

объединенны̆ институт
 ядериых
 исследовании
 дубиа

E4-86-705

M.I.Shirokov

NEGATIVE-ENERGY QUANTA

Submetted to "ЖЭТФ"

1. Introduction

In this paper the following effect is discussed. An atom \mathcal{D} (detector) was initially ($t=0$) in the ground state $0, E_{0}$ being its energy. Then in an interval (t_{1}, t_{2}) it is excited (e.g. by a laser beam) up to state 1 having an energy E_{\perp}. Another atom A is at a distance R from D and is effectively "turned on" in a time interval $\Delta \tau, \tau_{0}$ being the interval center. As to the realization of this "turning on", see subsections 3.2 and 3.3 below. At a moment $t>t_{2}$ one measures the probability of finding \mathcal{D} in the ground state 0 . We are interested in the change of this probability induced by A at $0<\tau_{0}<t_{1}<t_{2}<t$. The exact definition of the induced probability (denoted by $\Delta N_{0}(t)$) is given in sections 2 and 3. $\Delta N_{0}(t)$ is bere calculated by using the Heisenberg picture of the standard - quantum electrodynamics. The result is represented in the figure as the dependerce of ΔN_{0} upon the center T

of the interval ($t_{\mathbf{2}}, t$), the interval being moved as a whole along the time axis. It is the relativistic retardation of the A action upon \mathscr{D} that is the most important property of ΔN_{0} for our purpose. Atom A does not absorb the radiation emitted by \mathcal{D}. It plays, instead, the active role: \boldsymbol{A} creates initially the cause of the subsequert D^{\prime} cंe-excitation.

The structure of the formulae for ΔN_{0} (see, e.g. eq. (18) below) sucgests the following interpretation of the effect. The excited atom D absorbs in the interval $\left(t_{2}, t\right)$ something which has an energy x and has been emitted earlier by A. After this \mathscr{D} turns out to be in the state O. From the energy conservation equation $E_{1}+x=E_{0}$ one has $x=E_{c}-E_{1}<0$, i.e. that something has a negative energy.

Let us try to explain the effect using the notion of the photon. Atom D deexcites emitting in the interval ($\left.t_{2}, t\right)$ a photon of energy $\Delta=E_{1}-E_{0}$. But ΔN_{0} is the probability induced by A, it vanishes if A is absent. Therefore in the effect the photon must interact with A. But A is "turned off" when D is emitting the photon (remind that $0<\tau_{i}<t_{1}<t_{2}<t$). The atom A can interact with this photon only ir the photon moves backward in time. We cannot consider this possibility in the frame-work of the used standard $Q E D$, because the latter allows only retarded solutions.

One may try to interpret the effect without uaing the words "negative energy", e.g. as follows: A emits an electromagnetive field which later absorbs the D excitation. But let us try to interpret the field in terms of quanta. It cannot consist of photons, because D can only increase its energy absorbing the photon. So, we are brought again to the notion "quantum having the negative energy". In what follows I shall use the term "quen", the abbreviation from French "le quantum de l'énergie negative".

The paper is organized as follows. The problem formulation and its calculations are illustrated at first in sect. 2 by a simplified model: the external current substitutes the atom A and QED without the Lorentz subsidiary condition is used. Section 3 is devoted to the discussion and elimination of the deficiencies of the simplified model. The section contains no calculations but only results. In the concluding section 4 I give main requirements which the appropriate experiment must meet, argue the existence of the quens of other (nonelectromagnetic) fields, discuss the existence of free quens and consider the role of the quen in the particle interpretation of quantized fields.

2. Negative energy transmission from external current to excited atom

2.1. Let us begin with the definition of the induced probability ΔN_{0}. At a moment t one must measure the probability that D is in the state 0 . Stress that one must not detect photons or the state of atom A. The part of this inclusive probability which is due to the presence of atom A (of the external current in this section) will be defined as a difference of two quantities. In this section the first, is

$$
\begin{equation*}
\sum_{n}\left|\left\langle d_{0}^{+} q_{n}, u_{J}(t, 0) q_{i}\right\rangle\right|^{2} \tag{1}
\end{equation*}
$$

Here $\mathscr{C P}_{i}$ is the initial state vector: $" \mathscr{D}$ is in the state 1 , no photons" (for simplicity \mathcal{D} is let to be now in an excited state at the moment $t=0$; the D preparation in state 1 during $\left(t_{1}, t_{2}\right)$ is considered further in subsect 2,7$) ; \quad \mathcal{U}_{J}(t, 0)$ is the evolution operator when the external current is turned on at the moment $t=0$. The vectors \mathscr{P}_{n} constitute a complete set of states (including the vacuum), $\quad d_{c}^{+} \varphi_{n}$ is the state which differs from Φ_{n} by the presence of one more electron in the D state O. Of course, some of $\left\langle d_{0}^{+} \varphi_{n}, \mathcal{U}_{J}\left\langle p_{i}\right\rangle\right.$ vanish, e.g. if φ_{i} and $d_{i}^{+} \varphi_{n}$ differ by the electric charge. One can rewrite eq. (1) as

$$
\begin{aligned}
& \sum_{n}\left\langleU _ { J } (p _ { i } , d _ { 0 } ^ { + } \phi _ { n } \rangle \left\langle d_{0}^{+} \varphi_{n}, U_{J}\left(p_{i}\right\rangle=\sum_{n}\left\langle U_{J} \phi_{i}, d_{0}^{+} \varphi_{n}\right\rangle\left\langle p_{n}, d_{0} U_{J} \phi_{i}\right\rangle=\right.\right. \\
= & \left\langle U_{J}(t, 0) \varphi_{i}, \alpha_{0}^{+} d_{0} U_{J}(t, 0) \phi_{i}\right\rangle=\left\langle\varphi_{i}, d_{J o}^{+}(t) d_{J O}(t) \varphi p_{i}\right\rangle .
\end{aligned}
$$

The completeness $\Sigma_{n}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|=1$ is used; $\alpha_{50}(t)$ denotes the Heisenberg operator $U_{J}^{+}(t, 0) d_{0} \mathcal{U}_{J}(t, 0)$

The second quantity (subtrahend) differs from (1) only in one respect: the external current is absent. The evolution operator is denoted by $U(t, 0)$ in this case. So,

$$
\begin{equation*}
\Delta N_{0}(t)=\left\langle U_{J} \varphi_{i}, d_{0}^{+} d_{i} \mathcal{U}_{5} \varphi_{i}\right\rangle-\left\langle\mathcal{U} \phi_{i}, d_{0}^{+} d_{0} \mathcal{U} \phi_{i}\right\rangle \tag{3}
\end{equation*}
$$

