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1. Introduction

More than 60 years of quantum theory existence are full of
unusual paradoxical situations. The arguments on the most principle
questions of quantum theory, starting from the birth of quantum
mechanics, are still under studies.

Among the discussed aspects of the generally accepted quantum
mechanics the so-called "incompleteness of ..." occupies one of the
most important places. One ought to distinguish at least three types
of the "incompleteness":

A. The incompleteness of the quantum-mechanical description

represents the statement that quantum mechanics does not give a
complete description of physical reality. The most elegant attempt
to prove this statement is based on the paradox which follows from
the Einstein-Podolsky-Rosen gedankenexperiment [1]. It is important
to underline that the Einstein-Podolsky-Rosen paradox arises from
the questions like whether the physical variables reflect any simul-
taneously existing physical realities, whether their values exist
before a measuring. 50 years of arguments and deep studies of these
problems have not yet led to any aefinitive answer (see,for example

[2-51).

B. The incompleteness of the probability interpretation

consists in the fact that quantum mechanics, despite of its obvious
and generally acknowledged statistical character, is not a theory of
the consistent probability nature[6—14].It does not make use of joint
probability distributions for physical variables, for example for
coordinate and momentum, it defines no conditional probabilities.

The numerous attempts (see, for example [15-23]1 ) to introduce joint
coordinate-momentum probability distributions F%V(gufxt ) (quantum
distribution functions) for quantum states yf showed £13,24,25 ]
that this programme cannot be applied to the generally accepted
quantum mechanics.

Ce The incompleteness of the mathematical formalism means the

absence of an univocal and generally accepted law (correspondence
rule) according to which the quantum operator /\(ﬁ)ls set for the
classical function A(g, /D,é) « The problem of the correspondence
rule which is considered to be one of the major processes of quanti-
zation arose simultaniously with the quantum mechanics birth [26-297)
and is still under investigation [30-33]. .

The number of the articles on the above-mentioned problems is
now enormous. Nevertheless the current of the investigations does
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not uecrease. One has to notice that a considerable part of the
investigators aumit the necessity of some theory which would turn
to be more general (more complete) than the existing quantum
mechanics. What is needed is not a newreinterpretation or a reformu-
lation of the generally accepted quantum theory but a construction
of some generalized theory free from the paradoxes and logical
problems of the orthodox quaﬁtum mechanicse.

In the present paper we are going to consider and to discuss
one method of such generalization which eliminates the "incomplete-
ness B". This method is based on the classical theory’s quantization
leading to a correspondent gquantum theory in which any quantum state
Wb(*) is connected with a normalized non-negative coordinate-
momentum-time function ﬁryf(yﬁp,f.) treated as the joint coordinate-
momentum probability density.

We shall demonstrate that the elimination of the "incomplete-
ness B" givesa serious limitation to the arbitrariness for the cor-
respondence 1rule of the "incompleteness C" and eliminates all the
problems connected to the "incompleteness A".

2. General approach to the problem

It is possible to eliminat’e the "incompleteness of the probabi-
lity interpretation" by an appropriate modification of the generally
accepted quantum theory based on different grounds. But the results
of the last years investigations [34-36] have showed that such
modification can be always formulated with the help of a probability
operator introduced into the procedure of the classical theory’s
quaﬁtization.

We understand the procedure of quantization as the transition
from the known classical theory(C-theory) to the correspondent
quantum theory (Q-theory). While studing this procedure we shall be
based on the following grounds.

C-theory:

1¢C)« The state of a physical system in the moment t is given
by a vector X¢) = (7(:‘), /0(#)), in the phase-space Eqp
of the coordinates g == (Geseee, 9+) and momenta P =(/o,,.“,/)”)
values.

2(C). Any physical variable A characterizing the physical
system in the moment ¢ is given by a coordinate-momentum-time
funetion /4(9‘,/),14') .

3(C). The expectation value <A> or a physical variable

&
2

in the state X is determined by its function, i.e.

B > ==
A>y A(g,p,2) [(%P) -~ x - (1a)
4(C). The evolution of the state X() 1in time is determined
by the equations of Hamilton:

dy qit> = D Hlgpob) | () = 5

dy ptey = =0 Hlap > | (qp) = X(&)
where ff(?#Zé) -function corresponding to the hamiltonian of
the system.

(1b)

Q~theory:

1(Q). The state of a physical system at the moment #Z is deter-
mined by a vector 3&(2) of a complex space of with some scalar
product (+/.).

2(Q). To every physical variable /4 , which characterizes the
physical system at the moment® % » there corresponds a self-adjoint

A
operator 4 (#) , which belongs to an algebra S of linear operators
defined in the space L.

