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I. INTRODUCTION

During the last years the collective effects in the interaction
of atoms and molecules with a laser field and the vacuum of radiation
have attracted considerable interest. Many theoretical and experimen-

tal studies of superfluorescence/1_10/, collective resonance fluores-

/11-16/ /17—19/’

ce the early work on superradiance by Dicke

cence , optical bistability etc. were carried out sin-

s

The recent publications deal with collective effects in double

/20/ /21,22/.

optical resonance and the resonant Raman scattering

In this paper the theory of collective Raman scattering (Fig.1)
has been developed by using the quantum-mechanical master-equation

approach and secular approximation/12’22/. /22/,

In contrast with paper
we consider the collective Raman scattering with only one transition
strongly driven (Fig.1) and investigate the influence of the fre-
quency detuning of resonance on the collective spectral properties ™

of the Stokes lines.

II. MASTER EQUATION

The N three-level atoms concentrated in & region small compared
to the wavelength of all the relevanl radiation modes (Dicke model)
interact with a monochromatic driving field of a frequency J and
with a field of radiation (Fig.1). Let us label the ground state by

| 1>, the real excited state by | 3> and the resonant intermediate

state by | 2> with energies Wy OJa and &J, , respectively (the
system of B = 1). The real excited state | 3> may be & low-lying vib-
rational or rotational excitation from the ground state. To keep the
discussion general, we will not specify thesg states but say
that the intermediate state [2)> can be connected via the electromag-
netic interation Hamiltonian with both the states|1> and | 3> (in the
dipole approximation) but the states |3D>and | 1> are not connected by

| § Obvenanenint wucTETYY
AACRHLE HCC 2 R0BAUER
BMB/IHCTERA




the dipole Hamiltonian because of parity consideration. The transi-
tion |3> -] 1>is caused by an atomic reservoir and agsumed to be

nonradiative

In treating the external field classically and using the Born
and Markov' approximation with respect to the coupling of the system
with the vacuum field and atomic reservoir, one can obtain a master
equation for the reduced density matrix ¢ for the system alone in

the form/2:22/
aa—f:”l‘.[HCoh/fJ
= Ty (33, 5" 5%yt HC) o
) 3(-25 325 =52 £ 2y tHE)
= Y3y (T35 8 - 53“J54+H.c.)=!_f,

where o2 ?.( and 2 b./zj are radiative spontaneous trangition probabili-
ties per unlt time for a single atom to change from level 2> to |13
and from |2> to |35, respectively; 2 V¥, is the nonradiative rate

34
for atomic transition from [3> to |1>.

The coherence part of hamiltonian HCoh in the interaction
picture has the form

Heol = % (Jp-Fpg) + G (Jpgt Ty ) = S5 J53-

[73)
Here -Q-g = Cd_25 -Z_’y (where CO EN/STR ); &= Qg -¢2 is the
frequency detuning of resonance: Cr»—c( E is the matrix element of
the driving field and atom 1nteracflon,

N
3.0 L i3 gdl (¢,9=1,2,3)
i (K=4

are the collective angular momenta of the atoms. They satisfy the
commutation relation
.. , ]2 .8, T O
[JLJ /JL'J-/J" JLJ SN Ly Ly
The atomic coherence phenomena can be illustrated with greater luci-

ditz by introducing the Schwinger representation for angular momen-
24/
um

3".‘. = C;CJ' (l. 1J‘= 1,2,3) »

. +
where C_ obey boson commutation relation [c. ¢ 1= J‘-J. .

Purther, we investigate only the case of an intense external field or

much detuning ) so that

1,4 5% (,1)4/2 > ONY, NY NV .
_(1:2(;5+ 24" 25 7 34 (2)

After performing the canonical transfermation

C,= Q cosG + @y Scn&

1
C, = -Q, Sing + Q, co5 &

(3)
CS: Az,

where ig.zg = 46’/6\"

one can find that the Liouville operator L appearing in equation (1)
splits into two componentsg Lo and L,‘ . The component Lo is slowly
varying in time whereas L,, contains rapidly oscillating terms at
frequencies 2 £ and 4 €2 . For the case when relation (2) is fulfil-
led, we make the secular approximation, i.e.,retain only a slowly
varying par‘t/m’zo/. Correction of the.results obtained in this

fashion will be of an order of

| £
(g /) (g n/a)” or (%, N/a)"

