
r
 
30 Kon. 

PeAal<TOp 3 •B. MBamxeaax • Mal<eT H.A.KHceneBoH. 

nOAnHcaHO 8 ne'48Tb 10.09.86. 
~OPM~T 60x90/16. O~céTHa~ ne~aTb. Y~.-MaA.nMcTo. 2,01. 

THpallC 425. 3al<83 38139. 

H3ÀaTenbcKH~ 9TAen 06~eAHHeHHoro HHCTHTYTa RAepHWX HccneAb8áHHM.
 
Ay6Ha MoCKOBCKoM 06naCTH.
 

od1l8AMH8HHIaII 
IHCTMTfT 
RA8pHbll 

MCCI8AOB8HMI 
AJdHa 

E4·86·584 

E.E.Entralgo, V.V.Kuryshkin• , 
;Yu.I.Zaparovanny· 

HAMILTONIAN THEORIES' 

:QUANTIZATION BASED 

'ON A PROBABILITY OPERATOR 

Submltted to "Quantum Mechanics Versus Local
 
Roallsm - Elnstein, Podolsky, and Rosen Paradox",
 
PLENUM Book
 

• Peop1as' Fr Iendsh Ip Un Ivers i ty, Moscow 

,
 

1986 



..! 

~ 

, 
~ f 

1. Introduction 

More than 60 years of quantum theory existence are full of 
unusual paradoxical situations. The argQ~ents on the most principIe 

questions of quantum theory, ~tarting from the birth of quantum 
mechanics, are still under studies. 

Among the discussed aspects of the generally accepted quantum 
mechanics the so-called "incompleteness of ••• u occupies one,of the 
most important places. One ought to distinguish at least three types 

of the "incompleteness": 

A. The incompleteness of the quantum-mechanical description 
represents the statement that quantum mechanics does not give a 
complete description of physical rea~ity. The most el~gant attempt 
to prove this statement is based on the paradox which follows from 

the Einste~n-Podolsky-Rosengedankenexperiment [1]. It is important 
to underline that the Einstein-Podolsky-Rosen paradox arises from 
the questions like whether the physical variables reflect any simul­
taneously existing physical realities, whether their values exist 
before a measuring. 50 years of arguments and deep studies of these 
problems havenot yet led to any aefinitive answer (see,for example 
[2 -5]). 

B. The incompletenesB of the probability interpretation 
consists in the fact that quantum rnechanics, despite of its obvious 
and generally acknowledged statistical character, is not a theory of 
the consistent probability nature[6-14].It does not make use of joint 

probability distributions for physical variables, for example for 
coordinate and rnornentum, it defin~s no conditional probabilities. 
The numerous at t empt s (see, for example [15-23] ) to introduce j oint 

coordinate-rnornentum probability distributions F" ('!:>pJi ) (quantum 
distribution functions) for quantum states ~ showed [13,24,25 J 
that this programme cannot be applied to the generally accepted 
quantum mechanics.• 

c. The incompleteness of the rnathematical forrnalism means the 

absence of an univocal and generally accepted l~ (correspondence 
rule) according to which the quantum operator A (t) is set for the 
claseical function A ('1,p,~.) • The problem of the correspondence 
rule which is considered to be one of the major processes of quanti­
zation arose simultaniously with the quantUIT~ mechanics birth [26-29] 
and is still under investigation [30-33]. 

The number of the articles on the above-mentioned problems is 
now enormous. Nevertheless the current of the investigations does 

IIvllilie\iHwtl IHtmyt \ 
I IIMWX IIC~~:1DB:tUII 

~SJt~ll... EKA- ~ 



not ~ecrease. One has to notice that a considerable part of the 
investigators aumit the necessity of some theory which would turn 

to ue more general (more complete) than the existing quantum 

mechanics. What is needed is not a n~wreinterpretation or a reformu­
lation of the generally accepted quantum theory but a construction 
of some generalized theory free from the paradoxes and logical 
problems of the orthodox quantum mechanics. 

In the present paper we are going to consider and to di~cuss 

one method of such generalization which eliminates the "incomplete­
ness B". This method is based on the classical theory's quantization 
leauing to a correspondent quantum theory in which any quantum state 

~(i) is connected with a normalized non-negative coorninate­
momentum-time function 1="1' ('J..f>.. r ) treated as the joint coordinate-
momentum probability density. 

We shall uemopstrate that the elimination of the "incomplete­

ness B" gives a serious limitation to the arbitrariness for the cor­
respondence rule of the "incompleteness C" and eliminates alI the 
problems connected to the "incompleteness Ali. 

2. General approach to the problem 

It is possible to eliminat'e the "incompleteness of the probabi­
lity interpretation" by an appropriate modification of the generally 
accepted quantum theory based on different grounds. But the results 
of the last years investigations [J4-J6] have ahowed that such 
modification can be always formulated with the help of a probability 

ope~ator introduced into the procedure of the classical theory's 
quantization. 

We understand the procedure of quantization as the transition 
from the known classical theory(C-theory) to the correspondent 

quantum theory (Q-theoryJ. While studing this procedure we shall be 
based on the following grounds. 

C-theory: 

1(C). The state of a physical system in the moment i is given 
by a vector X ('é) = (C!(r)j j>(t-)), in the phase-space R~p 
of the coordinates '1 = (9"'" '<tN) and momenta f' = C?1"" '~p/tl) 

values. 

2(C). Any physical variable A characterizing the physical 

system in the moment t is given by a coordinate-momentum-time 

funetion A{f/,p,-I:) 

3(C). The expectation value < A> of a physical variable 

fiI 

2 

in the state )( is determined by its function, i.e. 

-<A>x = A(qJp,i) (1 a)
('!,pJ = X 

4(C). The evolution of the state X(t) in time is determined 
by the equations of Hamilton: 

di; q(i:) ­ dp H ('1,p)-I:) l (q,p) = X(t-) (1b ) 

di: pCI:) ­ - d" H{q,p,-t) , (q,P) = X(-i) 
] 

where H{f/>p,t) -function corresponding to the hamiltonian of 
the syetem. 

Q-theory: 

1 (Q). The state of a physical system at the moment t is deter­
mined by a vector v«: of a complex space cf wi th some scalar 
produet (. / • ) • 

2(Q). To every physieal variable A , whieh eharaeterizes the 
physieal system at the moment' ~ , there eorresponds n self-adjoint 

operator A "" (-1:) ,whieh belongs to an a Lgebr-a .fi- of J,inear ope r-at or-e 
defined in the spaee r:f, • 

J (Q). The expeetation value <: A > of a physical variaLJle A 
in the state Ijí is determined by the formula: 

<A >'0/ = (Y/Ârt:HfJ / (rf/ljfJ· (2a) 

4(Q). The evolution of the state )&(i) in time is 
determined by the equation of Schrouinger 

«». 1j?(t:) = H/t-J 7f(t) , (2b) 

where H(t) "= H~(t:) 18 the operator whieh eorresponds 
to the hamiltonian of the considered system. 

Providing the eomparisonaf the requirements 1-4 of the 
C-theory with the eorresponding requirements of the Q-theory we ean 
see that for eonstruetin8 a Q-theory, if we know a C-theory, it is 
neeessary to solve two problems : 

Problem 1. To choose a spaee ci.. of quantum states 'Y .md to 
fix an algeLra .1J.- of linear in c!... ope 'rltors. 

Proulem 2. To point out the refleetion (the eorrespondenee) 
A 

Até) O(A{9JP,t») E d1- ()) 

whieh would allow to set the operators of all physieal variallles 
eharaeterizing the system whieh are under eonsideration. 

It is quite clear that problems 1 un0 2 are interdependent 
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ana the search of their solutions can be provided by a~fferent
 

methods.
 

It also should be noted that when the problem 1 Ls-. in some way 
solved the solution of the problem 2 can be formulated as some 

correspondence table, including only fi and the set of phyaical 
variables {A j t!"JLf' which values can be measurecJ.. 
experimentally.
 

