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o/ =3/

tential application in the optical communication syétem/4 and gravi-
N

A squeezed state of the radiation fiel which may have po-

tational radiation detector/s/ has become the sﬁbject of extensive

/6-28/ /29/

theoretical and experimental studies

A number of nenlinear optical systems susceptible to producing
a squeezed state has been analysed theoretically. These include the

/6-10/ /11-17/

degenerate perametric oscillator

, fourwave mixing
/18-24/
,

/25,26/

re~

sonance fluorescence

processes/27’28/ and others.,

opticael bistability two~photon

In this work we present the squeezed-state generation by the
mixture of the two-signal modes interacting with strongly driven two-
level atoms, The signal modes are 2assumed to be located near two
sidebands of resonance fluorescence. The collective effects, cavity
damping and the effects of atomic and field reservoirs are accounted
for. A large squeezing has been obtained for suitable values of the
parameters of the system (cavity damping congtants, frequency detun-
ing of resonance, number of atoms,etc.). ¥For the case of a large num-
ber of atoms the factor of squeezing can be reached to a limiting
value.

The N, two-level atoms concentrated in-a region small compared
to the wavelength of all_ﬁpe relevent radiation modes interact with
an integse driving mode E at frequency @ and with two signal
modes E, , 2 at frequencies Jy. , Wy (Fig.1). The external
field E? is assumed go intense that it can be treated classically.

The coherence part of the hamiltonian in the rotating wave ap-
proximation and interaction picture is
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where A°= Eg*é-w (system with hoa 1):
-
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17 Ee /15,/ 2!
here d is the electric dipole operator for the system; @, , a,4
and Cl; N dx are the creation and annihilation operators of the

>
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signal modes 4 and 2 respectively, The operators

N
J}~=£4lb,>’;n<jl (L,¢=12)

are the collective angular momenta of the atoms, They satisfy the
commutation relation

N - J.. _J.. 8. .. (2)
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Considering the operator Q4 , d; and @y , Qg in hamiltonian
(1) as € -numbers and using the Markovian approximation, one £inds

the master equation for atomic system as follows 30 H
of - of
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where the disaipative term for the atoms is
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The term -Zx,u is the transition rate caused by the atomic reservoir
from level |2 to | 1> . Following refs./31’32/ we introduce the
Schwinger representation fér angular momentum

+ -
JL'J' = ¢ CJ' (¢ ,4=1,2))
where C; obey the boson commutation relation
+4
ECL',CJ- J - &{;J'

Further, we shall consider only the case of intense driving field.or
large detuning Ao go that
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After performing the canonical transformation

C4: cose &, + StnG Qg
CL:—Sc}zg&4+ coS G Qy 0 4 (5)

where
)

tg 26 = —'—zﬁ
4,
one can find that the Liouville operator L appearing in eq.(3)
splits into two components Lo and L4 « The component Lo

slowly varying in time whereas L4 containsg rapidly oscillating
L and 28, For the case of intense
driving field or large detuning Ao so that the condition (4) is

is
terms with frequencies

satisfied, it is reasonable to make the secular approximation, i.e.s
to retain only the slowly varying part/32’33/ A correction to the

’ results obtained in this fashion will be of an order of
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Making the secular epproximation, one can find e stationary so-
lution of the master equation
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where U is a unitary operator representing the canonical trans-
formation (5)
AN+ 4
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A
INg> is an ei.genstate of t.he operators RM , N= R44 + Ryq
here RL‘J' - Qs ey (¢,) = 1,2), The operators @, satisfy
the bogson commutation relation

[ @,a;] =9,

iy .
so that ) .
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By using solution (6) one can calculate the statistical moments < K >S
where ¢ BZ. indicates the expectation value of an operator B in

steady-state (4)., In particular, we find
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Now we return to hamiltonian (1). Following the theory of laser
by Haken/3 4/

s
modes E{

a, () = (JA,, - 964 )a,(t)— ¢q, ‘J;z(“ + f;',(t),

<Ry

, one may obtain quantum Langevin equation for signal
and EL in the cavity.
(10)
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where
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the operator R_u(‘t) - R'M (#) is slowly varying in time; 5?-’4 y Xy

and F@) , E,_(r) are the ca_\_rg.ty damping constants and noise opera=-

tors for the modes 54 and E‘,’ respectively. The noise operators
F) () (A = 1,2) obey the relations/34/
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where { «.. > indicates the thermal average over the states of heat
bath; n (T) is the number of thermal quanta at the temperature

T. 7
- Further, we shall discuss only the case when the signal modes
E4 end E, are located near the two sidebands of the collective

resonance flugrescence (Fig.1), L.€.,

[841; 18,1 << o,
where 51= A,-—ﬁ- Y é:z:A,s"f’—'
Under sthe transformetion
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it is easy to see that in the secular approxXimation the operators Rm(f}
end R (£) are rapidly oscillating terms with frequency_£_ whereas

4 e—.m; t ., 4 and 4 g‘l’?{,_) 4 , respectively
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and with the use of the secular approximation egs. (10,11) reduce to
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where &1 = cos ¢ g4 ; GZ =~ S¢72 & g_z .