This definition corresponds to the subtraction of the background which is used by experimentalists to obtain the part of the measured quantity which is due to the investigated cause. The subtrahend in eq. (3) is simply the probability of the \mathcal{D} spontaneous transition from 1 to O. I designate (3) as $\Delta N_{0}^{\prime}(t)$ because $\left\langle U \varphi_{i}, \dot{d}_{v}^{+} \alpha_{v} U \varphi_{i}\right\rangle$ is also the expectation value of the operator $N_{0}=d_{0}{ }^{+} d_{0}$ of the number of electrons in state 0
2.2. One can calculate (3) using the known perturbation expansion of the interaction-picture evolution operator $T \exp \left[-i \int_{0}^{t} d t^{\prime} H_{\text {inc }}\left(t^{\prime}\right)\right]$. But a simpler way is to calculate (3) by finding the Heisenberg operators $d_{j 0}(t)=u_{j}^{+} d_{c} U_{J} \quad$ and $d_{0}(t)=\mathcal{U}^{+} d_{c} U \quad$ by means of a perturbation theory. The connection of $d_{c}(t)$ with the Heisenberg electron--positron field operator $\psi(\vec{x}, t)=\mathcal{U}^{+} \psi(\vec{x}, 0) \mathcal{U}$ is given by the known expansion

$$
\begin{equation*}
\psi(\vec{x}, t)=S_{n} u_{n}(\vec{x}) d_{n}(t)+S_{m} v_{m}(\vec{x}) b_{m}^{+}(t) . \tag{4}
\end{equation*}
$$

Here S_{n} means summation over a discrete part of the spectrum of the atom D electron and integration over its continuous part;
$b_{m}^{+}(t)$ denotes the Heisenberg positron creation operator. Using the orthogonality of spinors u_{n} and V_{m} one gets from eq. (4)

$$
\begin{equation*}
U_{0}(t)=\int d^{3} x U_{0}^{+}(\vec{x}) \psi(\vec{x}, t) \tag{5}
\end{equation*}
$$

The QED equations for Heisenberg operators ψ and A_{μ} are well known (e.g. see $\$ 22$ in $/ 1 /$). Their integral forms are called the Källen-Yang-Feldman eqs. (e.g. see $/ 2 /$). If the external current
J_{μ} is present, the eqs. are

$$
\psi_{J}(x)=\psi^{f}(x)-i e \int d^{4} y S^{k}(x, y) A_{J \mu}(y) \gamma_{\mu} \psi_{J}(y)
$$

$$
\begin{equation*}
A_{J \mu}(x)=A_{\mu}^{f}(x)+\int_{d^{4} y} D^{R}(x-y)\left[i e \bar{\psi}_{J}(y) \gamma_{\mu} \psi_{J}(y)+J_{\mu}(y)\right] . \tag{6}
\end{equation*}
$$

 runs from $y_{0}=0$ to $y_{0}=x_{0}$, and therefore the operators $\psi_{s}(\vec{x}, 0)$ and $A_{J \mu}(\vec{x}, 0)$ coincide with the free operators $\psi f(x)$ and

$$
\left.A_{\mu}^{f}(x) \text {, taken at the point } x_{0}=0 \quad 1\right) \text {. The latter can }
$$

be written in terms of the Schrödinger creation-annihilation operators. To solve (5) means to find how $\psi_{J}(x)$ (and $d_{J O}(t)$, see eq. (5)) is expressed.in terms of the Schrọdinger operators. The expression allows one to calculate (3) because one knows how the Schrödinger creation-annihilation operators act on the initial vector $C P_{i}$ (e.g. see eq. (17) below).

Note that $\psi^{f}(x)$ satisfies the quasifree equation which contains potentials $U_{\mu}(\vec{x})$ binding the atom D electron

$$
\begin{equation*}
\left[\gamma_{\mu} \partial_{\mu}+m+i \gamma_{\mu} u_{\mu}(\vec{x})\right] \psi^{f}\left(\vec{x}, x_{0}\right)=0 \tag{7}
\end{equation*}
$$

The retarded function $S^{R}(x, y)$ satisfies a similar eq. which however, has $\left[-\delta^{(4)}(x-y)\right]$ in its r.h.s. The general solution of eq. (7) can be written as

$$
\begin{equation*}
\psi^{f}\left(\vec{x}, x_{0}\right)=S_{n} u_{n}(\vec{x}) e^{-i E_{n} x_{0}} d_{n}+S_{m} v_{m}(\vec{x}) e^{i E_{m} x_{0}} b_{m}^{+} \tag{8}
\end{equation*}
$$

where d_{n} is the Schrödinger electron annihilation operator.

[^0] terms with the same power of e. The external current is treated exactly: I do not consider J_{μ} being proportional to $e^{\dot{*}}$.
One obtains in the zeroth approximation
\[

$$
\begin{equation*}
\psi_{J}^{(0)}(x)=\psi^{(0)}(x)=\psi^{f}(x) ; \quad A_{J \mu}^{(0)}=A_{\mu}^{+}+\int \mathscr{D}^{R}(x-y) J_{\mu}(y) d^{4} y \tag{9}
\end{equation*}
$$

\]

As to the following approximations I shall need only $\psi_{J}^{(1)}(x)$ and $\psi^{(1)}(x)$

$$
\begin{equation*}
\psi^{(t)}(x)=-i \int d^{4} y S^{R}(x, y) \gamma_{\mu} \psi^{f}(y) A_{\mu}^{f}(y) \tag{10}
\end{equation*}
$$

$\psi_{j}^{(\prime \prime}(x)=\psi^{(\prime \prime}(x)-i \int d^{4} y S^{R}(x, y) \gamma_{\mu} \psi^{f}(y) \int d^{4} z^{2} D^{k}(y-z) J_{\mu}(z) . \quad$ (11)
Let us show that the first nonvanishing approximation for the quantity under calculation

$$
\begin{equation*}
\Delta N_{0}(t)=\left\langle\phi_{i},\left[d_{J_{0}}^{+}(t) d_{J_{0}}(t)-d_{0}^{+}(t) d_{0}(t)\right] \infty_{i}\right\rangle \tag{12}
\end{equation*}
$$

(see eqs. (2) and (3)) is of the order e^{2}. Insert into eq. (12) the expansion $d_{50}(t)=d_{50}^{(0)}(t)+e d_{50}^{(1)}(t)+e^{2} d_{50}^{(2)}(t)+\ldots$ and the analogous expansion for $d_{0}(t)$. Let $\mathcal{P}_{i}=d_{j}^{*} \Omega \Omega$, $S 2$ being a no-particle state. Takirig into account the eq. $\quad d_{f 0}^{(o)}(t)=d_{0}^{(c)}(t)=d_{0} \exp \left(-i E_{0} t\right)$ see eqs. (5), (9), (8) and the eq. $d_{0} d_{1}^{+} \Omega=0$, we ascertain that $d_{\text {fo }}^{(2)}(t)$ and $d_{0}^{(2)}(t)$ do not contribute to $\Delta N_{0}(t)$ in the order e^{2} :

$$
\begin{equation*}
\Delta N_{0}(t)=e^{2}\left\langle p_{i},\left[d_{50}^{(1) t}(t) d_{50}^{(1)}(t)-d_{0}^{(1) t}(t) d_{0}^{(1)}(t)\right] \phi_{i}\right\rangle \tag{13}
\end{equation*}
$$

