-energy quanta

E4-86-705

The effect of the retardod action of an unexcited atom A on an exci-
ted atom D is revealed by means of QED calculation. The electromagne-
tic field emitted by A and lator absorbed by D cannot consist of photons
because quanta of the field must have a negative energy. It is argued that
there exist also negative-snorgy quanta of other fields, e.g., the fermionic
ones. The appropriate experiment and consequences of the existence of
these quanta are discussed.

The investigation has been performed at the Laboratory of Theore-
tical Physics,JINR.
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