3(Q). The expectation value <A > of a physical variatle A
in the state ’¢7 is determined by the formula:

A
<A >y = (/A ) J GErg) . (2a)
4(Q). The evolution of the state Y #)
determined by the equation of Schrouinger

- A

B, Yy = Hoyw , (20)
where M) = /?*[é) is the operator which corresponds
to the hamiltonian of the considered system.

in time is

Providing the comparisonaf the requirements 1~4 of the
C-theory with the corresponding requirements of the Q~theory we can
see that for constructing a Q-theory, if we know a C-theory, it is
necessary to solve two problems :

Problem 1. To choose a space oL of' quantum states }b’ and to
fix an algelra & of linear in of ope 'ators.

Proulem 2. To point out the reflection (the correspondence)
A
Aw) = O(Algptr) = & (3)
which would allow to set the operators of all physical variables

characterizing the system which are under consideration.
It is quite clear that problems 1 une 2 are interdependent



ana the search of their solutions can be provided by aifferent
methods.

It also should be noted that when the problem 1 is-in some way
solved the solution of the problem 2 caen be formulated as some
correspondence table, including only A and the set of physical
variables A3 exp which values can be measured
experimentally.

In the present article we confine ourselves by the procedure
of quantization, based on the following demands, claimed to the
correspondence rule (3):

Demand 1. The reflection (J(i+» ) permite an analytical formula-
tion, which has sense for a wide enough multitude of functions

M = JAGptr} = {A(?',p.f)}e,/g =M¢w/9

and is linear one, i.e.:

o) =1,  OdAlpt) = odO0UGp), )
O(Alopdy+ Aatapd> ) = O(Adgpd) + OlAxg.p?) . (av)

Here 7 1is the unit operator in o , o is a complex number.

Demand 2. The reflection C%C..) is such, that in the obtained
Q-theory for any ’y& s L there exists the coordinate-momentum
distribution /:;‘Gﬂfaf) » which might be treated as the phase-
space probability density, i.e.:

S'c};@,/o,{)a/?oﬁ =1,
<asy = SaGpt) Rgpodhep . (5b)

Here and in what follows the integration is performed over the whole
classical space /?? .

(5a)

J

£ apt) = o

Thus we are going to consider only such procedures of quanti- -
zation which lead to Q-theories with the correspondence ’W‘—PF = 0,

It should be noted, that the only demand of linearity (4) leads
to the quantization with the quaziprobability operator :?(?./9,75) C&
in the terms of which one can write all the known unique correspon-
.dence rules. The normalized quazidistribution '31.) =(ﬁ#/§¢’)/ﬁﬂ/¢l)
for which (5b) is fulfiled automaticaly, appears in Q-theory in such
case (for more details see, for example [36,37])..

3+ Coordinate-momentum probability operator

As it is shown in the works [35,36] the only method of quanti-

zation which leads to 4 quantum theory with the consistent probabi-
listic interpretation is the method, based on the following cor-

respondence rule:

Apy = Op (Alg,ptr) =
= SAGpd Fapddyde < &, (o)

where operator A has the properties

SFapbrdgdp =G, (blFGpoyp) =0, (&0
for any g, p e /27/" and any 'zﬁf: L .

The sufficiency of the operator J existence follows from the
next reasoning. Constructing quantum operators due to rule (6) we
can see that correctness of relations (4) is obvious. Having
determined the values (2a) of operators (6a) in any state 30’6‘05 ,
we obtain (5b), where .

Folopt) = (Pl FapdP)/ PR
Finally from the properties (6b) of the operator'/? follow the
properties (5a) of joint coordinate-momentum probability dgnsity(7).

In order to prove the necessity of the operator /7(7y°:£)
existence let us consider the characteristic function of distribution

KEp, which exists according to the demand 2: ]

Flons) =207 SRy Gpt) o 21 P oy

Using the relation (5a) and reflection (3) let us rewrite it in the

form:

Flupt) = <@ P >, =
= (Y 1 OQery? ™ 4Cq7P) o) /(1Y)
Reproducing the starting distribution from ;? we hav?:
Fylrpts = (b1 Sohide 048750 Oy ™07 Y I),
Taking into consideration the properties (4) of representation
O(...) we finally obtain (7), where,
Flapd) = O(8G-)8(p-p) < F . (8)
The representation (3) now may be written as
Ay = 0(aGpe) = O( SAGp -9 80-pd4)
from which,making use of linearity (4),we receive the rule (6a)
with the operator (8). Finally,the properties (€b) of operator (8)
follow from the relation (7) and conditions (5a) of the demand 2 ,

and this proves the statement.
Let us point out, that according to the relation (7) the values



of /:T\' understood in the sence of quantum values (2a), in any '}l)’e::{
coincide for the whole space /?7,_, with the values of the joint
coordinate-momentum probability demsity /A, ,i.e.,from the point of
view of Q-theory /:7" is the probability operf,tor. As this takes place
from (8) and (6) the provability operator A himself corresponds
to the 5 ~function in the classical phase-space.

