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I. Introduction

In recent years considerable experimental and theoretical
efforts have been devoted to the study of nuclear giant monopole
resonances (GMR). At present, the isoscalar (T=0) giant monopole
resonance (ISMR), the nuclear breathing mode, has Dbeen
established experimentally in a wide mass range of nuclei [1].
New experimental developments [2] have aléo opened  the
possibility of studying the isovector (T=1) giant monopole reso-
nance (IVMR).

The experimental study of the GMR and more generally of any
monopole transition with a projectile 1like s , aq, JHe, and
light heavy ions, requires measurements at very small momentum
transfer. The identification of the resonance and its physical
characteristics is provided with comparison between the measured
angular disrtibutions and those calculated using the Distorted-
Wave Born Approximation (DWBA). The basic element of the
nuclear system relevant to any DWBA analysis [3] of the GMR
experimental data is the nuclear transition density ?Tz(;l which
should incorporate nuclear structure effects that play a role in
such monopole modes. ‘

The transition densities for GMR excitations can be obtained
within the microscoéic framework using for example the Random
Phase Approximation (RPAJ [3-5], the Generator Coordinate Method
(ccM) [6,7], the Time-Dependent Hartree-Fock Method (TDHF) [8].
However, these transition densities are difficult to be used
within the DWBA analysis. They are not of closed analytical form
and depend sensitively on the amount of np-nh configuration
mixing in ground and excited ot states.

Usually, simple models of the monopole vibrations are widely

used within the DWBA description of the GMR experimental data.
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For example, the well-known Tassie transition density [9]
follows from a simple radial scaling T— & T of the ground state
density distribution ¢ ( ¥ ). The collective parameter o& is
one-to—one related to the nuclear mean squared radius and the
resulting transition density is of the form:
fsﬂ(r)=1\(3§(r)+r9y(r)/9 r) . ' (1)

The Tassie transition densities, eq. (1), are known to be in
guantitative agreement to those of RPA calculations for heavy
nuclei [4]. In the practical applications, the ground state
density ¢ (r) in eq. (1) is usually taken in the Fermi-type
form, S)(r)E QF(r)= fF(r;R,b), considering A, R and b as a set of
phenomenological parameters.

Another examlpe: is the transition density YTQ,(r) following
from the collective model [10] and used within the DWBA method
[11]:

Pre, ()=2 0Q(x) /D RBDP(x) /DD, (2)

where the nuclear ground state density y(r) is presented as a
Fermi-type distribution [ (r) and the set of the
phenomenological parameters involves A, B, R, and b. In eq. (2) a
surface monopole mode (diffuseness or b-type oscillations) is
seen together with a bulk monopole mode (half-radius or R-type
oscillations). The transition densities of the gmb(r) form have
shown a better reproducing of the experimental ISMR cross section
data [11] than gsu(r)

The main disadvantages of the phenomenological transition
densities however 1is that there is no.connection between their
phenomenological parameters and the effective NN-interaction used
within the microscopic approaches.

Regently, we have reported transition densities of the type of

eq. (2), providing a better understanding of GMR properties. They

are of a simple analytical‘form and can be successfully applied
to the reproduction of the experimental results using the DWBA
method, as has been shown in [10,11]. In contrast with the
collective model [10], however, our transition densities have
been obtained .within an Adiabatic Time-Dependent Hartree-Fock
(ATDHF) approach [12]. In this approach both ISMR and IVMR have
been described in a unified way as dynamically g¢oupled bulk and
surface vibrations of the half-radius R and the diffuseness
parameter b of the local density distribution f(r) considered as
P (0)=

[ (r:R,b). Therefore, there is no ajustable phenomenological

a symmetrized Fermi-type (SF) density distribution

parameters in our transition densities which are completely?
obtained on the base of the used Skyrme-type effective forces
[13,14].

An aim of the present work 1is to propose such obtained
transition densities as an effective computational tool for
research teams dealing with the experimental analysis of the
reactions with excitation of the GMR. We suggest the method (part
2.), the particular form (part 3.) and all n;cessary coefficients
of the transitidn densities obtained for a number of spherical
even—even nuclei with the set of Skyrme forces SkM * [13] and
SITI [14].

Transition densities of naturally appearing antiscaling type
isoscalar and isovector monopole states [7,19] , which are not

experimentally observed up to now [11], are also given.