In the present article we confine ourselves by the procedure
 
of quantization, based on the following demanda, claimed to the
 
correspondence rule (3):
 

Demand 1. The reflection 0(.... ) pe rmí.t s .an analytlcal formula­
tion, which has sense for a wide enough multitude qf functions 

.1\1 = i A (q.p;t:) J z» -( A(r~f.-t)Je"'p = M eítr
 
and is linear one, i.e.:
 

(4a)O{!) =:: 1) O(d.A(9'f/~») =- J O(Ar9,p,i)) ;) 

O(AfÚl,Ai) + A;l(tllJ,-t) ) = O(A1ft"p.t i) + Of,IJi!(q,p.·iJ). (4b)
 

Here 1 is the uni t operator in cl.., ~ ia. a complex number ,
 

Demand 2. The reflection C/(... ) i~ such, that in the obtatned 
Q-theory for any lt 6 ~ there exista the coordinate-momentum 
distribution F"y (r./" t:) , which might be treated as the phaae­
space pr-obabí.Lí ty density, 1.e.: 

(5a)5.y,r9~p~i)~1 = 1J ~ (9~jJ.~) ~ O, 

• <A>y = SA (r..p.-I:) ~[9,pJi)oI'l~ . (5b) 

Here and in what follows the integration is performed over the whole 
classical apace R rI' • 

Thus we are going to consider only such procedures of quanti- . 
zation which lead to Q-theories with the correspondence 1Jr~ Flf ~ o. 

It should be noted, that the only demand of linearity (4) leads 

to the quaritization with the quaziprobabili ty operator 1rtf'ft~) --clt 
in the terms of which one can write alI the known unique correspon­

.dence rulea. The normalized quazidiatribution ctt; = ('ljr/3vr)/(yrJ#) 
for which (5b) ia fulfiled automaticaly, appears in Q-theory in such 
case (for more details see, for example [36,37] ) •. 

3. Coordinate-momentum probability operator 

Aa it ia shown in the workà [35,36] the only method of quanti ­

~# 
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zation which leads to à quantum theory with the consistent probabi­
listic interpretation is the method, based on the following cor­
respondence rule: 

-\ 

A(t) 0F (A(9JP;t:J) = 
= jAcq.p,7!) F(9'P;,-t:)e!q1:J €i: 8f p (6a) 
A 

where operator ~ has the properties 

SFr9,jJ.-6)dtj? = 1 é fi) ) (f/F(r.p)-l) ljf) ~ D:J (6b) 

for any Cf, P 6 R<jfJ and any 7/f"",tS::. cf:.., • 
The sufficiency of the operator ~ existence follows from the 

next reasoning. Constructing quantum operators due to rule (6) we 
can see that correctness of relations (4) is obvious. Having 
determined the values (2a) of operatora (6a) in any state )Vê oe , 
we obtain (5b), where 

/Çp (r~p~~) = (P / ftfq,p;Í;)7jJ) / (y/l/f) . (7) 
Pinally from the properties (6b) of the operator' fi- follow the 
properties (5a) of joint coordinate-momentt~ probalJility density(7). 

In order to prove the neceasi ty of the operator P{CjJf, i) 
existence let ua consider the characteristic function of distribution 
~Y" which exista according to the demand 2: . 

F(u,lJ,t) = (2JT)-~N SF~ {'1,p~é)e-I.{U9+~?)d9~ 
Using the relation (Sa) and reflection (3) let us rewrite it in the 
form: 

'"'­ < (2JT f 2;"/e - í (V9+ lYfJ > 1.}J ­F(u,lJ;t:) 

- (i / O{(2Jlf2N'e-i(~9"lJf))p) /r'1jJ/l/fJ" 
Reproducing the starting distribution jrom ~ we have: 

F}/' (J~p, t-) = (i / Sd~j1T e i{~j+~p) O((j1Tf2N'e-i(~'1~Vf))p)/flf/tJ. 
Taking into consideration the properties (4) of representation 
0(... ) we finally obtain (7), where. 

F(J'f~ i) = O(S{J-'f}.a(p-'p)) E: :ff . (8) 

The representation (3) now may be written as 

Â{t) = O (A('1,p.t)) = o(5Af}.p.-I:) 3(j-'1) srr-,P)!r!;), 
from which,making use of linearity (4),we receive the rule (6a) 
with the operator (8). Finally,the properties (6b) of operator (8) 
follow from the relation (7) and conditions (Sa) of the demand 2 , 
and this proves the statement. 

Let us point out, that according to th~ relation (7) the values 
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'" of F understood in the sence of quanturn values (2a), in any '1jfE:. d:. 
coincide for the whole space A?~r with the values of the joint 
coordinate-momentu~probability density ~ ,i.e.,from the point of 
view of Q-theory ;:: is the probability operator. As this takes place 
from (8) and (6) the probability operator ;= himself corresponds 
to the â -function in the classical phase-space. 

4. PrincipIes of the probability operator constructing 

In accordance with the statement of the previous paragraph, any 
linear procedure of quantization, which leads to a Q-theory with a 

correspondence ?f - Fy{q,p, é) ~ O, maY",be uniquely defined by a 
coordinate-momentum probability operator F(9,,P,t). 

The probability operator fixes correspondence (6a) between 
ob ject s A(9'P,t) and Â(t), which describe the sarne ph'ysical 
variable A in C- and Q-theories ao c or'd t.ng Iy . 

"" However for establishing the evident form of operator F 
(in a given algebra) the properties (6b) of normalization and non­
negat1vity are not enough. So there appears a task to reduce the 
arbi trariness of F by some demands on the correspondence (6a) in 
addition to the properties (6b). 

For this purp08e~following the article t37],one may consider 
the evolution of physical variable ·values with time. In C-theory, 
because of the relation (1), 

dt<A'>x = (dtA(q,p,i) + {H(9'P,i), Aú7'P1t)} ) l(q.j'J-X ~(9) 
where {.). J is the classical Poisson brac ke t s , In Q-theory due 
to .the relations (2), 

Jt<A>y = (1p/ (dt;Â{f) + i [H{/:),Â(tJJ_)ljJ)/(1jJ/,p), (10) 

where C' , • .J _ is a c ommut at or , On comparing C-relations (1a) 
and (9) with the corresponding Q-relations (2a) and (10) it is quite 
logically assumed that the reflection (3) should be extended on the 
objects"which determine the evolution of the physical variables 
values with time, i.e. 

o (dtA (q.p,i) + t HÚ/'P,i), A(q.p.i)]) = 
= d~Â{t-) + iA4'[H{i), Â{oJ_. (11) 

The equations (11) represent the dynarnical correspondence of the
 
quantization procedure (in addition to the statistical correspon­

dence, represented by equations (6) ).
 
--..-At th~ constructing of a Q-theory with a correspondencc yr... F.r~O
 
the possi.bility to write down the reflection O) in the forro (6a)
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br.ings about the set of conditions, claimed to the probaLility 
operator: 

0,= o( {HÚ/'P.t), A(q,p,iJ]) - SAtq'f't.)· 7{ F(q/J,i)clroft 

= i~ -t [ DF (H('1Jp,i )) , OF (Arq,p,i)) J _ (12a) 

for a Ll, A 5 HV/AJ(lXf , where 0,,;("') is the reflection (6). 

The conditions (12a) demand in particular a specific correlation 
of the H and fi- evolutions with time. Thus,it follows from (6a) 
and (12a) for A -= H 

S H(q'f,i:)';)i P-(q,pJ t ) drofo =< O , ( 12b) 

dI: H(i) -= Sd-lH(,/,p,"i). F{9,P,-tJd9c1P 
and I)t: H(I:-) = O ,if 'dé H{9.P,"t) = O. 

It is a l.ao notable that if for some A ~ .[A J~1<f 

.s A(if)~ t ) "di- F (9.P/~) <lrO? = O , (13a) 

then the correspondent condition (12a) means the correspondence 
between c- and Q- Poisson brackets for A and H. Such cor­
respondence might ~e generalized for vari ables A and 8 by the 
conditions to the probability operator 

OF (i A(q,pl i ) , 8{'1'f~t)] ) 

= i~-f [O,; (A ('!./"i» , Op(8{tjJp
J
-t»)] _ (13b) 

wi th any pair A ) 8 ~ 1. A 1 f!..')<{J' b ot h satisfying the 
requirement (13a). The set of equations (13) represents the 
canonical correspondence, which is extensivly used in the modern 
procedures of quantization (canonical quantization). It should be 
underlined,that the principIe of canonical correspondence may be 
apparently fulfiled only for quantizations of C-theories invariant 
with respect to timetranslation and only with noncommutative 
alge bras :P • 

5. Quantization procedure based on a probability operator 

According to the resul ts .of the previons paragraphs the 
procedure of transition from a C-theory to a Q-theory with the cor­

respondence ~ ~ ~~ ~ CJ can be formulated in the following 
way. 