Meking the secular approximation, one can find the stationary
solution of the master equation

N R
~ -4 R Na
= veut= 4 gj_ox ”Z_az JR ¥y > <N, R), i

= ) =

where U is the unitary operator representing the canonical trans-
formation (3)

pY
X< 221 tgsg
%3
Z = C't‘jl/g
N4 N+4 -
g ..z xz) =1 4 -1,
Tz xz -4 z-1 X -4

IR, N, > 1is en eigenstate of the operator R= Ry +Rzo R,, end
the operator of number of atoms ’



A
N = Ry +RyptRyz :511-;%2-13-53;
here Rij = Q; Qs (C,)=1,2,3).

The operators Qi satisfy the boson communtation relation

. + — - .
E @L' ’ GJ' 1l = 5".} (5)

so that
C RL'J' ’ RC’J"J = R,_'J-/ 5;3 - RL.,J‘. JCJ' ’. (6)

For the case of resonance the solution (4) reduces to
~ -1 rR R
¢ =8 L P L |RN>IN,R], (7)
R=

o }J{:

where P= V5'f /3225
b o W) PPy

(P42

The solution (7) has the same f7rm/as in our prelvious paper for col-~
20

lective double resonant process and resonant Raman scattering in

intense driving and scattered light/eg/. As in ref./25/

city we introduce the characteristic function

L3Ry + SR

, for simpli-

KM s
4 N+4 N4
_4[ %) =1 4 My ] )
-4 Yy -1 Yo-1 Y44
where l'f
Y, = X €
/
):z = Z € Z

Here < 5>5 denotes the expectation value of an operator B in the
steady~state (4).

“Once the characteristic function is known, it is easy to calcu-
late the statistical moments

om0 37
<Ry = 2 X 2|
14 a(ff) a{"?)ﬂl R14,R Lj =0 -

L'%:O

(9)

In particular, we have

- - L )
<R>5= 4[ ¥(XZ) ;E(XJ (10)
riy = AT E 400D - f(X)J
> (11)
- g (xz)-— )2 £ x)
dRy % = [ % (z-1)* f’ z-1)* 7,0] (12)
2o _ 42 _ 2z
< Ry% = 4 [2-4 ﬁ(xz) (z- 4)2 ¥ (x2) +
2 ‘
zZ5% Z z%z
L = (xz X) (13)
t iz i ) - ff (x J
“4r Z .z z
Ry = A L7 0D cz-m£( Dt HOL

(z- (14)

where £ () = N”z:)/(ot 1)

N2 N+4 /(,,3-4)‘9‘
%{J)Z(Nd- —(N+4 )L 'f“’l)
4’

* 2 Vi 2
£ (L) (Nzo(-}v-r-—;(llvz-{--?h’-'f)o(”*-f ney% L Ze)

2 Vz¢ )
In the case of resonances cf,g 4; = 1 a.nd 24 1 relations
(10-14) reduce to 3

B &2 .
<R>5 = -2<R14?5 = ;—N (15)



2 - = l- 4 ’
<Ry = 2LRR > = 5 NN+ 2) (16)
2 2 - 4
<Ry % =<Ryp% = F W(Wed). an

III. COLLECTIVE SPECTRAL PROPERTIES OF SCATTERED LIGHT

As in ref./23/,the steady state spectrum of the- spontaneous
emission corresponding to transition ]2)-—))3) (Stokes line) is pro-
portional to the Pourier transform of the atomic correlation function

< Tyu (T, % = fimoa <, (32T T () > -

Using the secular approximation and the quantum regression theorem/ze/,
one can find the equation of motion for the correlation functions

<RL'J' ('C)ng>5 (¢,4 =1,2,3) in the form

d ¢R (T)F,,> = ((05-)<R (DT>
dr =" 27 S e

~ <y CTOR (T Ty 3

i{R_‘,’}(t)ng% = ¢ (g +n )< R25(T)‘Taz%

dr (19)
S K Gg (TR (T Ty 30
where .
. 2 . £ .
Ma(t) = Wy, Sen G + 28, Sin"§ + Vg Stng

¥ %, (sin"G - cosG )Rz (T + (ngstﬁzg-ésﬁs'?f)&z(t)
+ (ngasng - 954 cos?s ) (R”(t) - R () (20)