II. The Method
Recently elaborated Local-Scale Transformation Method (LSTM)
[15,16] has allowed A-particle wave functions to be adopted for a

systematical investigation of the GMR. The starting point is to



perform a local-scale point transformation (LST) on a certain
model wave function (P = 4>(?4’?L""'?ﬂ)‘ As a result, a wave
function [lb [£1= ¢f (?4 STy .,'f;) is obtained which depends on
the scalar LST function £f( ¥ ). The latter is one-to-one related
to the ground state density distribution @ (2 ). The LST
function £( ¥ ) is thus presented as a functional fy( T ) of the

local density ¢ (2 ). Therefore, the local density ¢ (%)

creates the basic states ¢ [yl = ¢'/f’ (T Toeees T,) and
collective parameters u=(u‘,u‘, ...) can be naturally introduced

in ¢ (u)=¢[§7u] by means of proper characteristics of the local
density distribution g, ("= geT ).
o¢In the ATDHF approach [12] we impose constrained ot ~density
vibrations on the nucleus whose density profile is taken to be of
SF-type [171]:

9g (1= 9., (E1R /b )= gesh(Ry/bg) /(eh(Rg/bg)+eh(x/bg)). ()
where Rq and b" correspond to the density half-radius and surface
skin-thickness parameter of the neutron (g=n) and proton (g=p)
densities fn (r) and ?P(r), respectively. The SF local
densities (3) satisfy the normalisation conditions:

’ f ?1 (r)djr = Ay, (g=n, p) (4)
through the relation: .

L Poy = folRy =0 /AN RD /(e be/RgY ) (5)
where A , (AP) is the number of neutrons N (protons Z) and A=N+Z.

The corresponding to §g A-particle wave function ¢>(u)=4>[§sp]

built .up on the base of the LSTM using a single Slater harmonic-
oscillator shell model wave function [1'6] depends on the SF
density collective varial?les u=(R”,RP,b,,,b?). Then according to
refs. [7,12]), the resulting wave functions ¢(u) transform the
mean value of the Hamiltonian H of the system in question into an

algébraic function of the collective variables

'é'm—w

£

V{(u)=V(R_,R 'bn’bP)=<¢)(Rn’R 1B, /Dy ) IHIP(R W R 15, D, /D)) (6)

P P
which represents the collective potential energy V=V (u) in the
ATDHF approximation.

Table 1.
The equilibrium values of the symmetrized Fermi-type local

densit meters: - ii
sity parameters: half-radii (Rn,RP.for Pa f.f,fpand R for p ':.f‘,)

and diffuseness parameters (bn'bp forﬁn¢f', and b forJ’rM ’:f)" )

Nuclei|Forces|” R [fm] R [fm] b [£m] b, [£m] R [fm] b [£m]

(zc SIII| 2.29664 2.26910 .441586 .457215 2.28552 .448469

>
SkKM 2.23480 2.09736 .468286 .513233 2.19435 .482203
16 SIII| 2.67962 2.68578 ,433752 .441407 2.68304 .437422

0

28 SIII| 3.26208 3.28755 .440357 .446958 3.27505 .443536

SkM¥®| 2,67135 2.66859 .463645 .475312 2.67101 .469087

skM*| 3.17290 3.19699 .467997 .477127 3.18539 .472365
SIII| 3.35195 3.37515 .489380 .500440 3:36421 .494581
skM#*| 3.21876 3,22784 .525957 .544118 3.22547 .534178
SIII| 3.76861 3.80476 .457895 .465446 3.78705 .461468
SkM’ 3.71196 3.74951 .492538 .502852 3.73134 .497397
qy[ SIII ‘4.09639 3.95802 .458863 .443752 4.03424 .451689
a SkM}' 4.04394 3.84990 .488197 .480486 3.96387 .484735
56 SIII | 4.24725 4.29703 .441477 .448246 4,27259 .444631
SkM*| 4.13986 4.19497 .471185 .479935 4.16808 .475273
qo SIII| 5.11666 5.03803 .462754* .470953 5.08055 .466451
r SkM* 5.03120 4.91373 .496218 .512470 4.98017 .503553
208 SIII | 6.87254 6.81210 .514625 .447845 6.85041 .482834