Let a )the c Lae aí.caI functions H{'1'p, i) and {A{q.pJ-I:) J e~f ' 
which describe the hamiltonian and the set of experimentally 
measured physical variables be known, and let b) .some complex 
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vector space c:l.. and algebra df of linear in it operators be choaen , 

Then operators H(-6) and { Â ('I:) 3- e.?'l~ of the 
Q-theory with the state-space dt are defined by the correspondence 

rule: 

Â =O;(A('1l~/))=SA(1'f:.tIP{,!,p)i.)drf e: dI-, (14) 

where A c=: H (/ "A j e'>'F' F{q,p,'i) c5:: df is a non­
negative in cl operator of the coordinate-momentum probability 

density, i.e., 

F-{q~pJ-t) = +- J:(CfJP,t) 5n('1,p,-t) (15). 

Jh(qJp;t-) 6"..1l- ,n is some collective index of summation. 
Operator F satisfies the normalization condition 

j !fq,p,f:) d91:J = 1 e: di (16) 

and the system of the integral equations 

S{f/(q,p/:J, A(qJp;i:)J·F('1Jp,i:)d'r'l~ - SA{q,p,t). dt: Pf9,f.i }e11 = 

::oi ;'f' SH{q,p,-f;)'Af}",i)' [F(CN~Ji), F{J~'l,t)J _Jí / f J1dp ) (17) 

which follow from (12a) and represent the dynamical correspondence. 
Therefore to fulfil the procedure of quantization based on the 

rule (14) with a probability operator it is necessary,on the first 
hanJ,to solve the system of equations (17) with .respect to the 
operator ~ , having the structure (15), satisfying the normaliza­
tion (16) and conserving the mathematical sense of the integrals(14). 

In this case three different cases may occur: 

.1. The problem has no solution. It means that the C-theory 
under consideration cannot be quantizated with any probability 
operator within the chosen algebra ~(analogue to the Pauli theorem 

in quantum field theory). 

2. The problem has a. unique solution,i.e. the C-theory is
 

quantizated and the sought for Q-theory is constructed.
 

3. The problem has a set of solutions. In this case it can be
 

attempted to narrow ~he set of solutions either with the system of
 

the addit~onal to (17) equations ~
 

SAf'l,p/fJ·)t F(q,p, t ) oIrtip = O , (18a) 

S i Aú"p,-t), 8{qJp, t) J. F{1,P,i:J eJro? 
= i~-1 SA{q,j>.-6) •.Bq",t) . [Frr,p,iJ, F(j~?iJ]_dtlp)ff,( 18b) 
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with A,.8 E {A J e",? s following from (13 a, b ) and 
representing the canonical correspondence, or by broading the set 

t A J e.1)f"f in (17) and at the s ame time in (18) up to a certain 
multitude I A J ;::::> (AJ ~?tf' • 

In conclusion we will note that the quantization procedure 
with a probability operator 

a) always conserves alI the dynarnic invariants of the initial 
C-theory in the set of dynarnic invariants of the constructed Q-theory 
and 

b) profoundly depends on the harniltonian of the quantizated 
system, i.e. even within the sarne algebra ~ it may appear to be 
different for two diffe~ent physical systems being described in one 
and the sarne C-theory. 

6. Probability operator in commutative algebras 

If the problem (14)-(17) has a certain solution F{q~p~ i) 
in a cornrnutative algebra dl-c than it cannot satisfy the system of 

equations (18). In fact,for A = ri and 13 = pl< the 
relation (18b) due to the general cornrnutativity contradicts the 
normalization (16). So, while quantizating with a probability 
operator within a commutative algebra the canonical correspondence 
cannot take place. 

Broadening the set -l A ('!,p,t)] ey.p up to the multitude 
of analytical in }?9P functions,from (11),after integrating by 
parts and táking into consideration the arbitrariness of A{9~fJt) 

and commutativi ty of !f}c' we find: 

di F(9;?J i ) + {H('1,p,.t), f (,!~?Ji:) 1 = O. (19) 

Introducing now the distribution F y (,/,pl-t) = < F(9,PJi ) >'1/7 
for its derivative with respect to t we will find,taking into 
consideration the evolution equations'(2b) and (19)~the classical 
Liouville equation 

dt- Fyr (9J?,-t) + {f/{t/~fl:):I ~ (fI,?Ji ) J = o. (20) 

Thus,the quanti~ation of a C-theory based on a pr9bability operator 
in a commutative algebra brings us to a Q-theory which coincides 

with the classical statistical theory. 
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7. Coordinate-momentum probability operator in the Bose algebras 

The permutation relations) 

l Xj ) YK ] _ =: - i ~'K 1, l ~ )X~ ] _ ~ [ ~. \ y~ ] _= O ~ (21) 

for the self-conjugate generators X,. (X~), .. ,XN) and y = cv.:..)YN ) 

of the Bose al~ebra ~6{)V) allow'us to write down the operators

F and in from (15) in some arranged form, for example: 

-" (' iúx+?y)
F(r.p/:) = 0 F(9,?>1", t),e. /.t1 € dtg(/V) J) (22a) 

i\ 

JI1 {1'P,-l ) = S-dn (q.P,J,?, -f: ) · e l'[lX+!Y)!J!, e Jla{NJ. 
(22b) 

Here .!, P é R N 
; J x and ? Y are scalar products. 

Putting (22) in (15) and (16) and using the Weyl identity 

-I!/xf (A +8) = eX? ( ; Le,AJ_). e"f(A)' e"p(8), 

we obtain 

. ~ S1- .j-{i!~l!) 
F(r,{JJ1,f, i) == 7 5(/'1>~j~?;-t), j,/Cf>P>j+l:?~?: i). e, ~t'l{(23) 
with the normalization requirement 

SF{'!>?,j,?,-t) Jr/rJ ::::a alj)S{?) .. , (24) 

Nonnegativety of the operator (22a) was investigated [35-37J 
in a concrete representation of the algebra 0G (K) and the space cle
connected with it: 

'>/1(r) (à J 7: =(7:,.,../ r"",) é" R K X. = - ~dz;.) y. -= z:.•
í' .J) d d J d 

It was shown that any nonnegative operator J2- (9'P;t:) can be 

g í.ve n- by a set of functions .;UH(1~P.j,~). A ,comparison of 
the rep~esentation t 35-37] and the representation (22a) gives: 

F~'PM,t) ~(2Jfte-tj?Z;~ f'~('1'M:i!:!,:(q'IW!~t).ê;Ú <1' J (25) 

J.c'l,p,j,,, i) :< f?;r-{e--Ú , SUm('1,f,l;t ):J'~"(q,f,n: -é) eiiÍ'~ , > (26 ) 

where n s (m, W), the functions Um and fll< satisfy the 

normalization condition 

~ SIV,,/q'l'lj,-l) \2Jj: = 1 , (27a) 

10 

~ SJlf~('17P»)/:).JU:(r,p~1~i)jrJp = b(í-t~. (27b) 

The set of square integrable functions l/m does not influence 

the results of the quantization: a transitian from the set J n~ ~ 
""/ -"--.LI A 

to a new set ~ 11 = uJ 6 \:ft ,where U is any unitary .in d...n 
operator,does not change the probability operator (15).
 

In order to fulfil a concrete quantization with ~(9~;J~t)
 

e: Sf.-e, (AI) it is necessary to put the probabili ty op_erator 
(22a) into the dynamical (17) and canonicRI (18) equations. It 
brings us to a system of integral equations which must be satisfied 
by some choice af functions .;UH('I.?)}, t:). 

The most interesting(from the point of vew of the generally 
accepted quantum mechanics) quantizatian is such when between pairs 

of classical generators ('9.J' )?i ) ano pairs of ~enerat ors 

(Xl' Yl:) of the Bose algebra exists one-to-one correspondence. 
For example 

q,. ~ ~ ~ p,. ~ X. 1, N ~ 
d d J (28)I J 

in the sense that operator Â u epe nd s on operator' X. (on
d 

operator ~. ) then and only then, if the clRssical functio~ 

A (q,p;i:') depends on the component of momentum ~I (of c oor'd í.nat e 

1; ). 
Rep Lac ernen t X ~ Y in (28) is insignificant because it 

brings about the replacement S ~f in the kernel (22a). 