For simplicity we consider only the case of 77.,,5/(})= 0, i.e.,the
temperature T = O. In this case, as is easily seen from relations
(12) and egs. (15,16), the noise operators g:z(;{) cannot affect the
normally ordered variance of the signal modes but they give commuta-—

+ + itional val 1t
tors [_611, a, 3 and [a',l , QJ,J additionsl values equa./B,Z/

> o0 t > o=
Missing the noise operator, one may obtain the stationary solu-

tions of eqs. (15,16) in the form

G =fG R G 2GRy an
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We shall consider the normally-ordered variance of fluctuation in
the in-phase (bq) and out-of-phase component l??, of the mixture of
ignal des and .

gignal mode cL4 a:?/

L] _ _L. -I;
b,:;—g_-(b +b) and b.z_.:a_.(b b))
where b = a, + a._z 3 bt = a;{"., Q:Z .

By using solution (17) and steady-state density matrix (6), one
finds the normally-ordered variance of fluctuation of the operators
b4 and b.a in the form

2
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here <R442 and < R:Z. can be found in releations (8,9).

In relation (18) and further, for gimplicity we take (5; = 6'; = 0.
The symbol < ...)> indicates the expectation value over the states of

heatbath and atomic steady-state (4).

Teking into &ccount the noise operators F,, 2 @), one may obtain
the commutator of the hermitian emplitude operators b4 and b‘z in
the form

2 4
_ g cos G g, cos'G /. (21)
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The f?ctor of squeezing of the operators b4 and bz can be defined
23 *
as
2
. <: (4 b4,z ) >

F4 P N e (22)
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We speak about squeezing if the factors f; or F, are less than
zero/19-29/. By using the relations (18-22), one can see that :

. R, - -
(i) In the case of resonance Cig G =1 we have <R1-2 e4 2 > =

and
(-24 4—'l>

<(A >‘_< 12 ,24

thus squeezing is absent in this case;
ii) In the case of 4f = o0 or %‘_‘._;.o we have <: (_éb,,/z) ‘_2 z©
thus the squeezing 7 avsent for the separate mode E4 or E;L .
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The detailed behaviour of the factor of squeezing F.z as a

function of ctg4§ when 94 - 2= - 4 is plotted in Fig. 2; and
24 ZA’

6

LA‘L [y 4, Fig. 1. Two-level atoms interacting with
£, ,—L -g-1-- 12> intense, driving field £ and with signal
_}"" modes ££ and 2 .

£, "> ool ‘10 30 50 X

Fig., 2. Factor of squeezing Fp as &
function of the parameter x = ctghy p -02 NeS

for the case of gl/ae.l = 92’/%2;1

0.4} F, -04 N =100

0.2
0.0
-02]

w04 Fig. 3. Pactor of squeezing ﬁ, asg a

function of the pa.ra.meter 9‘/?6; for the
case of gz/’xz- ; ctg j' = 0.75.

-06
-08

25 30 35 5/,

as a function of % when ctg4q = 0.75; —%!" = 3,in Fig., 3. For
the one atom case, as is seen from Fig. 2, thez'squeezing is small.
For a large number of atoms and suitable values of parameters g/.?.’ ,
gz/;gz and ctgd’é the substantial squeezing is presented (90% of sque-
ezing i1s obtained for the case N = 500; Fig. 3). In the collective
limit N o2 the factor of squeezing tends to a limiting value

FZ, = =1, To conclude, we have shown that the collective behaviour
affects considerably the degree of squeezing. By using the system, as
has been described above, one should obtain the intense field (the
intensity is proportional to N ) with substantial squeezing.

The authors thank Yu,M. Golubev and I.V.Sokolov for

valuble discussiona.
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Boromo6os H.H. (mi1.), llymoseuuit A.C., Yan Kyanr

CrxaTHe CBeTa B CMeCH OBYX MO, B3aUMMOIDEHCTBYIOILHUX
C CHNTBHO BO30Y>KIEHHbIMU ATOMAMM

E4-86-688

OfcyxmeHo coxaTHe CBETAa B CMeCH ABYX MO, B3aUMOIEHCTBYIO-
LUUX C CHIIbHO Bo36y KIeHHbIMM atoMamu. HaGiofeHO 3HaUMTeNIbHOe CKa-
THe cBeTa.

PaGora Brinonuena B Jlabopatopun TeopeTuueckoil ¢dusuxu OHUAMN.

[penpunt O6beavBeHHOro MHCTUTYTa AOEpHBIX HccnemoBaHui. ly6Ha 1986

Bogolubov N.N., Jr., Shumovsky A.S., Tran Quang

Squeezing in a Mixture of Two Modes Interacting
with Strongly Driven Two-Level Atoms

E4-86-688

The squeezing in a mixture of two modes interacting with strong-
ly driven two-level atomis is discussed. The substantial squeezing is presented.

The investigation has been performed at the Laboratory of Theore-
tical Physics, JINR.
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