Pb

skM¥ | 6.78819 6.67531 .556836 .488960 6.75631 .524144

The equilibrium values of the density distributions (5),
©_, o o ° v . s s
u ——(R“,Rp,bn,bp) , obtained by minimizing the eq. (6) with respect

to the collective variables u=(Rn,RP,bn,bP), are given in table 1.



for a nuclear Hamiltonian with the Skyrme~type forces SkM*and SIII.
In this case, V(u®) and ¢(u°) are in quite satisfactory agreement
with respect to the self-consistent HF results for the total energy
E and the ground state wave function ¢”F obtained in [13,14]1. In
table 1. we also list the equilibrium density parameters R® and
b°® obtained with a proportional SF density approximation (SFP)
assuming only two variational parameters R=Rﬂ=RP and b=bm=bP.

The collective kinetic energy in the same ATDHF approximation

[12] is of the form

4
m . .
K =—1- R u- 5
7 ‘2‘ - m‘J(u) ugup (7)
where u=(Rn,Rp,bn,bp) is the time derivative of u:(Rn'Rp'bn'bp)‘

The inertial tensor matrix elements HIU in eq. (7) are given by

the equation

SF §F
$g: §3, (4-00.9,) * Po, (14595 ) 309,
o (S0 O0) S0Py By s )

i 4+ P (g3 ﬁ:i} Y

where the isospin index g =n(p) for i=1,3 (2,4) is ordered to
correspond to the index i=(1,2,3,4) labeling the collective
variables vector u=(u4,ul,u3,uy)=(Rn,RP,bn,bP). The non-locality
parameter ﬁ =(m/2h )(t4+t1) in eq. (8) comes from the exchange
Skyrme-type forces and the velocity fields v, , (i=l1,2,3,4),

14

.
measured in units u., are expressed as

v .
¢
. L SF
v‘-=(JM rar’) /gy v ) L (171,2,3,4). (9)
u; ‘
0 ¢
Further, we quantize the ATDHF classical Hamiltonian
X =K+V, see eq. (6) and (7), in the %nown harmonic

RTOHF
approximation (HA) expanding the collective potential energy (6)

around its equilibrium value V,= v(u®) up to second order in the

deviations (UF“:)' Diagonalizing the resulting Hamiltonian in
. . . . . {4
harmonic approximation we obtain eigen vectors de, (& =1,2,3,4)

L=

o

which transform the original collective variables u=(R ,R ,b ,b )
into a new set of normal coordinates Q=(Q ,Q ,Q ,Q ) in which we

have: Y

Yy
X T A =) @k, aty . (10)
A4

ATOHF ‘e A

Therefore , in the harmonic approximation the monopole
vibrations connected with the density variables (Rn'Rp'bn'bp) are
presented as four independent normal vibrations with respect to

2 (A=1,2,3,4) are

(Q’,Qz,Qg,Qq). Their excitation energies Hw
listed in table 2.

Table 2.
The excitation energies ﬁwd(in Mev) for ISMR (A=1), IVMR (& =2)
and the antiscaling-type isoscalar (isovector) monopole vibration

A =3 (d=4) calculated with SITI and sku¥ forces.

SIII skm™*
Nuclei| fiw, fiw, T, fiw, fw, fiw, fw, T,
2 C 27.03 32.56 60.83 67.22 22.23 27.44 48.24 58.31
“O 28.42 34.68 61.70 66.30 23.20 30.57 50.48 59.00
uSi 28.10 35.27 56.30 63.12 23.01 32.17 48.06 58.00
g 24.63 30.52 48.68 55.75 20.41 27.02 39.83 51.53
Weca 25,70 33.50 48.61 57.55 20.73 29.82 40.54 51.95

“0ca |25.20 35.40 48.77 58.62 | 20.41 31.65 41.71 53.29
S¢gi |25.55 35.22 49.36 58.45 || 20.42 32.15 42.78 53.63
994y |22.51 33.17 42.44 52.22 | 17.82 29.84 36.15 47.45

log?b 17.54 29.82 30.07 49.06 13.66 25.96 32.78 43.14

The detailed analysis of these excitation energies, the energy
weighted sum rules (EWSR) and the corresponding rms radii,
local and transition densities have shown that the first (A =1)
and second (A =2) normal modes can be identified with the ISMR

and IVMR, respectively. These are dynamically coupled bulk



and surface vibrations in which the density half-radius vibrates
in phase (scaling-type vibrations) to the density surface. The
normal mode ¥ =3 (£ =4) is of the isoscalar (isovector)
antiscaling-type monopole vibrations in which the density half-

radiys vibrates out of phase to the nuclear surface.