Putting operator (22a) in (14) and .emanrí ng , s o that ope r-at or-s 
for functions not depending on O, (on o. ) do not depend on

I <I .7, 
operator X· (on operator y. ), we ~et the chain of' relations: 

J d
 

SFJ~. rv $(}.» ~F:jq~ '" 8(0,» SJ..-Jf.,ja~ ""' ~(.f.)~t?I!) •••
 
I d d d ~J di c. ~ ) 

and so on up to the normalization (24). From thjs it follows with 
necessity: 

F(q.p>}, ~ -t-) = ?}Ú~?,t-)· e1lD {-í i ( t~· r ~~~.) 1) (29)
/) I <J =1 d •.F<l 

where 01· and f!. are real c one t an t s , Putting the kernal (29) in 
'li' 

d lrd 
(22a) and further in (18) with -'1 = 9.. , ,6 =?~ aní using 

(16) we get: ofJ"/O· = x , ~ -= -1) IV,<I 1... -= cJ. y. -t q.:J Lv-J 
'" li -~.. ( ~ J d [) d ) and p. -=- ~.)(. + D. tV-} for more det adLs see 9) • 

d .Jd".J ''d 
The last relations allow us to introduce new self-conjugate 

generators (i',A:» j=1JN, having the physical sense of the 
coordinate anu momentum operators,which satisfy the usual permu­

11 



tation relations: 

[q; )ft ] - = i* ~'t 1 l~'79t J_ = [~·~Pt]_ =0. ()Oa) 

Now from (29) and (22a) after a substitution of variables it follows: 

F(q,p,i) =(21,f5
2N SV{j'f,t)· e ~ b(p-p) + ?tq-q)]~7' OOb) 

where f?~? is ~ space isom~rphical to ~p. Finally,writing down 
the nonnegative operator (30b) in the forro (22a) with a kernel like 
(25), we have: 

...i- t' , 
ui. ~1ir-? ~ S lC S1J /
U{J~"iJ = e 7 ~)((,~t}~it+tt)a tlf J 2:"SlfliJl»)~=1. ()Oc) . 

14 

Thus,the quantization of a C-theory on t~e base of a probab~lity 

operator,in the Bose algebras with one-to-one correspondence between 
classical and quantum generators brings us to the Q-theory investi ­
gated in l34,38-47] • 

But in this c~se the set of "subquantum" (38-47] functions {':f" \ 
is related with the functions {'A(q,p,-t)J e?Cp and H{97~~) of 

the tnitial C-theory through the system of the integral equations 
obtained from (30) and the conditions of dynamical (17) and cartonical 
(18) correspondences. 

" 8. Intrinsic moment probability operator in the Fermi algebra 

Let us consider an exampleof quantization of the C-theory of a 
point three-dimensional particle with mass t1I and charge e in a 

~ 

magnetic field 2J( = (;u1 , dia • 'iH?l). The correspondent 
Q-theõry wi~h y ~ F ~ O is then defined by a probability 
operator P(9,p,t) 6' dl-s ( 3 ) . 

Let the particle under consideration has intrinsic mechanical 
~ - -/.s -= (So s , J S.:s) and magnetic M =.,fJtZ. S /2me 

moroents, where 11 is the giromagnetic ratio, while l:Sl =: s. -== (bJ)J. 
In this Case to the classical generators (1~ p) two more 

should ~,e added, for example the" sp~erical angles (} ~nd r of S. 
Accordlngly to the generators CC{, p) of algebra d/e.(5) should 
be also added two generators. 

Let us suppose that the operators of the moments belong to the 
Ferroi algebra Jffp(f) , the two self-conjugate generators s-; and a; 
of which satisfy the perroutation relations: 

.. Lõ:: )6t ] ~ = d Sltl 1 ) It,! := 1~2 • ()1) 

12 

For a simplification we shall consider a stationary quanti ­

zation ')~ F: == O and not the whole probability operator
 

F{f,f, G. r) E dl ( 3 ) x .:JlF(t) but its integral
g 

f(6)) r) = ~ F(r:j!> fi) Cf ) c/rcll~ <6 d/F{f) , (J2) 

de f'Lrrí.ng Â for functions A(s)=A(s,l9,r) ac c or'd í.ng to the correspon­
dence rule 

Â = OF{A{sJJ)er))=SA(s)f)ICf)fr~r)dQ E: dl-F(t). (33) 

The integration here is carried out 'over the whole spatial angle,i.e. 

JSt. = Jinf)d6JJf;, (96:[07Jr] > Lf€ tO,EJ1J. 
To construct the probability operator (32) let us write down
 

the condi tions of ncnnega't t v ã ty and 'norrnal í.zat Lon
 
,. J\ 

"Fra, <f) =~ ~:(8) f) ~n( éJ,f) J SF(&,r) dfl = 1 ) (4) 

and also the condition of dynamical correspondence for the mornent
 
3r and the part of fi depending on the intrinsic moment:
 

O; (ig<>l) (M~)l) = ~ [OF (Sei), DF ((hr~))] - . (J5a) 

Putting in (J5a) the evident forro of ii1, the classical Poí.aaon 
brackets and the reflection (33) we come to the system of equations: 

SLS)(~}F{é9,~). dS2 =; SS. (~S/)- tt{l9,«f), F(c9:~l)]_J.QJQ'. (J5b) 

Permutation relations (31) of the algebra ~F(1) .allow us 
to write down the probability operator in an arranged form, for 
example: 
~ A _ t F - -~F = F;"1 + F;~ ... 12 S; + l ~ G;o; j-J-.r Frf), Cf). (J6a)J" 

In this case from (34) we have: 

_e 2> 2 2
;:; -r~ ~ O) 0 ~. 0 + F; S;;;"d.o. 1) Sfi J.f2 =O. (J6b)1- - ~ ~ =­

Introducing the following desi~nations 

lJ.Jo =SS. F;, dS2. , 'fJ} = çS..!J jJ2 , clt = 1,3, ()6c) 

putting (36a) in (35b) and taking into account arbitrariness of the 
~ 

magnetic field strength ~ we get the syste~ of equations 

~o = O , 17 f t! = 2 ( f~t <S,), - f,J). «fPJ) 06d) 

where (dti-),fjÀf) = (f2.3), (231)(~/2). 

13 



It is naturally tõ Jemand, as in the previous paragraph, one-to-one 
correapondence between the classical and the quantum generators, for 
example in the form: 

51 = S jinf){b~f ~ e-.; ') Sz= gjinB·jjnf ~ e;. . (37) 

The r-epLacement G'"; ~ G""'a in the right-hand sides of (37) is l 
not significant because it is equivalent to the sybstitution F.;;e ~ , 
~ ~-F3 in (36). 

The simplest consequences of the 

~13 = ~2f ::Ir !:f~ ~ = O , 
of equations (36d)% 

1f..Jo -= ~5' ~.z -= O .) ?fi("':JII: 

Using (38),while setting the operator 
with the probability operator defined 

-; ~ = -te; ,S1 S,z ~ 2 ~ 

Relations (39) allow us to go over 

' J 
corr~apondence (37)' ~tz = 
allow us to solve the system 

= fZ2 = -~55 =- .s.e: (38) 
~ 
S 

by 
acêording to the rule (33) 

(36),we get: 

" . I;
S~=-LZcr;ÕZ' (39) 

to new selfconjugate 
generators of ..:J/-F (1), having the physical sense of t he intrinsic 

... ... '" moment component operators ( 5 .. , Sz. and related with them $3:) 

t 53 = - 2 i 5... S a ) a nd sat1sfy:1tlg the permutation relations 

"2 _ ~ AI SJ- , ~f!'] _:::: i~ Si ) Sc:l. - ..I.t. 1 ) (40) 

where (dI!) = (f23)(2S1), (312). 

Thus,the quantization of the C-theory of a particle with an intrin­
sic moment on the bsse of a prabability operator in the lerroi 
algebra ~F(f) with one-to-one correspondence between the clas­
sical and the quantum gen&rators bring us to a Q-theory of a particle 
with ap í,n 1/2.' 

The other concrete properties of the functions ~ (fi, r)in the 
probability operator (36a) have to be determined from ihe .et of 
requirements (36). The eimplest solution of the prublem 1s1 

F(t;,'f) =.lTf;.,. -M: [.11I)B(C~fs;+jinlr~)-itó~~'~G;]J (41) 

where ..s ~ .3t/2. plays the role of an auxiliary ("subquantum") para­ :} 
meter of the quantizat1on. 