2 2
T:%(t): 2:24505‘2§ ""233;5505 ¢ + 1)344::5 %

. .2
+ b:”(c«:s‘zg - S‘”zg)kﬂ(t) * (szcoszg' 55‘”" g)Rﬂ(t)

2 .2
V(Y 057G - 1;454',1 g)(Raa(t)'R,zz(t))' (21)

/25/

For the one-atom case one can use the well-known operator relation
Rej Ree = Ry &KJ'
and egs.(18,19) reduce to

d (g, (03,5 = £ (A5-ACR(DT,

dt
= By <R (P T 3 (22)
A CRmE g = (R, ARG,
T 2
"P,za <R,25(T)ng%: ‘ (23)
where
2 . L
R AL TEL A VI
2 ) 2
Bry= Jag @G + Yy 057G Y, (25)

The value ]5,3 and 5_33 can be considered as the widths of two spec-
trum components of Stoke line located at the frequencies %3'5 ~ L
and %S-I 4J4%  respectively. It is easy to show that the values
545. t?.nd &5 in relations (24,25) coincide v‘vithztB?e results of the
previous papers of the one-atom Raman scattering .

It is also easy to see that in the case of resonance ctg2§ =1
Y, 45 = 1 the operators f;s(t) and Es(t) in egs.(20,21) be-
come thé C -numbers and spectrum widths of the stokes line for the

and

collective case are the same as in the single-atom spectrum.

For the general case by analogy with the papers/11’22/, we fac-
torize
= H,2 R,ct)J >
L MplEIR (T Ty 2% <M3% <R 3275
(26)

<i:za(t)R‘23(t)J'52>5 =< lf”); SRy3(T) T35

as in references/11 22/

. By using the relations (10-14) one can
show that in the case of large N the factorization (26) yields a
small -error (with an order higher than A/W ) in the calculation of

the steady-state fluorescent intensity spectrum.

Using the factorization (26) and solution (4), one can find the



solution of egs.(18,19) and write the atomic correlation function in

the form .

) Ry -NDE <22
{023, %3= 57§ <KsRs3 €

ACLY +-n.).t~‘(f:,_5% b A 7 (27)

+ Cos%G <RyyRye €

where
KRy Ry 2 = (N+I<R % - < RRyz (28)
SRRy = NHDIKRY =< R %)~ RS SRR, - (o)
The values R % , <Ry, <Rzg and <R Rﬁgcan be found in rela -

tions (10-14). Expression (27) yields the two-peaked structure of the
Stoke spectrum. The spectrum components located at the frequencies

w 2.0 end & _§+IL have the intensities
23 2 43 &
.2 d
T o = s 6 < RygRyy 2 *

Iin = cos?¢ < Rey3 Rgp %

and the widths <ﬁ5>5 and (’2575, respectively. For the case of reso-
nance Cig”f: 1 the
components are equal (i.e., I

intensities and widths of two-spectrum

on= Laed <N = <Ly %)

Using relations {15-17), it is easy to show that in the case of
ctg2§ = 1 ;)_’5{/?;5= 1 the peak intensity of each spectrum component.
of the Stoke line in (27) varies as N'8 while, as has been mentioned
before, the width of each component is the same as in the single-
atom spectrum. The spectrum picture changes for the case of ctg 2§ =1.
By using the relations (27-29) and (10-14), one can show that for the
cagse of ctgzg # 1 or gf/é‘/zsﬁ 1 and the numher of atoms N large
enough (take for example for the case of Xz % Z‘g 29 >4 s
XZ-= Vg1 C/fg'z§> 4 it is necessary K D> 1 so that X >>1 and

(X‘Z)”};ﬁgl ) the intensities and widths of all spectrum compo-
nents of the Stoke line are proportienal to N .

The detailed behaviour of intensities per atom of the two Stoke
spectra I__‘.,_/N"' and I,q /N?' as a function of ctgzq , where .%-; =1
is shewn in fig.2, and as a function of %ﬁ—' , where ctgag = 1 is
shown in fig.3. For all finite values of N ~ one observes a smoth
variation of functions I_g / N‘2 and I“L_/Nz with the parameters

s o,

ctgeé or ?%zig . FPor large N +the intensities of spectrum compo-
nents are large only in the around vicinity of the point ctgzg: =1,
V34/%3 = 1 (see figs. 2,3). For the cooperative limit N->°° the
peak intensities per atoms I_o /N~ and I, / N* have a discontinuous
behaviour analogous to a typical nonequilibrium first-order phase

transition/ 14219320,22/

In conclusion we want to note thet the characteristics for
spectra of the Rayleight line can be obtained using an analogous ap-
proach.