III. Transition Densities
The transition densities cqrresponding to the four normal
monopole vibrations mentioned in the previous section can be
obtained in the following way. First we transform the original

coordinates u=(Rn,RP,b7,,bP) in the SF density distributions,

eg. (3), into normal coordinates (Q,,0,.0, /Q, ) using the
canonical transformation vectors SZ-A) . Then, expanding the
obtained expression up to second order in S[:‘) (the harmonic
approximation), we substitute {Q,‘} by the corresponding

%, +
operators Q_, =(%/2w,) (ad‘+ad). Finally, we take the expectation
values Dbetween ground and excited one phonon states of the

corresponding & -type.

This procedure leads to the following expression for the

isoscalar (T=0) transition density:

(1:0) a4 3 A sF LA 3 4
§a ()=} Q0" aR, a9 o) 48 06 0 14a D p b, (1)

where gs‘(r)= ?:F(r)+ f:r(r), eqgs. (3) and (5), and its

derivatives with respect to the SF density parameters (R",Rp,b,",

b P) are taken at the equilibrium values (see table 1.). The

: . 4
amplitude coeffitients Ay, (i, d=1,2,3,4) in eq. (11) defined

according to the equation
& Hy (4]
A; =(f/2w,) "s; . (1,4=1,2,3,4) (12)
are given in tables 3 and 4 for the skM¥* and SIII effective

~ .
forces, respectively.

Transition density coeffitients obtained with

Table 3.

Skyrme forces SkM* .

: =y 0 - =
Nuctei | & A, A, As Ay I\ g™ A gy
4] .9246 -,1595 -.1470 -.0138 .3826 -.0666 .5420 -.0804

“ 3| .0980 .9551 ~-.0336 -.1358 .5266 -.0847 -.0429 .0511
C 2|-.1696 .3604 .1368 -.1154 .0954 .0107 -.2650 .1261

1) .0360 -.3050 .0587 .1695 ([-.1344 .1141 .1705 -.0554

4| .6083 ~.4267 -.1186 .0750 .0908 -.0207 .5184 -.0967

3| .3851 .6168 -.0925 -.1250 .5005 -.1090 -.1074 .0170

%o 2(~.0349 .1314 .0971 -.0995 .0309 -.0050 ~.0821 .0987
1] .0712 .0223 .0661 .0949 .0520 .0798 ,0149 -.0048

4| .4098 -.3459 -.0921 .0735 .0367 -.0103 .3772 -.0826

18 3| .3131 .4009 -.0892 -.1008 .3568 -,0950 -.0471 .0079
si| 2] .0116 .0510- .0683 -.0763 .0182 -,0051 -.0196 .0725

1] .1035 .0907 .0457 .0581 .0987 .0516 .0063 -.0011

4| .4314 -.3549 ~-.0834 .0628 .0476 -.0117 .3916 -.0729

3| .3470 .4448 -,0864 -,.0894 .3951 -.0878 -.0538 .0047

3 g 2|-.0362 .1560 .0810 -.0851 .0468 -.0074 -.0967 .0844
1] .0335 -.0283 .0522 ,0880 .0103 .0692 .0205 -.0074

4 .3338 -.3004 ~.0804 .06%°4 .0228 ~.0073 .3164 -.0748

o 3| .2832 .3309 ~.0900 -.0910 .3074 -.0905 -.0302 .0037
b Cal 2| .0186- .0541 .0604 -.,0735 .0225 -.0069 -.0178 .0672
1| .0991 .0905 .0400 .0513 .0965 .0453 .0058 -.0010

41 .2199 -.3415 -.0572 .0887 ||-.0388 .0142 .2604 -.0683

3} .2729 .2398 -~.0856 -.0855 .2574 ~.0845 .0993 -.0244

"%ca| 2[-.0290 -.0484 .0536 -.0598 [|-.0245 .0096 .0085 .0568
1] .1110 .1131 .0427 .0260 .1152 .0349 .0049 .0076

4] .2601 -.2339 -.0746 .0645 .0174 -.0066 .2465 -.0694

56 3| .2029 .2462 -.0797 -.0822 .2251 ~.0811 -.0259 .0047
©Ni| 2| .0504 .0050 .0427 -.0578 .0124 -.0053 .0230 .0503
1( .1224 .1208 .0251 .0311 .1225 .0277 .0037 .0000