9. Nonrelativistical guantum mechanics with a probability 
operator 

Let us consiaer the mathematical formulation of the Q-theory, 
arising as the result of ·the nonrelativistical classjcal mechanics' 
quantization based on a probability operator. 

Following the generally accepted quantum mechanics we shall 
admit: 

a) AlI the quantum operators belong to the Bose algebra d:t8 • 

b) There exists a one-to-one correspondence between the clas­
sical variables «l~?) c: (9" .... qNJ fi J •• , PIV) and the gene­• 

rators o: y) = r XI' o, X-V, Y" ., o, Y,y) of the algebra d/e (N).00 

To simplify the comparison of the considered Q-theory with the 
generally accepted quantum mechanics we shall choose the usual 
coordinate representation of the state space ~ and of the genera­
tors ex, r) " i.e. % 

i = F(a:] € J. , ~ =-id~, ~ = ~" ti=- "IN. (42a) 

where .x e R-x ,which is a space isomorphical to Rq • 
Then, in accordance with the results of the previoua paragraphs, 

we have to write the coordinate-momentum probability operator as 
follow8: i 

A - 2N r TL7{:r-r)-Stp+i*~)1 
F(f,P,t) :I' (;2J1t) j 21f},fI, i). e "1_ (42b) 

The .\cernel Z/(j,?"~) here Ls defined (see C30 c» Ly a set of 

auxiliary functions t » (~I-6J 1 ( ! 6. R -' isomorphical to, R9 ) . 
1

The auxiliary functions 8atisfy the normalization requirement 

~ S 'j'It(J.i)' í?dJ = 1:1 (43)
IC 

and the set of integral equations, which follow after the substitu­
t10n of the prob~bility operator (42b) into the requirements of the 
dynamical (17) and canonical' (18) correspondences. 

The prouability operator (42) and the correspondence rule (14), 
determ1ned bl it, can be written down in different equ1valent 
differential and integral forms. In particular, with the help of the 
relationB (30 c) and the Weyl identity one may rewrite the proba­
bil1ty operator (42b) in the regulated differential forro: 

A ~ ..! -N ~ S* -.!}(p.iAv, ) 
F(,/,p,tJ =- l4") ~ 7J~(t"xsl) 1fK'1-xiJe t Jfi~ .(44a) 
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From this one obtains 

... 'J /t' -H 'Ç"" S * +[:x-.x?p
~(97?,t)'t''(:k7r) = (?JT~) L- lf,J9-x;-t)~(ctxl:)eli h1J(1:I.t))2!(44b) 

k	 TI I , 

that reflects the action of the probability operator on a vector
 
''t(~>t) of the quanturn state space cl.
 

fhe correspondence rule (14) with the probability operator
 
(44) defines the quantum operators of alI physical variables: 

Â(,LJ =(2JiÚ#Y;SA{q+x,p/) '1:(9'1;1) 'j'./q,t) e-!j{p+iiv".~#.c45) 
Here, as it was before, A{q,p>t) is the function, representing
 

a physical variable A € H V {A!J e7t'f in the initial C-theory.
 

To finish the formulation of the nonrelativistical quantum 
mechanics with a probability operator we have to note once more 
that here, as in the ~ener811y accepted quantum mechanics, the state 
vector evolution satisfies the equation 

itdi t(~ -1.) = /;(-1;) t(:x~-l:) (46) 

and the value <A> of a physical variable A in a state ~ is 
6iven by the formula 

<A>1f =(7jJIÂ?/f)/(1jJJf J ) (?A/~)= S?j{(~-t)%{;tJi)/r. (47) 

Thus,the mathematical formnlism of the quantum mechanics with 
a proGability operator Jiffers from that of the generally accepted 
quantum mechanics only JY the dependence of the physical variable 

operat~rs (45) from some auxiliary functions i ~K(j.i)J which have 
no anaLogue s ne í t he r in the classical nor in the generally accepted 

quantwn mechanics. Following the works [34-45] we shall call these 
functions and alI the other notions related with them "subquanturn". 

It shoud be noted that with the help of the construction 

l-H/.;' _L}IJ C"V~ 
?f(}J~r) =(;2JTI1) e 1i I z.. 'fI«fJ-t.}<ft«~-t) (48a) 

k 

of the "suuquantum" functions, where 

cv (, ~) .. N/z r --.1:.-j:p
?fI-{ (fJi) = ?Jlh ~ j~tf,-t) e. t r 4 (48b) 

the action of the operators (45) on a vector 7fr(:JcJi) € ~ 

rnay be wri tten in the Lnt egr a I f'o r.nu Lat Lon (equivalent to (45)): 

.. -,y (	 .s. (:X-X)P 1/ I
A(t)1t:xlJ =(29*) j~ÍI?,t) A(:V}Jp+p,i) e, 11 I r{x:#hJri~. (48c) 

'I'he last relations with an arbitrary set of f ~KJ, normalized as (43), 
coincide with the correspondence ru+e of the "quantum mechanics 
with a nonnegative phase-space distribution function" [34] , 
investigated in details in the wor-ks [32-45 J. 

It is necessary to underline, that the "subquantum" f'unc t ona areí 

-.	 not arbi trary in the "quantum mechanics wi th a probability 

operator". They must satisfy not only the normalization (43) but 
the whole complex of requirements, which reflect the dynamical and 

canonical correspcindence between the C- and Q-theories. These 
requirements include the multitude H V i A JeJ'~ and , consequently, 
may be written down only for concrete systams. 

10. The main theoretical consequences 

In this paragraph we shall consider the main features of the 

"quantum mechanicB with a nonnegative phase-space distibution 
function" [32-45] "becauae the formulated above "quantum mechanics 

with a probability operator" is ita particular case. 
Firstly let us note that a change in the number or explicit 

form of tbe "subquantum" functions changes the whole set of the 
operatorB (45) and, consequently, alI the results of the theory. In 
this sense by saying the"quantum mechanics with a nonnegative' 
phase-space distribution function" we understand an infinite 
multutude of theories, each of which corresponda to a fixed set 

1 ~l( (~.-t)} aatistyip.g the normalization (43). 

a) 'Correspondence rule. Quantum-mechanical formalismo A de­

~aiied analyais of the correspondence rule (48) i3 performed in 
[30,32,34-37]. Here we give only ~ta main properties, which are 
independerit on the explicit form and the number of "subquantum" 

functions 1'11< l: the standar-y commutation relation'S for coordinate 
and momentum 

~. (01) Pe (t) AftJ i·{i) =. it ~'l (49a)'I 
self-conjugate operators Â{t) for real A (9,PJ i:) , nonnegat í.ve Â{t) 
for A (9.fJt) ~ O , differential operators 

"i Â(i) = S~i}1t)A,(f+xJi)Jl + SJlp,t)A2 {p- i AVx ) dp (49b) 

for classical functions of the multitude 
'J 
,f Mo ~ { ~(q.p.t)l o z» Af{9. 

t ) + A~(f)i) • (49c) 

\ 
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The functions alo and j30 in (49b), which turn to be very 
irnportant in the considered theory, are the following constructions 
~f the "aunquant um" functions 1~HJ 

~o(fl) = L )~,/sJ)I~. ~c.r,,-i) =;:: )~~tJJ~ (50) 

li: '" '" 
The totality of the quantum oper at or-s H(i) V i A{i)J ~f' 

the evolution equation (46) and the definition of physical variable 
v81ues (47) represent the quantum-mechanical formálism of the 

considered theory. This formalism differs from that of the generally 
accepted quantum mechanics only by the dependence of the quantum 
operators on "subquant um" functions. 

b) St3tistical formalismo Interpretation. The substitution of
 
the quantum operQtors (in the form (45),or (48»into the relations
 
(47) r;i ve s 

-<A>yr = < A>~'= 5A(r'jJ.-i) F"f9,p,t)d,/?:I 
(51a) 

where F is t he quan t urn distribution function, related with the state 
?jJ(x;t) and the "suhqll i1ntum" funct~ons {<f#<fJ.i)J as follows: 

-Al~1 ( W --!.fP /2/
F((;.plJ =(2JTt ) ~ .) fl(((t}'/:) e fi ?fÚ.i")11 / (Y'/1f) ~ 0: (51b) 

It can be easily proved,that the nonnegative distribution (51b) is 
normalized to one and, as it has to be, coincides with the q~antum 

average (47) of the probability operator (44). 