w FS
2 12> Fig.1. Three-level system of
1T ¢ atoms interacting with the mo-
23 nochromatic applied field and
w . :
w with radiation.
13>
Al
|93.[
Wy r >
lig /N
X . L. 006 A
Fig.2. Peak intensities per 4
f1
atom I_:)-L/’A/Z' (dashed curves) } W
] [
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Fig.3. Peak intensities per
atom I+ /#%as a function of

))31/['1,3 when ctg2‘9= 1. The
dotted curve indicates the be-

0.0 |

haviour as A-»2>°




] ‘—‘ﬁﬁrT—*_ﬁﬁ"==r—“——""‘a-“T__-—-_'-'__—____—_'""_______'_____'_"_"_____"—_—_]E_ﬁf .

REFERENCES

1.
2.
3.
4.

9.
10.

1.
12.

13.
14.
15,
16.
17
18.
19.
20.
21.

22.

23.
24.

25.

26.

Dicke R.H., Phys.Rev. 93 (1954) 99. :
Agarwal G.S., in: Quantum optics (Springer, Berlin, 1974).

‘MacGillivray J.C., Phys.Rev. A14 (1976) 1169.

Bonifacio R. and Lugiato L.A., Phys.Rev. A11.(1975) 1507, A1l12

(1975) ser7. !

Polder P,, Shurmans M.F.H., Vrehen Q.H.F., Phys.Rev.A19(1979),1192. ;

Hegke F., King H., Schroeder G., Haus J., Glauber R., Phys.Rev. !

A20 (1979) 2047. 3
Gibbs H.M., Vrehen Q.H.F., Hikspoors H.M.J., Phys.Rev.Lett. 39 }
(1977) 547. )

Skribanowitz N., Herman J.P., MacGillivray J.C., PFeld M.S., Phys. l
Rev.Lett. 30 (1973) 309.

Florian R., Schwan L.0. and Schmid 0., Phys.Rev. 429 (1984) 2709.

Moi L., Goy P., Gross M., Raimond J.M., Fabre C., Haroch S., Phys.

Rev. A27 (1989) 2043 and A27 (1983) 2065. '

Compagno G., Persico F., Phys.Rev. A25 (1982) 3138.

Agarwal G.S., Narducci L.M., Feng P.H., Gilmore R., Phys.Rev.Lett.,
42 (1979) 1260.

Narducci L.M., Feng P.H., Gilmore R., Agarwal G.S., Phys.Rev. A18
(1978) 1571,

Puri R.R., Lawande S.V., Phys.Lett. 72A (1979) 200.

Drummond P.D., Phys.Rev. A22 (1980) 1179.

Bogolubov(jr) N.NW., Shumovsky A.S., Tran Quang, JINR (1986),

E4-86-347, Dubna. ’

Bonifacio R., Lugiato L.A., Phys.Rev., A18 (1978) 1129.

Drummond P.D., Walls D.F., J.Phys. A13 (1980) 725.

Drummond P.D., Walls P.F., Phys.Rev. A23 (1981) 2563.

Bogolubov N.N.(jr), Shumovsky A.S., Tran Quang, Phys.Lett., 112A
(1985) 323.

Raymer M.G., Walmsley l1.A., Mostowski J., Sobolevska B., Phys.

Rev. A32 (1985) 332.

Bogolubov N.N.(jr), Shumovsky A.S., Tran’ Quang, JINR (1985)
E17-85~679; J.of Phys.B 1986 (to be published).

Agarwal G.S., Sudhashu S.Jha., J.of Phys.B, 1979, 12, 2655.
Schwinger J.V. in: Quantum Theory of Angular Momentum ed. by
L.C.Biedenharm and H.VanDam (Academie press, New-York, 1985).

m——— —— o w— ———a—

Louisell W.H., Radiation and Noise in Quantum Electronics (Mc. A

Grwo-Hill Book Company, New-York).

Lax M., Phys.Rev. 172 (1968) 350. J
Received by Publishing Department '

on October 11, 1986.