4| .1805 -.2158 -.0576 .0642 [|-.0107 .0051 .1931 -.0598

3( .1667 .1938 -.0729 -.0739 .1784 ~.0733 .0382 -.0116

%gr| 2| .0293 -.0161 .0347 -.0523 ||-.0098 .0040 .0240 .0428
1] .1145 .1143 .0216 .1884 |[..1145 .0204 .0072 .0040

41 .0706 -.1540 -.0268 .0739 .0092 .0054 .1141 -.0466

108 3| .1274 .0102 -.0454 -.0452 .1029 ~-.0575 .0392 -.0164
Pb| 2 |-.0483 -,0955 .0574 ,0233|{-.0049 .0049 ,0372 .0267

1} .1014 .1003 .0109 .0609 .1035 .0079 ,0199 .,0002

In the proportional density approximation
density distributions SFP when R,=R,=R  and
previous section) the isoscalar transition

form:

for the equilibrium

b,,=bP=b (see the

density is of the



9;’-0)(1-):;\"(?ﬁs’/?R)ﬂa“ (095 /90) . (3

where the equilibrium SFP density parameters Ra, b® have been
listed in table 1.
Table 4.

Transition density coeffitients obtained with Skyrme forces SIII.

. tr:=0J (1-0) (r=14) (7=1)
Nuclei| 4| 2, Ay By Ay A ° A 5

4] .7649 .1622 -.1398 -.0319 .4737 -.0868 .2943 -,0505
" 3] .2679 -.8443 -.0399 .1353| -.2672 .0464 .5566 -.0901
C 2/-.1075 .1506 .1298 -.0808 .0199 .0079 -.1364 .1107
1{-.0068 -.2013 .0589 .1512( -.0883 .1059 .0553 -.0223
4] .5756 -.3667 -.1198 .0702 .1065 ~.0247 .4714 -.0948
3] .3033 .5576 -.0731 -.1192 4297 -.0962 -.1249 .0237
IbO 2|-.0235 .0631 .0945 -.0849 .0137 -.0012 -.0439 .0904
1| .0243 -.0087 .0698 .0964 .0099 .,0831 .0119 -.0046
4] .3772 -.3198 -.0923 ,0752 .0359 -.0104 .3476 -.0835
28 3] .2801 .3557 -.0803 -.0942 .3172 -.0871 -.0449 .0095
Sip 2| .0247 .0103 .0674 -.0660 .0083 -.0024 .0080 .0671
1y .0582 .0491 0511 .0656 .0548 .0582 .0061 -.0016
4| .3907 -.3306 -.0843 .0679 .0434 -.0112 .3587 -.0757
3] .2986 .3760 -.0748 -.0850 .3358 -.0795 -.0514 .0087
5 | 2[-.0297 .0683 .0813 -.0705| .0167 -.0015 ~.0503 ,0771
1] .0030 -.0300 .0575 .0864|( ~.0113 .0721 .0136 -.0058
4! .3054 -.2776 -.0803 .0708 .0214 -.0071 .2907 -.0753
Yo 3| .2516 .2915 -,0805 -.0849 .2713 -.0825 -.0281 .0055
cal 2] .0274 .0144 .0597 -.0624 .0114 -,0034 ,0063 .0614
1] .0626 .0564 .0442 .0S570 .0607 .0504 .0056 -~.0015
* 4| .1805 -.3286 -.0504 .0961 || -.0502 .0177 .2338 -.0668
49 3] .2684 .1786 -.0862 ~-.0688 .2287 -.0779 .1046 -.0311
Ca| 2(-.0108 -.0663 .0423 ~-.0595|(| ~.0084 .0006 .0296 .0504
1| .0811 .0692 .0512 .0263 .0805 .0401 .0098 .0104
4| .2382 -.2157 -.0750 .0657 .0165 -.0066 .2264 -.0701
o 3] .1856 .2224 -.0740 -.0787 .2040 -,0764 -.0236 .0057
Ni] 2/ .0585 -.0197 .0417 -.0498 .0069 -.0032 .0392 .0459
1| .0904 .0896 .0293 .0368 .0909 .0328 .0038 -.0004
4 .1605 -.2012 ~.0561 .0677 {{-.0139 .0062 .1754 -.0603
%0 3] .1571 .1648 -.0696 -.0687 .1599 -,0690 .0374 -.0143
Zr| 2| .0340 -.0415 .0361 ~.0457 || -.0029 -.0006 .0387 .0377
1{ .0930 .0849 .0261 .0216 .0894 .0241 .0100 .0048
4| .0519 -.1387 -.0217 .0761 {|-.0108 .0058 ,1026 -.0466
we 3] .1268 -.0032 -.0520 -.0345 .0917 -.0548 .0338 .0182
Pbl 2]-.0299 -.,0943 .0456 -.0260 |[-.0007 -.0001 .0452 .0221
1| .0868 .0762 .0143 .0713 .0862 ,0097 .0218 .0010