The differentiation of the distribution (51b) with respect to 
t , taking into account the equation (46) and the relation (45) 

be twe eri !1ft) and H(9'f' t) , Le ao a to the integral equat ion 

dt F{q,p~t-) = cf [H(q..~i), f ~:f~/j,t)J] /="r'lJpiJ. ( 52) 

Here cf. LH, /cf.J ] is .a linear integral operator in the s pace of 
real cooruinate-momentum functions, which functionally depends on 
the classical hamiltonian and the "subquantum" functions (fore more 
details see [34,43] ). 

The totality of the classical functions H('1,p..-e) V{A(q.p, OJ e7tf ' 
the evolution equation (52) and the definition of physical variable 
values (5~a) represent the statistical forrnFllism of the theory under 

yconsideration. This forrnalism differs from that of the classic~l 

statistics only by the dependehce of the evolution on the "sub­ / 

quantum" functions. 

, The statistical formalism gives the only possible (23,34-38, 'r43,44] interpretation of the considered theory - the distribution I 

(51b) 1s the joint coordinate-momentum probability density. I 

The correspondent integrations of ~ lead to the probability 

densities of coordinates 

J (9,r) = Sf..(9,P.tJdp = SoJo(1.r)·l1f(9~f.t)(J5 (53a) 

an of momenta 

j(p/:) = Sj:t'l..p.~)J'1 = ~ro(J1,t)·I1J1(p-8t)1?J?, ( 53b) 

where cl and Jo are the "aubquarrt um" constructions (50), "rv" me anso 
the transformation (48b). The expressions (53) show, that in the 
llquantum mechanics with a probability operatorll I1J1Jc? determines 
the correspondent probability density, but in a general case does 

not coincide with it. 

c). "Subguantum" uncertainties of coord1nates and momenta. 
Writting down the coordinate uncertainties <'(~'l')~> for a state 
~ in the statistical formalism with the hélp of the probability 

density (53a) or, that is the sarne, in the quantum-mechanical 

formalism as the values (47) of the operators (45) for /4(9,~t) ~ 

= (z,. _<~.»c! and minirnizing them by varying V€ cf, one c an 

show [34,44J the following restrictions: 

t«AO.)1.>' ~ ~<f' = VS[1. - S1.~ (Jri)J!J'~D(~Jl:)Jl' - (54a)7J (I d d I> >, 
The analogous problem for the momentum uncertainties gives: 

V«~.)~ ~ SfJ' = VS te·- Sq;'/f.i)fJ~u(p.-;;;;. (54b) 

Thus, in the theoryunderconsideration in a general case there 
exist no states with a fixed coordinate, as well, as there exist no 

states with a fixed momentum. 
The Itsubquantum" coordinate uncertainties ~. and the "sub­

quant um" momentum uncertainties ~D. lead L34,44]' to the{<l
generalization of the He1senberg uncertainty relations: 

1;~ 2 a 
< (~f..)~> • «4Pl)~> 

~ 
~ ~ ~'l + (s~.). (dPl) . (55) 

It should be under11ned, that the equality in (54a) (in (54b» 
is attained here only for states with an eigenvector of operator 

(h{iJ (of operator Pi(t) ). 
d) 'Limitiflg cases of the "subquantum" fupctions. ,The uncer­

ta1nty relat10ns (54) ·1nd1cate s uc h 11m1t1ng cases of the 
considered theory, when its coincidence with the generally accepted 
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quantlli~ mechanics is maximum. In fact, to allow the quantum states 
with a fixed coo~dinate and the quantum states with a fixed momentum 
it is necessary and sufficient that the constructions (50), which 

netermine the "subquantum" uncertainties ~. and SPi in 
accordance with (54a) and (54b), would have \he properties: 

oio(},t) = S(j),. for,,'") = ~(?). (56) 

It is important to note that the set l/mltflij of "subquantum" 
func~ions>Which provides the properties (56), i8 not unique. The 
successions of the sets Ilfl< 1 ~ e/m/ ':!lij are given and 
investigated' in t40] • 

If some set tiP{~Hl is chosen, that is the properties (56) 
of the "subquantum" constructions (50) have place, thenz 

1. The "aubquant um" uncertainties S1: and SAJ' are equal to 
zero and the restrictions (54) vanish. d 

2. T~e operators (45) for physical variables of the multitude 
~o (see (49b) and (49c) coincide with those of the gener~lly 

accepted quantum mechanics. 

3. The evolution equation (46) with hamiltonians from ~o takes 

the form of the usual Schrodinger equation. 

4. The relations (53) define the standard interpretation of a 
state vector 1/1. 

5. The restrictions (55) turn to be the usual Heisenberg 
uncertainty relations. 

Thus, the considered the ory wi th any set tim J':IH j of "sub­
quantum" functions coincides with the generally accepted quantum 
mechanics as far as the physical variables of the multitude ~o(49c) 

are concerned. 

e), Limit transitions. Correspondence scheme. Different limiting 
cases of the considered theory have been investigated in [34 - 44J 
The main results are given in the following simplified diagram, 
named here as "correspondence scheme". The scheme contains three 
different levels of theories, separated by the concrete content of 
the relations (54) and (55). 

Level I includes the set of theories, wri tten down in the form 
of quantum-mechanical (QF), or statistical (SF) formalism, each of 
which,is the result of the quantization of the sam& initial C-theory 
with the help of some fixed normalized set of "subquantum" functions 
and has the mentioned apove properties. 

20 

~ ~ Alq,r/J!, Fi!' O 

dt F := c![H,I'!ItÜ ~I. 
<A> = SAFc/~Jp 

{flt~-.e,infrIC3 1~ «:fl/l ~ en+!1l j 

UmSF I ~ IUmQF r-~I_~__~I ~ 
" - t\,J'tJ-lJ J:' I =- I r:'~ {Ajo0~ 

JI. I t7.eF - • :~//> : 

-,'- - I _ ~ 
- I I _ - - L._._

1;~o - - - f 

t.. - - q{i) ~ d,.H 
as I Pltl =-d,H 

:mo I d-/:,.e = [H, F J -tA> = A('1{1),jl(lJ;!:) 

The limit transition 1fjtl ~ t/f')~~I(~' Le ad í ng to a fulfilment 
of (56), separates from I the subset of theories, which form level 
]f • A theory of level JT may be w~itten down ffither in the quantum­
mechanical (limQF), or in the statistical (limSF) formalismo The 
quantum-mechanical formalism of any theory of level JT is close to 
the generally accepted quantum mechanics (QM). This allows to include 
the last into the scheme as the dotted parallelogram, partially cove­

ring the parallelogram limQF. 
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The successive 1imit transition ti ~ o in limSF of any
 

theory of level]I leads to the classical statistics (CS), because
 

the evolution equation (52) transforms tothe classical Liouville
 

equation when l.~,.d ----p e~/:fI(J and -Ji- O t34) • Fimüly, the
 
choice of the probability densi ty in the form F ('1'P, -t) =
 

= S(9-t/(i)), ~rp-p(tJ) (that is possible only in the theory of levelM) 
brings over to the classical mechanics (CM) with the Hamilton 

equations for Cf(t) ano P(t). _ 

Classical theories of levellll can also be obtained from limQF 
uy the meth9ds (dotted lines in the scheme) of the generally 
accepted quantum mechanics. 

f) Uncertaintv problem. In the considered theory, as in any 

theory which deals with probabilities, any value <A> of a physical 

variable A 'rnus t be characterized by some uncertainty < (M ):?> , 

which has the physica~ sense of dispersion, i. e. -« (dAl> is some 
mean value of the square deviation of A from <A>. 