10

WILL YOU FILL BLANK SPACES IN YOUR LIBRARY?
You can receive by post the books listed below. Prices - in US &,

includiixg the packing and registered postage

D3,4-82-704 Proceedings of the IV International

School on Neutron Physics. Dubna, 1982 12.00

D11-83-511 Proceedings of the €onference on Systems and
Techniques of Analitical Computing and Their
Applications in Theoretical Physics. Dubna,1982. 3.50
D7-83-644 Proceedings of the International School-Seminar
on Heavy Ion .Physics. Alushta, 1983. 11.30
D2,13-83—-689 Proceedings of the Workshop on Radiation Problems
and Gravitational Wave Detection. Dubna, 1983. 6.00
D13-84-63 pProceedings of the XTI International
Symposium on Nuclear Electronics.

Bratislava, .Czechoslovakia, 1983. 12.00

E1,2-84-160 Proceedings of the

of Physics. Tabor,

1383 JINR-CERN School
Czechoslovakia, 1983.
D2-84-366 VII International Cénference
Quantum Field Theory.

Proceedings of the
on the Problems of

Alushta, 1984. 11.00

D1,2~-84~5939 Proceedings of the VII International
Seminar on High Energy Physics Problems.

Dubna, 1984.

12.00

017-84-850 Proceedings of the [!l International Symposium
on Selected Topics in Statistical Mechanics.
Dubna, 1984, /2 volumes/. 22.50
D10,11-84-818 of the V International Meeting
of Mathematical Simulation,
and Mathematical Methods

the Physical Problems,

Proceedings
on Problems
Programming
for Solving
Dubna, 1983

Proceedings of the IX All-Union Confgrence
on Charged Particle Accelerators.
Dubna, 1984. 2 volumes.

Proceedings on the International School
on Nuclear Structure. Alushta, 1985.

25.00

D4-85-851
11.00
Proceedings of the International Conference
on Computer Algebra and its Applications

in Theoretical Physics. Dubha, 1985.

D11-85-791
12.00

P;oceedings of the X1l International Symposium
on Nuclear Electronics. Dubna, 1985.

D13-85-793 0o

Ordérs for the above-mentioned books can be sent at the address:
Publishing Department, JINR-
Head Post Office, P.0.Box 79 101000 Moscow, USSR



SUBJECT CATEGORIES
OF THE JINR PUBLICATIONS

Index Subject

e e e e s
o & W NN = O

16.

\OCD\IG’\U‘I&O)N:—'

.

High energy experimental physics

. High energy theoretical physics

Low energy experimental physic§
Low energy theoretical physics

. Mathematics
. Nuclear spectroscopy and radiochemistry

Heavy ion physics
Cryogenics

. Accelerators

. Automatization of data processing

. Computing mathematics and technique
. Chemistry

. Experimental techniques and methods
. Solid state physics. Liquids

. Experimental physics of nuclear reactions

17.
18.

19,

at low energies

Health physics. Shieldings
Theory of condenced matter
Applied researches
Biophysics

Boromw6o H.H./mn./, lyMosckuit A.C. Yau Kyaur
KonmexkTHBHBIE CHeKTpasnbHple CBOHCTBA paccesHHs
PamaHa

E4-86-684

Pa3sBHTa TeOpHsA KOJJIEKTUBHOTO paccesHus PaMaHa Ha OCHOBe
NpHMEHEHHs KBaHTOBOTO ypaBHeHus THna '"Master Equation'" u ceky-
JIAPDHOTO NpHONUxeHusA. HccilenoBaHel BIUAHMA PACCTDONKH pe3oHAaHCA

H APYIHX [apaMeTpoB Ha KOJIJIEKTHBHble CBOHCTBA pPACCeSHHOI'O CBe- -
Ta.

Pa6ora BrmonHena B JlaGopaToOpuHd TeopeTHUeCKOH ¢uauku OHUIU.

MpenpudT OGBENHHEHHOrO MHCTMTYTa AEpHBIX HCCnedoBaHuii. llyGHa 1986

Bogolubov N.N., Jr., Shumovsky A.S., Tran Quang E4—86-684
Collective Spectral Properties of Raman
Scattering

The theory of collective Raman scattering has been develo-
ped by using the quantum-mechanical master-equation approach
and secular approximation. The influence of the frequency de-
tuning of resonance and other parameters on the collective
spectral properties of scattered light is investigated.

The investigation has been performed at the LAboratory
of Theoretical Phasics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1986