N . L 4 A 4 " 4«
The amplitude coeffitients A =A, +A1 and B = A3 +AV '

10

T = -

—F

defined by the amplitudes A f , eg. (12) calculated in SFP
approximation, are also given in tables 3 and 4.

In the same manner the isovector [18] transition densities
Pjhdj(r) follow from eqs. (11) and (13) by substituting A? =~A?
for i=2,4 and «=1,2,3,4 in eq. (12).

The realistic behaviour of the presented transition densities
can be seen from the following points observed comparing our
numerical results with the experimental data and other
theoretical estimates:

1) The calculated ISMR excitation energies (xw,, table 2., SkM*)
are in an excellent agreement with the experimental peak energy
data [1]. At the same time, the TSMR and IVMR excitation energies
(iw, and fiw,, table 2., SIII) reproducc the corresponding RPA
results [5].

2) Both quEW and Q¢(h4} for ISMR and IVMR are rather close to
the densities obtained within the RPA method [4]. 1In particular,
the ISMR densities, eg. (13), almost exactly reproduce the
results obtained in the GCM calculations [7] for light nuclei,
while for heavy nuclei this transition density is near to the
usually used Tassie transition density, eqg. (1) and to the
scaling-type (T=0) density [19] obtained by means of the so-
called Extended Thomas-Fermi method (ETF) [20].

3) Our calculations show that ISMR and IVMR exhausts almost

completely the isoscalar and isovector EWSR [5] respectively.

IV. Summary

In conclusion, it is evident that using egs. (3), (13) and the
values of the transition density coeffitients R°, b’ (table 1)

* " . (T=0)
and A", B (tables 3 or 4) one can easily apply .Fd to a

number of particular problems dealing with the exitation of ISMR

11



(#=1) or IVMR (#=2). 1In more precise numerical calculations one
‘can also apply the transition densities from egs. (3), (11) with

. o o
the corresponding values of R;,R‘,b;,b (table 1) and A}

P P
and 4 ). In the latter case a small contribution of

(tables 3
isovector (isoscalar) component appears in the TISMR (IVMR)
reproduced by &A=1 (4=2).

Moreover, the tables 1 , 3 , and 4 allow the isoscalar
(isovector) antiscaling type vibrations, the mode & =3 (d=4) to
be investigated using the egs. (3) and (11) or (13). In this
respect it is very inter@sting to answer the guestion: what kind
of evidences can be found out within the available experimental
data about the actual «clarification of these highly-excited
antiscaling-type monopole states.

In the case of another nuclei and Skyrme-type forces one can
obtain the necessary transition density coeffitients using the
method discussed in section 2.

Finally, we hope that the suggested in the present work
transition densities obtained on the base of an effective NN-
interaction in nuclei will prove to be a useful tool in the
deseription of giant monopole isoscalar and isovector monopole

experimental data.

References
1. Bertrand F.E., Nucl. Phys., 1981, A345, p. 129,
Buenerd M., J. de Phys., 1984, 45, p. C4-115.
2. Bowman J.D. et al., Phys. Rev. Lett., 1983, 50, p. 1195.
Erell A. et al., Phys. Rev. Lett., 1984, 52, p. 2134.
3. Speth J., van der Woude A., Rep. Progr. Phys., i981, 44, p.719
4. Blaisot J.P., Phys. Rep., 1980, 65, p. 171.

5.‘Goeke K.,Castel B.,Reinhard P.G.,Nucl.Phys.,1980,A339,p.377.

12 -

- g~

-

10.

11.
12.

13.
14.

15.