In the "quantum mechanics with a nonnegative phase-space 
d í s t r-í out ã on function" the mathematical image of a variable A is 

the quantum operator Á(t) and, in the same time, the classical 

function ~(9,p,i), related by the probability operator. So, it is 
logical to write down for the quantum-mechanical formalism ­

«L1AJ>(Q) = (tl(Â(-t)--<'A>~)2p) /(1jJ/"ljIJ (57a)
 

and for the statistical formalism ­

< {44Y>(S) = S (A('1,p,t:) - <A>F)2.f-{9,~t)cJrtlp (57b)
 

Problems arise from the fact,that the expressions (57a) and
 
(57b) for some A are not equivalente ~his follows directly from the
 

correspondence rule (14) with a probability operator,for which, in a
 
general case,
 

0F (A(r,~i))- Of{AÚ/.p,i)) ::I 0F (AY~V)'z!)) . (58) 

The une qua'Lâ ty (58) r-epr-eae nt s the main feature of the correspondence 

rules named "non-Ne umann ", Their consequences have been investigated 
in details in the work [32] • 

The choice of definition (57a) gives: the maximal certainty 

of a value « A > (minimal, or equal to zero d í.s pe r-aí.on < (~A tJQ) ) 
is achieved in the states 1J"~ satisfying the e í.genvaLue problem: 

;4{i)P~ = Op. (A(9lJ/ ,J) 7fd. == d.1~ ) d. = r::J.~. 
(59a) 

This reaul t for A '= H La in acc or-dance wi th the sense of the 

stationary otBtoo,defined by the equation (46). But the choice of 

(57a) leadB to a partial deterioration of the "consistent 

probability interpretation" of the theory. 
The choice of (57b) conserves the "consistent probalJility 

interpretation". The states ~cJ of the maximal certainty of a 

value ~~ > in this case satisfy the equation (for more 

details see [32] ): 

{OF(A 2(q,p,i J) - ê<A>F' Op(A(tI.pl))l <jJJ = (59b) 

= {de - (-<A >F)~ 1 -zfJ ., J ~ O. 

But now the dispersion < (..dA)2.>(SJ in the states cfc:J.. in a general 
case i8 not zero (even is not minimal),i.e. the eiCenvalue problem 

and the stationary states ce ase to play a fundamental role. 

It is quite possible, that the consistent resolution of the 

uncertainty problem demands that some new definition of «4A)2;> 

shoud be proposed. This definition may coincide neither with (57a), 
nor with (57b). But in any case such. a llefinition must be closely 

related with the "subquantum" functions, the physical sense of 

which is not yet clarified. 

11. Some concrete applications 

In this work we restrict ourselves by a consideration of the 

simplest physical systems representinc, from the point of view of 

the classical theory, a particle of mas s jU in central potential 
fields. The initial C-theory is then the classical mechanics of H 

point particle in the three-dimentional space (i.e. 9 = ~ =(",I';.~) 

and p:x p = (P."PZ,p.3) with the hamiltoniail 

.L _2 ()Hfr;pJ '=r ? p + V IFI . (60a) 

To the set 'A j eíltf we include the coordinate, the momentum, the 
orbital mechanical moment, the kinetic, the potential and the whole 

energies of the particle, i.e.: 

,2 (--p - r--] ....L-~~ 1/ ){ A{~P/')Je'Xp = ~) p:l L == ,.,,,p ~ T=êf f~ V== Vilf,) E=H • (60b) 

For the quantization based on a probability operator we choose 

the Bose algebra ~a(3) in the concrete representation (42a). Then 

the coordinate-momentum probability operator takes the form (44). 

The~ "aubquantum'' °functions { ~K (y;t) J ,determining the 
probability operator, must satisfy the no.rmalization requirement 
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(43). The probability operator itself must sat.isfy the dynamical 
correspondence equations (17) for any variable (60b) (that gives 12 
integral equations for t ~K J ) and the canonical correspondence 
equations (18) for any pair of v~riable (60b) (that makes 72 
equations for -{ ~K ~ ). Desides, the set l ':fI< j must provide 
the invariance of the constructed Q-theory with respect to time 
translations and to space rotations, because these invariances take 

place for the considered systems. 
After a rather long calculation one may show that alI the 

mentioned above requirements are fulfiled if 

~ 

~~Jj;i) = cj/t:0IJ) = fJ<Uf l ) , ~ SlfI<2(íil)dI = 1. (61) 

In the "nonrelativistical quantum mechanics with the probability 
operator (44)", where the "subquantum" functions are defined as (61), 

the stationary isotropic normalized constructions 

~o{ty,) = X. 1tJJ«ljl) I: po('r') =?-I ~(ir') 1<, (62a) 
I< 

determine, in accordance with (J4), the "subquantum" uncertainties 

of coordinate ana momentum: 

?'J = s- = V; S1'J.(lf,»)r', SIJ = ~p =VfS?!-0fl)il (62b) 

Putting the probability operator (44) with the "subquantum" 
functions (61) into the corresponuence rule (14) we have the follow­
ing quantum operators for the classical functions (60b): 

A 

- -?'r·= ~ ~ P.. = -itV-
',):; ;) t = - i.* t5;"~ V~] ~ (63a) 

A A A = _~ 2 3 o a1-/ = T+v 2j V$" -lo T LOf) + SV(J:r+ll)~6r))d? (63 b ) 

The operators (63) act in the vector space ot of states 1'(-'I) 
( 5!e R-x' isomorphical to R~ ). 

The evolution equation (46) of the "qLl.antum mechanics with a 
probability operator" may LJe reduced, as in the generally accepted 
quantum mechanics, to the eigenvalue probiem of the operator (63b) 

H<j;(,,)(~) = < E ~h) 1fr1l) (2) .> (64 ) 

which defines the stationary st~tes and the correspondent energy 

spectrum., 

a) A free particle. For VÚrl) == O the equation (64) 
defines the set of the stationary states 

</Ie te: = z--~ e -iF~' z: = Çd~ (65a) 

with the energy and the momentum spectrums: 

F~ $ (J"p.t
<E>- =~ + ., -<f>p = F. (65b)p ~.r c:,r 

Hence, a free particIe has here a "subquantum" energy == 3(b,P)Y? ' 
that is achieved when P -= O. 

E o 

b) An harmonic oscillator. When VÚrl) JWz,..*.> the operator 
(63b) takes the form: 

A s: ~ ~...,I: .3(Sp)~ U,.\2/S'." \ 2 

H = -êl' V~ + fl~,J; + €) E- = 2.r -+ f~, (66'a) 

which differs from the usual energy operator by the .constant € • 

That is why, the equation (64) defines the we~l-known eigenfunctions 

~/r"/1 F ~ ~ X.) of an oacd.Ll.at or- wi th the energy eigenvaluesT"I ';ln3 ( , fi 'I, ~ 

~E> = ~iAJ(171+()~"'n3 + J) + fi) /J.=~f, ..., (66b)
11,/1:1n3 d 

The "subquantum" energy e does not effect on the level-differences 
and is not therefore experimentaIIy ooservable. 

c) An electron in the Coulomb field. When V!(í;r,) =-jrea;l,~, ~ 
from (63b) we have 

"" i l 
2 31I'..\Z

fi = - ê,r Vir + ~ - ~e2.Ví':l:) ;) (67a) 

where :X=/~I and U(x) ia defined by the construction (62a): 
~ co­

j /V(:x) = =t! ~ }~cl!) ~ + 1Jr S;d j )4 . (67b) 
o :Jc. 

The eigenvaIue problem (64) in thiscase can be approximately 
's oIved prosupposing that "subquantum"uncertainty ~/'" La sma.Ll , 

Then, as it followB from (62b), c:J.oOF/) differs ee aerrt í.a Ll.y 

from zero only for amall T • This allows to evaluate the 

f'unc t í.on (67b): V-{=t: - QlI') ~ :;c-f, V-{o) ~ (&I"')-f. 
Therefore, under small ~/'" the !uncti~n lr{~) can be presented in 
the form of the sum, containing the undisturbed part :c-f and the 
perturbance V[x) - »:«, In such approach the problem (64) 

defines for O-order approximation the stationary statea 1Pntm(3!)­
= RlJt (':):.). Ye", (fl, ':fJ) known from the correspondent problem of 
the generally accepted quantum mechanics, .and the spectrum of 
eigenvalues (for more details see t44,45 ]): 
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.:Ze 2­3(Sp)e. Ze2. 
-<E>nfm - éZa..n Z + ao.l"	 + .!?a.n2 ê nt , (67c) 

=	 2J; (2r)2t{UJ C 2(+/ 

Oc> 

n '1+( rf	 j )2(t+/) ~cJ ti<E'"l (2~+3)! ~la J if) s 
o (67d) 

Here e:t = Íi~/.I"e~ is the Bohr rallius, c;: are the binomial 
coefficients, rr > fI 2 1 •• , j e=~ fI "'J IJ-{~ m:= -~ "', !. 