Using eqs. (5), (10) and (11) one gets

$$
\begin{equation*}
d_{0}^{(i)}(t)=e^{-i E_{c} t} \int d^{3} y \int_{0}^{t} d y_{0} \bar{u}_{0}(\vec{y}) e^{i E_{c} \varepsilon_{0} y_{\mu}} \gamma_{\mu}(y) A_{\mu}^{t}(y), \tag{14}
\end{equation*}
$$

$d_{50}^{(1)}(t)=d_{0}^{(1)}(t)+e^{-i E_{0} t} \int d^{3} y \int_{0}^{t} d y_{0} \bar{u}_{0}(y) \gamma_{\mu} \psi^{t}(y) \int d^{4} z^{R} \mathcal{D}^{R}(y-z) J_{\mu}(z)$
To obtain eqs. (14), (15), I substituted S for S^{R}, which is permissible if the upper limit $y_{0}=t$ of integration over y_{0} is explicitly written in eq. (10). Further I used representation $/ 3 /$

$$
\begin{align*}
-i S(x, y) & =S_{n} u_{n}(x) \bar{u}_{n}(y)+S_{m} v_{m}(x) \bar{v}_{m}(y) \\
u_{n}(x) & \equiv u_{n}(\vec{x}) \exp \left(-i E_{n} x_{0}\right), \quad \bar{u} \equiv u^{+} \gamma_{0} \tag{16}
\end{align*}
$$

and orthonormality of the spinors U_{n} and U_{m}.

Now insert eqs. (14) and (15) into eq. (13); use further that $\left\langle\varphi_{1}\right| A_{\mu}\left|\varphi_{2}\right\rangle$ is zero if φ_{1} and \mathscr{P}_{2} are states with an equal number of photons ${ }^{2}$), finally use the equation

$$
\left\langle p_{i}, \bar{\psi}^{f}(y) \psi^{f}\left(y^{\prime}\right) \subset p_{i}\right\rangle=\left\langle d_{1}^{+} \Omega 2, \bar{\psi} f(y) \psi^{+}\left(y^{\prime}\right) d_{1}^{+} \Omega 2\right\rangle=
$$

$$
=\bar{u}_{1}(\vec{y}) e^{i E_{1} y_{0}} u_{1}\left(\vec{y}^{\prime}\right) e^{-i E_{1} y_{0}^{\prime}}+S_{m} \bar{v}_{m}(\vec{y}) e^{-i E_{m} y_{0}} v_{m}\left(\vec{y}^{\prime}\right) e^{i E_{m} y_{0}^{\prime}}
$$

As a result, one gets
$\Delta N_{0}(t)=\left|\sum_{\mu} \int d^{3} y \int_{0}^{t} d y_{c} e \bar{u}_{0}(\vec{y}) e^{i E_{0} y_{v}} \gamma_{\mu} \dot{u}_{1}(\vec{y}) e^{-i E_{1} y_{0}} \int d^{4} z D^{R}(y-z) J_{\mu}(z)\right|^{2}+$
$+S_{m}\left|\sum_{\mu} \int d^{3} y \int_{0}^{t} d y_{0} e \bar{u}_{D}(\vec{y}) e^{i E_{0} y_{c}} \gamma_{\mu} v_{m}(\vec{y}) e^{i E_{m} y_{0}} \int d^{y} z D^{R}(y-z) J_{\mu}(z)\right|^{2}$.
I shall not interpret the term $S_{m} \mid 1^{2}$
it turns out to be small and will be neglected (see below).
Let us analyse and evaluate the obtained expression (18) for $\Delta N_{0}(t) \quad$.
2.3. I begin with the first term of the r.h.s. of eq. (18). It is the squared modulus of $\Sigma_{\mu} I_{\mu}$, where

The current $J_{\mu}(z)=J_{\mu}\left(\vec{z}, z_{0}\right)$ being a function of z_{0} can be represented as the Fourier integral

$$
\begin{equation*}
\dot{J}_{\mu}\left(\vec{z}, z_{0}\right)=\int_{-\infty}^{+\infty} d w \tilde{J}_{\mu}(\vec{z}, w) e^{-i \omega z_{0}} \tag{20}
\end{equation*}
$$

Use the known representation

$$
\begin{equation*}
D^{R}(y-z) \equiv D^{R}\left(\vec{y}-\vec{z}, y_{0}-z_{0}\right)=\frac{1}{4 \pi|\vec{y}-\vec{z}|} \delta\left(|\vec{y}-\vec{z}| / c-\left(y_{0}-z_{0}\right)\right) \tag{21}
\end{equation*}
$$

and calculate the integral $\int d y_{0} \int d z_{0}$.in eq. (19), using the notation $z=|\vec{y}-\bar{z}| / c$.

$$
\text { and } \Delta \equiv E_{1}-E_{u}
$$

[^1]\[

$$
\begin{aligned}
& =\frac{1}{4 \pi z} e^{i \omega z} \int_{0}^{t} d y_{0} \theta\left(y_{0}-z\right) e^{-i y_{0}(\omega+\Delta)}= \\
& =e^{i \omega z} e^{-i(\omega+\Delta)(t+r) / 2} \theta(t-r) \frac{t-r}{4 \pi r} \frac{\sin (\omega+\Delta)(t-r) / 2}{(\omega+\Delta)(t-r) / 2}
\end{aligned}
$$
\]

I let in the following that D is localized in a region V_{D} near the origin and the current J_{μ} is localized in V_{J}, the distance R between V_{D} and V_{J} being much greater than V_{D}, V_{J} dimensions. Therefore, $z \equiv|\vec{y}-\vec{z}| / c \cong R / c$. Let t be such a moment that $t-z \cong t-R / c>0$ and $t-R / c \gg 1 / \Delta$ (of course also $R \gg 1 / \Delta$. Then $|Y|$ is maximal if $\omega=-\Delta$: one has $|Y|=(t-z) / 4 \pi r$ if $\omega+\Delta=0 \quad$ and

$$
\begin{equation*}
|Y| \leqslant \frac{1}{2 \pi z} \frac{1}{\omega+\Delta} \ll \frac{t-z}{4 \pi z} \tag{23}
\end{equation*}
$$

if $(\omega+\Delta)(t-r) \gg 1$. So, it is the Fourier-components $\tilde{J}_{\mu}(\vec{z}, \omega)$ with $\omega \cong-\Delta$ that give a main contribution to I_{μ}, if $t-R / C \gg 1 / \Delta$. This reflect the approximate energy conservation in the considered effect.