16.
17.
18.
19.

20.

Flocard H., Vautherin D., Nucl. Phys., 1976, A264, p. 197.
Petkov I. Zh., Stoitsov M. V., JINR P4-85-785, Dubna, 1985.
Banarger M., Veneroni M., Ann. Phys., 1975, 114, p.123,
Engel Y.M., et al., Nucl. Phys., 1975, A249, p. 215.

Tassie L.J., Aust. J. Phys., 1956, 9, p. 407.

Morsch H.P., Decowski P., Phys. Lett., 1979, 82B, p. 1.
Morsch H.P. et al., Phys. Rev., 1980, C22, p. 489,

Morsch H.P. et al., Phys. Rev., 1983, C28, p. 1947.

Petkov I. Zh., Stoitsov M.V., Preprint ICTP, I1C/85/45,
Trieste, 1985.

Bartel J. et al., Nucl. Phys., 1982, A386, p. 79.

Beiner M. et al., Nucl. Phys., 1975, A238, p. 29.

Petkov I.Zh., Stoitsov M.V., Theor. and Math. Phys., 1983,

55, p. 584.

Petkov I.Zh., Stoitsov M.V., Sov. J. Nucl. Phys.,1983,37p.692

Luk'janov V.K., Pol Yu.S., Sov. J. Part. Nucl., 1975,5,p.385.
Auerbach N., Klein A, Nucl. Phys., 1983, A395, p. 47.
Brack M., Stocker W., Nulc. Phys., 1983, A406, p. 413.

Brack M., Guet C., Hakansson H.-B., Phys. Rep.,1985,123,p.275

. Received by Publishing Department
on October 3, 1986.

13



HOumurpora C.C., Merkos H. XK., Cronuos M.B. E4-86-658

[MepexoiHbIe MIOTHOCTH M'MIAHTCKHUX MOHOIMOJBHBIX PE30HAHCOB
B PaMKaXx JIOKallbHO-MacliTabHOro BapuaHTa anuabaTuyecKoro
B3X® merona

B paMkax JOKajbHO-IUTOTHOCTHOW BepCHH agvabaTHuecKoro Bpems-
3aBucAllero Merona Xaptpu-Poxa ¢ cunamu Cxupma SM* y SIII  pus
pAla YeTHO-UETHBIX AIep paCCUMTAHbl MepexXOXHbIE TUIOTHOCTH, COOTBET-
CTBYWIUME ANEPHOMY I'MFAaHTCKOMY MOHOIONBHOMY pe3oHaHcy. B pabo-
Te HU3J10%EeH MOAXO0MA, B KOTOPOM IOJIy4eHO KOHKpETHOe BBIPAKEHUE U pac-
CUMTaHb! HeobXomMMBble K03 bHUHEHTEI TepeXoaHkIX IoTHocTed, [Tocnen:
HHe€ MOJIyYeHbl B NpocTod opMe ¥ MOTYT GLITE HCIIONb3OBaHbI, HATIPUMER,
IUIA aHANN3a OaHHBIX 10 HeyNpyromy fOepHOMY pacCesHHIO YaCTHI MeTo-
MOM MCK@KEeHHBIX BOJIH, YTO JA€T BO3MOXKHOCTb MPOBEPATh TEOPETHYECKY
HMHTEeprpeTauuio T’MraHTCKHUX MOHOMNOJMBHBIX PEe3OHAHCOB.

PaboTa BhInosiHeHa B Jlaboparopum Teopernueckoit dusuxu OUAU.
Coobuienne OGbenvHeHHoro HHCTHTYTa ANEpHLIX HccnenoBaHHit. [lyGHa 1986

Dimitrova S.S., Petkov I.Zh., Stoitsov M.V. ' E4-86-658

Giant Monopole Transition Densities within the
Local-Scale ATDHF Approach

We propose transition densities for even-even nuclei corresponding
to nuclear giant monopole resonances obtained within a local-scale ATDHF
approach in terms of effective Skyrme-type forces SkM* and SIII. The
approach, the particular form and all necessary coefficients of these transi-
tion densities are reported. They are of a simple analytical form and may
be directly used for example in DWBA analyses of inelastic scattering experi-
ments and in such a way allowing a crucial test of the theorestical inter-
pretation of giant monopole resonances.

The investigation has been performed at the Laboratory of Theore-
tical Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1986