The first term in (67a) i8 the n2- f ol d aegenerate energy leveI 
of a hyur-on-d í ke a t om in t he [jenerally accepted quantum mechanics. 
'l'he second term represents the "subrruantum" energy of a free 

electron (see (65b)) 8nd does not influence the difference between 
t he Le ve La , At Tas t , the th:i.rd term e Lárrrí na t e s the ,l, -deceneY'2.ti.on, 
that ch~nges the leveJ-differences. In particular, we have: 

Et2 2 r "" (b"')2LJE =< E> - <E> = ~ . - (67e)
n~.Jnf	 . noo oon a» a..' 

The	 shift (67e) resernbles t hat of Lamb by i ts depe.ndence on j! and 
I?	 This allows to estimate the "aub quantum" c oor-oí.na t e uncertainty: 

$1"	 ~ 4.26' . 10- ~2 em ,if (67e) coincides wi th the Lamb shift, 

dI" < -10- M em ' if the shift (67e) reflects some effect which Ls 
beyond the accuracy of the modern experiments. 

12.	 Conclusion 

The investi~ation8, the results of which are set forth in the 
present paper, make jt possihle to conclude as follows: 

1. The elirnination of the "incompleteness of the probability 
interpretation" in quanturn theory .i s possible and rnay be achieved 
only by the introducin~ to the theory of a joint coorl1inat~-momentum 

pro~ability operator. 

2. The prol:ability operator makes it possible to formulate a 
new method of quantization, that allows to construct a qu.ant urn 

theory, when the initial classical theory is written down in the 

Hamilton formo The probability operator limitates the arhitrariness 

in the correspondence rule and by thiiway ~ives some restriction 
to the "incompleteness of the mathematical formalism" of the quan t uu 
theory. 

3. The quantization, based on a probability operator, leaus to 
a quan t urn theory which allows to calculate the probabili ties to fina 
a ;ystem in any infinitesimal volume of the phase-space. That 

actunlly oorrocpondc to the point of view of Einstein, de-Broglie, 

Sçhrou1ngor Qnd othera, who coneidered the cooruinate and momentum 
ao D1multoneuuely existing physical realities. At the same time, this 
dooo not contrad1ct to' the Heisenberg uncertainty relation. 

4.	 The quantization, based on a propability operator, leaús to 
the	 appearence in the quantum theory of some "eub qu arrt um" notions, 
which have	 no analogues in the generally accepted quantwn anu clas­

aical theories. 'I'he "suoquantum" notions may influence on the resulte, 
which allow an experimental verification. By this reason one may 

'I	 
hope on the possibility of some experimental verification of the 

.~ quantization with a probabiiity operator. 

'5.	 The consistent probability interpretation of the quantum" \ theory wi th a prolJabili ty operator and the exí.s t eno e of the "sut.» 
quantum" notions in its mathematical formalism show that such a 

theory doea not pretend to the complete description of the physical 
reality. That 18 why it ia free from the problems like the Einstein­

Podolsky-Roaen paradoxo 
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31lfplJI1IIro ~.tL ,- kYPlllUl101H a.e., 8anGPODOHHhlA 10.H, E~.86-S8l,
 
KUIlTOllSH140 "lJ"'I1"'OHO~A TDop14A "O OCHODO onoporopo DcponTHoCTH
 

PaOQMOTPMIOO'Cft MaTOA KDOHTODaHHn c nHHoHH~M OTo~po~eHHoM KnaCCH46CKHX 
1ll)'tlIC4We! A(OI li. \) ICOOPAHHOT. HMnynbcoD H DpOMC~iH Ha I(08IiTOOblO onecnrops Â(t) 
anraepw ~ D npOCTpOHCTDO KDOHTOQWX COCTonHHH ~. npH 3TOM 

'\el) • rA(q, li, I) Peq, li, ') dqdp G .~ , 

o onapOTOp DCPORTHOCTH F oBnOAaeT CBOHCTBaMH 

r~(q,p,')dql(Jp .. i. F~(q,p,C) "<c/1IF(q,p,t)Ic/1> ?O, 

H YAODlIeTDopReT CHCTeMe ypaBHeHHH, OTpalKalOU\HX npHHL(Hnbl AHHaMH4eCKoro H KaHO­
HH4eCKoro COOTBeTCTBHH Me~AY KlIaCCH4eCKOH H KBaHToaOH TeopHRMH. KaaHTOBaHHe 
c onepaTopOM BepORTliOCTH npHBoAHT K KBaHToaOH TeÔPHH c HeOTpHL(aTenbHblM COB­
MeCTHblM KOOPAHHaTHo-HMnynbcHblM pacnpeAeneHHeM Fc/1 AlIR n~60ro COCTORHHR c/1. 06­
cY*Aa~TcR OCHOBHble clIeAcTBHR KBaHToBoH MexaHHKH c onepaTopoM BepoRTHoCTH B 
cpaBHeHHH c06~enPHHRTblMH. KIlaCCH4eCKOH H KBaHToaOH TeopHRMH. nOKaaaHO. 4TO 
KBaHTOBaHHe c onepaTopoM BepORTHOCTH npHBOAHT K nORBlIeHH~ B TeopHH HOBblX no­
HRTHH, HaablBaeMblX B pa60Te IIcy6KBaHTOBblMHII• ClIeAOBaTellbHO KBaHToBaR TeopHR 
c onepaTopOM BepO~THoCTH He npeTeHAye~ Ha nonHoe onHcaHHe ~aH4eCKOH peallb­
HOCTH B TepHHHax KIlaCCH4eCKHX nepeMeHHblX H no 3TOH npH4HHe He COAep~HT np06­
lIeM THna napaAoKca 3HHWTeHHa-nOAOllbCKorO-P03eHa. npHBeAeHbl pe3YllbTaTbl pRAa • 
KOHKpeTHblX saAa4: cB060AHaR 4aCTHL(a, rapMOHH4eCKHH'oCL(HlIlIRTOP, 311eKTP9H B KY­
nOHOBCKOM nOlle. 3TH peaYllbTaTbl n03BollR~T HaAeRTbCR Ha B03MO~HOCTb 3KcnepHMeH­
TOllbHOH npOBepKH npaBOMepHOCTH KBaHTOBaHHR Ha OCHOBe onepaTopa BepORTHOCTH. 

Pe60T8 BblnOllHeHa	 B na60paTopHH TeopeTH4eCKoH $H3HKH OHRH. 
npenpRBT O«neJUlHeHHOI'O HIICTHTyra -nepHbIX HccneAoBllHHií. Jly6Ha 1986 

Entralgo E.E., Kuryshkln V.V., Zaparovanny Yu. I.	 El,-86-S8l, 
Hamlltonlan Theorles' Quantization Based on a Probabil ity Operator 

lho quontlzatlon method with a linear reflection of klassical coordina­
te-momontum-tlme functlons A(q,p,t) at quantum operatars A(t) of an algebra fi­
in a opaco or quantum s tat es 1/1, based on a probability operator F(q,p,t)Ç;,#, 
is conaldorod. For such a quantization 

Â(t)	 .. (A(q,p,C) F(q.p.t)dqdp ç; JI., , 
whoro tho probablllty operator F has the properties 

... .. ... 
(F'(q, P. I) dqdp • I, r",(q. p, t) '" <"'I F(q. p, C) 11/1>' ~ O. 

and aotla"OI O system of equations representing the principIes of dynamical 
and canonlcol correspondences betw~en the classical and quantum theories. lhe 
quontllotlon basod on Q probabillty operator leads to a quantum theory with 
a nonnogotlvc Jolnt, coordlnate-momentum distribution function FI/I for any sta­
te "'. Tho maln conaequonces of quantum mechanics with a probabllity operator 
aro dllcUQDod In camperlson wlth the generally accepted quantum and classlcal 
thcorloa. It II ahown that a probablllty·operator leads to an appearance of 
somo ncw notlona callod II subquant umll• Hence the quantum theory with a probabl 
Ilty oporotor docs not pretend to any complete description of physical reall ­
ty In tarma or clalslcol varlables and by this reason contains no problems 
Ilka Ilnltaln-Podollky-Rosen paradoxo lhe results of some concrete problems 
oro glvaol o 'roa partlcle, a harmonlc oscillator. an electron In the Cou­
10mb "ald. Thooo rooults glve hope on the possibi lity of an experimental 
vorl'lcfttlon or tho quontlzatlon based on a probability operator. 

Tho InvaDtlgatlon has been performed at the Laboratory of lheoretlcal 
PhYDlca. JINR. 
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