Let us choose such a current in the following: $\mathcal{J}_{\mu}\left(\vec{z}_{,} \hat{z}_{0}\right)=0$ if $\boldsymbol{Z}_{0} \quad$ is out of the interval $\left(\tau_{1}, \tau_{2}\right), \quad 0<\tau_{1}<\tau_{2}<k / c$ and

$$
J_{\mu}\left(\vec{z}, z_{0}\right)=K_{\mu}(\vec{z},-\Delta) e^{i z_{0} \Delta}+K_{\mu}^{*}(\vec{z},-\Delta) e^{-i \vec{z}_{0} \Delta}, z_{0} \in\left(\tau_{1}, \tau_{2}\right)
$$

Note that J_{μ} must be real for the interaction $J_{\mu} A_{\mu}$ to be Hermitian. The support of the function $\widetilde{J}_{\mu}(\vec{z}, \omega)$, the Fourier representation of (24), is in the vicinities of $\omega=-\Delta$ and $\omega=+\Delta$. The second term in eq. (24) gives a much less contribution to H_{μ} and $\Delta N_{0}(t)$ than the first one because it does not nconserve the energy" and gives in $|Y|$ the contribution $\sim 1 / z \Delta$ if $t-z \gg 1 / \Delta$, cf. (23). $\quad S_{m}| |^{2}$ contributes to $\Delta N_{0}(t)$ still less than the contribution just discussed. Indeed, one has
in $S_{m} 11^{2}$
the integral $\int d y_{0} \exp i\left(E_{0}+E_{m}\right) y_{0}$
as compared
to $\int d y_{0} \exp i\left(E_{1}-E_{0}\right) y_{0} \quad$, see eq. (19). Here $E_{0} \cong m_{e}$ and $E_{m} \not m_{m}$ m_{e} being the electron mass. The result is that $|Y|$ of the order $1 / 2 m_{e}$.
2.4. Remind that the current must be "turned off" when $D_{\text {1s }}$ detected to be in the ground state (see the Introduction). There-:
fore one has to bave $\tau_{2}<k / c^{\prime}$. In this case the calculation of $\int d y_{0} \int d z_{0} \ldots$ (see eq. (19)) when the curreni J_{μ} is given by eq. (24) results in

$$
\begin{align*}
& Y(z) \cong \frac{1}{4 \pi z} e^{-i \Delta z} \theta\left(\min \left(t, \tau_{2}+z\right)-\left(\tau_{1}+z\right)\right) \int_{\tau_{1}+z}^{\min \left(t, \tau_{2}+z\right)} d y_{\nu}= \\
& =\frac{1}{4 \pi z} e^{-i z \Delta} \cdot\left\{\begin{array}{cc}
0 & t<\tau_{1}+z \\
t-\left(\tau_{1}+z\right) & \tau_{1}+z<t<\tau_{2}+z \\
\left(\tau_{2}-\tau_{1}\right) & t>\tau_{2}+z
\end{array}\right. \tag{25}
\end{align*}
$$

(see footnote 3). The contribution of the second term of eq. (2A) is neglected and this is justified if $t-\left(\tau_{1}+r\right) \gg 1 / \Delta$ and
$\left(\tau_{2}-\tau_{1}\right) \gg 1 / \Delta$
(see above). Therefore, the inequality $t-\left(z_{1}+z\right)>0$

in the second line of the r.h.s. of eq. (25) must be understood in the sense $t-\left(\tau_{1}+z\right) \gg 1 / \Delta$. | $\vec{z} \cong \vec{R}$ | |
| :--- | :--- |
| More exactly,$\vec{z}=\vec{R}+\vec{z}$, | and |
| | $\vec{y} \prime \mid \leq a$ |\quad (see the text after eq. (22)). More exactly, $\vec{z}=\vec{R}+\vec{z}^{\prime}, \quad\left|\vec{z}^{\prime}\right| \leq a_{y}, \quad$ and $|\vec{y}| \leq a_{y}$, where a_{J} is the dimension of V_{T} and a_{D} is the atom D dimension. Naturally one can use the fact that $a_{5}, a_{D} \ll R \quad$ (and therefore $\begin{array}{ll}z=\left|\vec{R}+\vec{z}^{\prime}-\vec{y}\right| / c \cong R / C, & \text { in order to evaluate } I_{\mu} \\ \text { When } \mu=m=1,2,3\end{array} \quad$ one can simply substitute $\quad Y(R / c)$ When $\mu=m=1,2,3$ for $Y(r) \quad$ one can simply substitute $Y(R / c)$ des into three factors: I) $Y(R / c)$, 2) e $\int d^{3} y \bar{u}_{0}(\vec{y}) \gamma_{m} u_{1}(\vec{y})$ and 3) $\int d^{3} \geq K_{m}(\vec{z},-\Delta)$. One can show that

$$
\begin{aligned}
& \int d^{3} y \bar{u}_{0}(\vec{y}) \gamma_{m} u_{1}(\vec{y})=\left(E_{0}-E_{1}\right) d_{0 i}^{m} ; \quad d_{01}^{m}=\int d^{3} x u_{v}^{+}(\vec{x}) x_{m} u_{1}(\vec{x}) \\
& \int d^{3} z K_{m}(\vec{z},-\Delta)=i \Delta d_{J}^{m} ; \quad d_{j}^{m}=\int d^{3} x x_{m} K_{0}\left(\vec{x}_{,}-\Delta\right)
\end{aligned}
$$

Here $d_{o i}^{m} \quad$ is the dipole moment of the transition $1 \rightarrow 0$; analogously, U_{j}^{m} is the dipole moment of the external charge density ${ }^{4}$). So, we get in the described approximation (which can be called the dipole approximation)

[^2]$\sum_{\mathrm{m}} I_{m} \cong-i e \Delta^{2}\left(\vec{d}_{i l} \cdot \vec{d}_{J}\right) Y(R / c)$.
(28)

In the case $\mu=4$ the approximation $Y(z) \rightarrow Y(R / C)$ fails: it results in $I_{4}=0$ due to the orthogonality of the spinors u_{0} and u_{i} and due to $\int d^{3} z K_{0}\left(\vec{z}, z_{c}\right)=0$ which is true for all z_{0}. The latter equation follows from $Q=\int^{3} d^{3} z J_{0}\left(\vec{z}, z_{0}\right)=0 \quad$: the conserving total charge Q must be zero also in the interval $\left(\tau_{1}, \tau_{2}\right)$. So, in this case $Y(z)=Y(|\vec{R}+\vec{z}-\vec{y}| / c)$ has to be expanded into Taylor series in $Z_{m}^{\prime}-y_{m}$ powers. But $Y(z)$, see eq.(25), has discontinuous derivatives and this expansion needs a reservation. It is permïssible to let $Y\left(\left|\vec{k}+\vec{z}^{\prime}-\vec{y}\right|\right)=0 \quad$ at all $|\vec{z}|<a_{5},|\vec{y}|<a_{i j} \quad$ if $t<\tau_{1}+R-a_{5}-a_{i} \quad$ see eq. (25). (here and in the following I let $c=1$). Analogously, Y may be considered to be a smooth function, equal to $\exp (-i r \Delta)\left[t-\tau_{1}-\left|\vec{R}+\overrightarrow{z^{\prime}}-\vec{y}\right|\right] / 4 \pi z$ at all essential values of \vec{z}^{\prime} and \vec{y} if
$\tau_{1}+R+a_{J}+a_{D}<t<\tau_{2}+R-a_{5}-a_{D}$. . At last, $Y=\exp (-i z \Delta)\left[\tau_{2}-\tau_{1}\right] / 4 \pi / 2$ at all essential \vec{z}^{\prime} and \vec{y} if $t>\tau_{2}+R+a_{y}+a_{D}$. If t belongs to above-mentioned intervals, one may expand Y in these intervals and to evaluate I_{4} there. One carmot evaluate I_{4} in such a manner only in microscopically small time intervals outside the above-mentioned ones.

For instance, at $\tau_{1}+R+a_{5}+a_{y}<t<\tau_{2}+R-a_{5}-a_{D}$ one has

$$
\begin{align*}
& \frac{t-\tau_{1}-\left|\vec{R}+\vec{z}^{\prime}-\vec{y}\right|}{\left|\vec{R}+\overrightarrow{z^{\prime}}-\vec{y}\right|} e^{-i\left|\vec{R}+\vec{z}^{\prime}-\vec{y}\right| \Delta}=\frac{t-\tau_{1}-R}{R} e^{-i R_{\Delta}}+\sum_{m}\left(z_{m}^{\prime}-y_{m}\right) \frac{\partial}{\partial R_{m}}\left(\frac{t-\tau_{1}}{R}-1\right) e^{-i R_{\Delta}}+ \\
& +\frac{1}{2} \sum_{i, j}\left(z_{i}^{\prime}-y_{i}\right)\left(z_{j}^{\prime}-y_{j}\right)\left[-\Delta^{2} \frac{R_{i} R_{j}}{R^{2}}\left(\frac{t-\tau_{1}}{R}-1\right)+\ldots\right] e^{-i R_{\Delta}} / R+\ldots \tag{29}
\end{align*}
$$

In the square brackets of the r.h.s. I omit, all termis which tend to zero more rapidly as $R \rightarrow \infty$ than the written one (it is the derivative of $\exp (-i R \Delta)$ which gives a main contribution). For the reasons discussed above after eq. (28) both the first and second term of expansion (29) do not contribute to I_{4}. Only $z_{i}^{\prime} y_{j}$ from the third term contribute. So, one gets in the discussed tirae interval

$$
\begin{equation*}
I_{4} \cong i e e^{-i R \Delta} \Delta^{2}\left(\vec{n} \vec{d}_{0 i}\right)\left(\vec{n} \vec{d}_{J}\right)\left(t-\tau_{1}-R\right) / 4 \pi R \quad, \quad \vec{n} \equiv \vec{R} / R \tag{30}
\end{equation*}
$$

Finally, one has
$\sum_{\mu} I_{\mu}=\sum_{m} I_{m}+I_{4} \cong-i e \Delta^{2}\left[\vec{d}_{01} \vec{d}_{J}-\left(\vec{n} \vec{d}_{D_{1}}\right)\left(\vec{n} \vec{d}_{J}\right)\right] Y(R)$,
where $Y(R)$ is given in eq. (25). The inequalities in this eq. mast be understood in the sense described above, see the text after eqs. (25) and (22).
2.5 So, we obtain that $\Delta N_{\rho}^{\prime}(t) \cong\left|\Sigma_{\mu} \Gamma_{\mu}\right|^{2}$, where $\Sigma_{\mu} I_{\mu}$ is given by eq. (31).

$$
\Delta N_{0}(t)=e^{2} \Delta^{4}\left|\left(\vec{d}_{01}^{1} \cdot \vec{d}_{J}^{1}\right)\right|^{2} \frac{1}{(4 \pi)^{2} R^{2}} \cdot\left\{\begin{array}{cc}
0 & t<\tau_{1}+R \\
{\left[t-\left(\tau_{1}+R\right)\right]^{2}} & \tau_{1}+R<t<\tau_{2}+R \\
{\left[\tau_{2}-\tau_{1}\right]^{2}} & t>\tau_{2}+R
\end{array}\right.
$$

Here $c=1, \quad \vec{d}^{\perp}$ is the $\vec{d}^{\left[c_{2}-\tau_{1}\right]}$ component which is perpendicular to $\vec{R}:\left(\vec{d}_{0} 1, \vec{d}_{f}^{i}\right)=\left(\vec{d}_{0 i} \vec{d}_{5}\right)-\left(\vec{n} \vec{d}_{0 i}\right)\left(\vec{n} \vec{d}_{5}\right)$. The meaning of the inequalities in eq. (32) is described above.

Let us consider the induced probability $\Delta N_{1}(t)$ to find atom D in state 1 if initially D was in the ground state O, the probability being induced by the same external current (24). Exactly the same numerical value (32) can be obtained for $\Delta N_{1}(t)$. 5). The induced transition $0 \rightarrow 1$ can be naturally explained as follows the current emits a photon of energy $\sim \Delta$, this photon travels to
D and is absorved by D. One can show that it is the positive--energy part $D_{+}(y-z) \quad$ of the function $\mathscr{D}(y-z)$ (that entere into an equation of type (19)) that gives a main contribution in this case. It is the negative-energy part $\mathcal{D}_{-}(y-z)$ of $\mathscr{D}(y-z)$ which gives a main contribution to the r.h.s. of eq. (19). So, one can explain the induced transition $l \rightarrow 0$ as follows: the current emits a quantum of negative energy $-\Delta$, this quantum travels to D and absorbs its excitation ${ }^{6}$).

The induced probability $\Delta N_{l}(t) \quad$ depends on dipole moment components perpendicular to \vec{R} in the same manner as $\Delta N_{0}(t)$ does, see eq. (32). The fact can be explained by the transversality of the photon, transferred from J to \mathscr{D} : Indeed, the photon can be emitted and absorved only by those $\vec{d}_{J}, \vec{d}_{c l}$ components which are perpendicular to the direction $\bar{n}=\bar{R} / \mathbb{C} \quad$ of the photon propagation. Analogausly, one can consider the presence of $\vec{a}_{0 i} \frac{1}{a}$ and $d_{J}^{\frac{1}{~}}$ in eq.(32) for $\Delta N_{0}(t) \quad$ as an evidence for transversality of the electromagnetic quen.

[^3]2.6. The calculation of $\Delta N_{0}(t)$ presented in subsect 2.2 did not take into account the Lorentz subsidiary, condition. The form $" \partial_{\mu} A_{\mu}(\vec{x}, t) q 0=0 \quad$ for all $\vec{x}, t " \quad$ of the condition, e.g. see $/ 4 \%$, is equivalent to two equations at a fixed t, e.g. $t=0 / 4 /$:
$$
\partial_{\mu} A_{\mu}(\vec{x}, 0) \varphi=0 \quad ; \quad\left[\operatorname{div} \vec{E}(\vec{x}, 0)-j_{i}(\bar{x}, 0)\right] \varphi=0
$$

They are equations for permissible (physical) states Q. The initial vector $\mathscr{D}_{i}=\alpha_{1}^{+} \Omega$ used in subsect 2.2 does not satisfy the second equation ${ }^{7}$). The cause is the noncommutativity of the operator ψ with $\operatorname{div} \vec{E}-j_{0}$
14. One has to describe electrons and positrons by another operator field which would commute with div $\vec{E}-j_{0}$. The operator

$$
\varphi(\vec{x}, t)=\psi \cdot(\vec{x}, t) \exp \left[\frac{i e}{4 \pi} \int d^{3} y \operatorname{div} \vec{A}(\vec{y}, t) /|\vec{x}-\dot{y}|\right]
$$

is an example. Introducing φ instead of ψ, one gets the Coulomb gauge formulation of $Q E D / 4 /$ or its variants, e.g. see $/ 5 /$. The calculation of $\Delta N_{0}(t)$ becomes more complicated in the formulations. But it can be shown that the resulting $\Delta N_{0}(t)$ differs insignificantly from that given by eq. (32). In particular, at $t>\tau_{1}+R$ the difference of the two results is $\sim(R \Delta)^{2} \quad$ times less than the r.h.s. of eq. (32) and can be neglected if R is a macroscopic distance: $R \gg 1 / \Delta$.
2.7. Consider a possible theoretical description of the process of preparation of the atom in an excited state. Let atom \mathcal{D} be in the ground state at $t=0$. We turn on at a moment t_{1} an external potential $V(\vec{x}, t) \quad$ which is additional to the static potential $U(\vec{x}) \quad$ binding the \mathscr{D} electron, see eq. (7). After a moment t_{2} $V(\vec{x}, t)$ is switched off, becoming zero. Such a potential $V\left(\vec{x}_{,} t\right)$. can describe a laser beam. It is known that a laser of frequency Δ can quickly transfer the atom from the level E_{0} to level $E_{j}=E_{0}+\Delta / 6 /$. Suppose that $V(\vec{x}, t)$ induces the transference in the interval (t_{1}, t_{2}) with probability l. This drastically simplifies the calculations and result. At $t>t_{\mathbf{2}}$ exactly the same expression follows for $\Delta N_{i}(t)$, see eq. (32), independently of the position of the interval $\left(t_{1}, t_{2}\right)$ on the time axis until it is earlier than $\left.\left(\tau_{1}, \tau_{2}\right)^{8}\right)$. If $\left(t_{1}, t_{2}\right)$ is later
7) Even the no-particle vector Ω does not satisfy it because
$j_{0}(\vec{x}, 0)$
8) Only the first nonvanishing approximation is implied throughout this paper. If spontaneous deexcitation of the atom D (radiation damping) is properly taken into account, then of course ΔN_{0} does depend upon (t_{1}, t_{2}) position.
than $\left(\tau_{1}, \tau_{2}\right)$ but earlier than the moment $\tau_{1}+R$, one gets for $\Delta N_{i}(t)$ at $t>t_{2}$ approximately the same result as given by eq. (32), independently of the particular (t_{1}, t_{2}) position in the above-mentioned time region.

3. Quen in atom-atom interaction

The description of the electromagnetic field source by the external current has two deficioncies. First, the functions $J_{M}(\vec{x}, t)$ are prescribed at all \vec{x} and t and describe the current which does not alter when radiating or absorbing the electromagnetic field while atoms change its state of course. Second, the hermiticity of
$J_{\mu} A_{\mu}$ requires real J_{μ}. As a consequence, one has the equality $\tilde{J}_{\mu}(\vec{z},-\omega)=\tilde{J}_{\mu}{ }^{*}(\vec{z}, \omega) \quad$ for $J_{\mu} \quad$ Fourier representation, see eq. (20). This equality means that if J_{μ} can absorb the photon of energy ω, then it is sure also to emit it. This must be compared with the atom in the ground state which can only absorb photons.

Replacing J_{μ} by an atom A must give a better description of a real electromagnetic field source.
3.1. Consider the following simple variant of such a description. Let atom A be exactly the same as the atom \mathcal{D} and let initial state be $a_{0}^{+} d_{0}^{+} \Omega$: "both atoms are in the ground state, no photons". Later D is excited from 0 to 1 in an interval (t_{1}, t_{2}), see subsect 2.7. The probability $\Delta N_{c^{A}}(t)$ (to find D in the state 0 at a moment t) induced by A is defined now as follows
$\Delta N_{0}^{A}(t)=\left\langle a_{0}^{+} d_{0}^{+} \Omega\right| d_{0}^{+}(t) d_{0}(t)\left|a_{0}^{+} d_{0}^{+} \Omega\right\rangle-\left\langle d_{0}^{+} \Omega\right| d_{0}^{+}(t) d_{0}(t)\left|d_{0}^{+} \Omega\right\rangle$
(3.3)

The "background" is now the probability of the spontaneous transition of the atom D from I to D when A is absent.

It turns out that the third order $e^{3} \alpha_{0}^{(3)}(t)$ of $d_{c}(t)$ is needed for the calculation of $\Delta N_{c}^{A}(t)$ in the first nonvanishin: approximation which has the order e^{4}. The calculation is much harder than in the preceding sect 2. But the result for $\Delta N_{0}^{A}(t)$ has the same important qualitative feature as $\Delta N_{0}(t)$ in sect.2: $\Delta N_{0}^{A}(t)$ is practically zero if $t<R / C$.

However, the presented variant has the following deficiency: the source A is working all the time after the moment $t=0$ without being switched off. This circumstance permits the interpretation of the effect which does not use quen: the atom \mathcal{D} emits a
photon in the interval ($t_{1} ; t$) and then the photon is absorbed by A, cf. Introduction ${ }^{9}$).

Before going to othor varianto in which A is "switched off" at a moment after $t=0$, [nupht to stress that atom A must be considered as boink, ahoont till the moment $t=0$. Let us explain why. Proving the quon axiotence on the eround of the standard theory I allow inavoidably tho follow $1 n \xi^{\prime}$ inconsistency: if quens exist, they should be takon into account fron tho hecinning when setting and solving the problemo considored above. In particular, there are no photons in the initial state P_{i}, but are there the quens? This inconsistency is by-passed here as follows. The absence of photons at $t=0$ can be secured if nothing has created them till $t=0$. Analogously quens are absent at $t=0$ if the external current vanishes at
$t<0 \quad$ or if atom A was "switched off" at $t<0$.
Now I am going to discuss how one can realize the "turning on" and "switching off" of the atom A
3.2. Let atom A is not the same as \mathscr{D} so that $E_{1}^{\mu}-E_{0}^{N} \neq \Delta$ but $E_{2}^{A}-E_{1}^{A}=\Delta$. The atom A is initially in the state O, we begin to excite it at a moment $\tau_{1}^{\prime}>0$ (e.g., by a laser beam of the frequency $E_{1}^{A}-E_{0}^{A}$) so that at a moment τ_{1} atom A turns out to be on a level E_{1}^{A}. At a moment $\tau_{2}>\tau_{1}$ we begin to transfer A from 1 back to 0 , this process being accomplished at a moment τ_{2}^{\prime}. In the interval ($\tau_{1}, \tau_{2}{ }^{\circ}$), $\tau_{2}+\tau_{1}=\Delta \tau$, A can emit the quen of energy $-\Delta=E_{1}^{A}-E_{2}^{A}$ which can be absorbed by D later: $E_{1}^{D}-E_{C}^{D}=\Delta$.

A modification of this procedure is possible: being excited on the level E_{1}^{A}, atom A then spontaneously radiates going to $E_{0}^{A} \quad$ so that almost certainly it will be in the state 0 after the moment τ_{2} being then unable to emit the quen $-\Delta$.

All other details are the same as in the preceding subsect. 3.1 except for the "background" definition. It is now the probability to find \mathcal{D} at t in the state \mathbb{O} under the condition that A is always in the state O, not suffering ang excitement.

The formulated problem is much harder to calculate than that of the preceeding subsection. It i's the following variant of the effective "turning on" and "swiching off" of the atom A that has beer: calculated.

[^4]3.3. Let A is the same atom as D but in distinction to subsect 3.1 it moves rectilinearly with a constant velocity \vec{v}. in passing \mathcal{D}. At a moment τ_{c} the distance $\vec{R}(t)$, between A and \mathscr{D} is minimal, veing equal to $\vec{R}: \vec{R}(t)=\vec{R}+\vec{V}\left(t-\tau_{c}\right)$.

So the "turnirg on" ard "switching off" of the atom A is realized smoothly by chancing $R(t)$.

As compared to subsect 3.l, it is harder to calculate the integral over y_{c} (of the type Y, ef.eq. (22)). The result is that the probability $\Delta N_{0}^{A}(t)$ at $t_{2}>\tau_{0}$ depends practically only on two time differences: $t_{2}-\tau_{0}$ and $t-t_{2}$. Its deperdence on the first argument ($t-t_{2}$ being fixed and $\left(t-t_{2}\right) \Delta$ $\ll \sqrt{R \Delta}) \quad$ is qualitatively described by the curve of Fig.l. An estimate $R / c(v / c)^{-2}\left[\left(t-t_{2}\right) \Delta\right]^{-1} \quad$ can be given for the width of the bump of the curve near the point $\tau_{c}+R / c$. The width is much less than R / C, if $t-t_{2}$ is a macroscopical time interval:

$t-t_{2} \gg 1 / \Delta$

4. Conclusion

4.1. The existence of "ueir is a logical consequence of the effect of the retarded action of an unexcited source A on an excited detector D. The mathematical cause of the effect is the presence of the function \mathscr{D}^{K} in the formulae for the induced probability $\Delta N_{c}^{\prime}(t)$, e.g. see eq. (18). It is \mathscr{D}^{K} (but not, e.g., the photon propagator \mathscr{D}^{c}) that describes the propagation of the electromagnetic field in the effect ${ }^{10}$)

It can be shown that $\mathscr{D}^{R} \quad$ appearance in its turn originates from two physical premises. The first is the inclusive character of ΔN_{0} which means that measurements at t are performed with the atom \mathscr{D} only in the région of its location. Nothing more is measured anywhere. The second is the subtraction of the "theoretical background". This secures the isolation of that part of the D deexcitation probability which is caused by the atom A. Therefore ΔN_{c} describes indeed the energy transmission from the atom A location to the \mathscr{D} location.

This paper discusses the quen existence in the framework of QED. The corresponding experiment ought to reveal whether quens exist in Nature (in the sense as photons exist). Two necessary circumstan-

[^5]ces must be ensured in tho oxporiment: the "turning on" of the source $A(\% . g$. ses subscot.).. nill 3,3) and conlident detecting of the retardation of tho atom A aotion on atom D. It seems to be necessary for this purpoun that ΔN_{0} be comparable with the probability of the aponlinnnous \mathcal{D} radiation (there must be sufficiently many atoms A around D.
4.2. Ono ann arriuo oxleulonco of the quens of other fields, e.g. as followo. A noulrlno llale do gonerated by an external spinor source η which in hooallzod in o opaco region V_{η} and vanishes outside the intorval $\Delta \tau, \tau_{0}$ bodne ito centre (in analogy with the external curront in oool 2). Tho oource chanees the probability of the decay of a neutron whluhio in tho rogion V_{D}, the distance between V_{D} and V_{η} bodng R (tho η action on the neutron can be described as $\eta+n \rightarrow p+e^{-}$or $V+n \rightarrow p+e^{-}$). At a moment $t>\mathcal{F}_{0}+R_{\text {one }}$ measures the number of pairs βe^{-}havink a kinetic energy less than ($m_{n}-m_{p}-m_{2}$) (the pair total onorey in loos than m_{n}). One can show by calculations analogous to thoue uood in $/ 8 /$ that ? induces a contribution to this number which mainly is due to quanta of the neutrino field having negativo energy. let us atress that these quanta are not antineutrinos because each of them has the same lepton number as the neutrino (or electron). Ir an analogous manner ore can demonstrate the existence of the quens of other fields which mediate the interaction between observable particles.
4.3. Quens exist if besides their source A there is their absorber \mathcal{D}. Unlike the virtual particles quens exist during macroscopic time intervals of the order R / C. But what about the free quen, can it exist in the same serse as does the radiated photon?

Remind at first how the question is resolved in theories of the direct interaction of charges, using no electromagnetic field (Wheeler and Feynman/9/, Hoyle and Narlikar/10/, the review and other references see in $/ 11 \%$. In this theory an excited atom can emit a photon going "to infinity" only if there exists the Universe which is miorobing basically. The energy radiated by the atom is absorbed in the end by another atom of the Universe.

Using analogous arguments one can infer that a free quen would need the Universe which would be excited on the whole.As the contemporary Universe is not of this kind, the free quens do not exist now, of / 7/.
4.4. The known particle interpretations of a quantized field deal with positive-energy particles which can be free. Being not free, the quens ought not to be taken into account if one considers the "bare" or in-out fields.

The induced probability $\Delta N_{c}(t)$ considered here is defined by using the evolution operator $\mathcal{U}(t, 0)$ rather than the S-mat rix. This elucidates why there arises the problem of describing the quen abserce at $t=0$, see the end of subsect. 3.1.
The quen would be reasonable to use if one considers such a particle interpretation of the field which properly takes into account that real fields are interacting ones. In particular, one may take quens into account when considering the particle interpretation of the gluon field which cannot be free.

I am grateful to Drs. V. Liuboshitz, A.Pisarev and E.Kapuscik for valuable discussions.

References

1. A.I.Akhiezer, V.B. Rerestetskii. Quantum Electrodynamics, John Wiley, Vancouver. 1965 . А.il. Ахиезер, В.Б. Берестецкий. Квантовая злект родинамика, изд. ट, Г
2. G.Källen, p 243.in: Lectures in Theor. Phys. Brandeis Summer Inst. 1961 v.l. Benjamin New York,1962.
3. J.M. Jauch, F.Rohrlich. The theory of photons and electrons Springer-Verlaf, New York, 1976, Ch 14.4.
4. P.A.M.Dirac. The principles of Quantum Mechanics 4-th ed. Clarendon Press, Oxford,1958, Ch. 12.
5. C.L.Hammer, R.H. Good. Ann. of Phys. 1961 12, 463.
6. Laser spectroscopy of atoms and Molecules. ed. H.Walther Springer-Verlag, New York, 1976
7. M.Fierz. Helv. Phys. Acta 1950, 23, 731. См.перевод в со. Новейшее развитие квантовой электродинамики. ИИЛ, Москва, 1954.
8. М.И.Шир оков. ОияИ, Р'г-85-504, Дубна, 1985
9. J.A.Wheeler, R.P.Feynman Rev.Mod.Phys. 1945 17, 157; ibid 1949 21, 425.
10. F.Hoyle, J.V.Narlikar Ann. of phys. 1969 54, 207; ibid 1971; 62, 44 .
11. D.C.Владимиров, А.О.Турыгин. Теория прямого межчастичного взаимодействия. Энергоатомиздат, Москва, I986.

Received by Publishing Department

Кванты с отрицательнои эиоргиой
Квантово-элөктродинамичоским расчетом обнаружен эффект запаздывающего деистиил иорозбукденного атома А на возбужденный атом D. Электромагнитноо поле, которое сначала испустил А и которое D потом поглондот, не может состоять из фотонов, поскольку кванты этого поли должкы иметь отрицательную энергию. Показано, что сущостпуют отрицатөльно-энергетические кванты других полей, напримор формионного. Обсуждаотся соответствующий эксперимент и слодстпии сущостдованил таких квантов.

Работп дыполнена в Лаборатории теоретической физики ОИЯИ.

Преприіт Объодиношого института ядерных исследований. Дубна 1986

Shirkov M.I.

Negative-energy quanta

The effect of the rotardod action of anexcited atom A on an excited atom D is revealed by means of QED calculation. The electromagnetic field emitted by A and lator absorbed by D cannot consist of photons because quanta of the field must have a negative energy. It is argued that there exist also negative-enorgy quanta of other fields, e.g., the fermionic ones. The appropriate experiment and consequences of the existence of these quanta are discussed.

The investigation has been performed at the Laboratory of Theore tical Physics,JINR.

[^0]: $1)_{\text {Equations }}(6)$ differ from the corresponding differential ones in three respects: 1) eqs. (6) contain initial conditions, 2) eqs. (6) are equivalent to the iatter only when $x_{0} \geqslant 0 \quad ; 3$) only retarded are equivalent to the latter only when $x_{0} \geqslant 0$; while the differential ones allow also advanced solutions.

[^1]: 2) Of course I must use a representation of A_{μ}. in terms of photion creation-annihilation operators. It is important to take here into account the Lorentz subsidiary condition, which allows one to eliminate the nonphysical longitudinal and scalar photons and to consider $\boldsymbol{\Phi}_{\boldsymbol{i}}$ as a state with zero number of transversal photions (see subsect 2.6).
 3) The integral over \vec{z}_{0} is calculated by means of the substitution
 $z_{0}=y_{0}-z$ under the condition that ($y_{0}-z$) is inside the integration interval ($0, y_{0}$). The condition is taken into account by using the
 function $\theta\left(y_{0}-z\right)$ (see the middle of eq.(22)).
[^2]: $4)_{\text {Current }}$ operator $j_{\mu}^{(0)}=i e: \bar{\psi}^{t} \gamma_{\mu} \psi^{t}$:
 $\partial_{\mu} j_{\mu}^{(0)}=0$. Hence the eq. $\int^{3} d^{3} x x_{m} \partial_{0} j_{0}^{(0)}=-\int d^{3} x x_{m}$ div $\vec{j}^{(0)}$ eq.
 fol.1.ows. The matrix element of the l.h.s. of this eq. between
 $\left\langle\alpha_{0}^{+}, \Omega\right|$ and $\left|\alpha_{i}^{+} \Omega\right\rangle$ is equal to $i\left(E_{0}-E_{1}\right)$ e d_{0}^{m}
 The matrix element of the r.h.s. can be reduced to ie $\int_{d_{x}}{ }_{x} \bar{u}_{0}(\vec{x}) \gamma_{m} u_{i}(\vec{x})$
 by integration by parts. Equation (27) can be proved analogously by integration by parts. Equation (27) can be proved analogously starting with $\partial_{0} \int d^{3} \times J_{0}=-\int d^{3} x x_{m} d i v \vec{J}$

[^3]: 5) Of courge, the "background" probability is far less in this aase as compared to the probability of spontaneous radiation which is a "back ground" in the effect considered in this paper:
 6) I define the energy of the quen as $-\Delta=E_{0}-E_{1}$ nition is available. As to the photon, it can be free (unlike the
 quen, see section 4 below) and quen, see section 4 below) and its energy can be defined as an eigen-
 value of the operator $\int d^{3} \times\left(\vec{E}^{2}+\vec{H}^{2}\right)$
[^4]: 9 However, this explanation leaves obscure why this mechanism had not acted before the moment R / C and resulted in the $\Delta N_{0}^{A}(t)$ nonvanishing for $t<R / C$

[^5]: 10) M. Fierz has noted in $/ 7 /$ that if \mathcal{D}^{c} is replaced by another function, then there arise "Quanten negativer Energie". The term of Fierz is used in this paper.