4. Principles of the probability operator constructing

In accordance with the statement of the previous paragraph, any
linear procedure of quantization, which leads to a Q-theory with g
correspondence 3{1 — Fy,(q,/o,é); O, may })e uniquely defined by a
coordinate-momentum probability operator F(q,/o,z‘) .

The probability operatoa fixes correspondence (6a) between
objects A(¢,p2,2) and A(2), which describe the same physical
variable A in C- and Q-theories accordingly.

However for establishing the evident form of operator /‘EL
(in a given algebra) the properties (6b) of normalization and non-
negativity are not enough. So there appears a task to reduce the
arbitrariness of A~ by some demands on the correspondence (6a) in
addition to the properties (6b).

For this purpose,following the article [37],one may consider
the evolution of physical variable -values with time. In C-theory,
because of the relation (1),

di<t> = (3,A6pt) + {Higph, AlgpDY) l@»/’)’X 1)
where {. .} is the classical Poisson brackets. In Q-theory due
to the relations (2),

dy<a>y = (w/ (QAw + 5 LAw, Aw1.)¥)/ 1Y), (o)
where [., . 7y _ is a commutator. On comparing C-relations (1a)
and (9) with the corresponding Q-relations (2a) and (10) it is quite
logically assumed that the reflection (3) should be extended on the
objects,which determine the evolution of the physical variables
values with time, i.e.

O (3, Alqp2) + 1 Hgp.t), A(q,p)i)}) =
=9, Am) +ik'LH®, A®I. . (11)

The equations (11) represent the dynamical correspondence of the
quantization procedure (in addition to the statistical correspon-

dence, represented by equations (6) ). .
At the constructing of a Q-theory with a correspondence St’-*FZO
the poseibility to write down the reflection (3) in the form (6a)

brings about the set of conditions, claimed to the probability
operator:

Oﬁ({ﬂ(y.p,'é), /4(9’,,0,74)}) - SAlq,/o,é)-% Fﬂ(q,ﬂz‘)a?olb =

= 34 [0,3 (/v’(q,p,z‘)), Oz (A(q,p,é))]_ (12a)
for all A GHU{A}”[,, where Oﬁ"("’) is the reflection (6).

The conditions (12a) demand in particular a specific correlation
of the A and £~ evolutions with time. Thus, it follows from (6a)
and (12a) for A = H

SHG.p213) Flg.pt) dyfp = O, (12b)

Pih) = Sat/‘/(‘?,/’,é)-/s{q,p,f)c/yojo >

and O, ey = 0, if D Hig,pt) = O.
It is also notable that if for some 4 « {A fex/a

Sﬂ(q,ﬂé)'a /é"(y,p,t)c/yoﬁ = 0, (13a)
then the correspondent condition (12a) means the correspondence
between C- and Q- Poisson brackets for A4 and A . Such cor-
respondence might be generalized for varisbles A and B by the
conditions to the probability operator

Op ({AGpe), Bgp,2)} ) =

= 1 [ 0a(AGp), Oa (BZq,p,i))] - (13b)
with any pair A,B « 4 A4} exp » both satisfying the
requirement (13a). The set of equations (13) represents the
canonical correspondence, which is extensivly used in the modern
procedures of quantization (canonical quantization). It should be
underlined,that the principle of canonical correspondence may be
apparently fulfiled only for gquantizations of C-theories invariant

with respect to time translation and only with noncommutative
algebras 34 .

2 Quantization procedure based on a probability operator

According to the results of the previons paragraphs the
procedure of transition from a C-theory to a Q-theory with the cor-
respondence ’fL’ —~ Fy, > O can be formulated in the following
waye.

Let a)the classical functions /7’{7,/0,;‘) and -{A[q, ,é)_}g,‘/,,
which describe the hamiltonian and the set of experimentally
measured physical variables be known, and let b) some complex




vector space oL and algeﬁra & of linear in it operators be chosen.
Then operators /}{g) and { A% exp of the
Q-theory with the state-space £ are defined by the correspondence

rule:
A = O:(Aqgh) = agptr Flapdedo < H , ()
where A € Huv {Aj exp ’&(‘7'/"*3 < is a non-

negative in g operator of the coordinate-momentum probability

density, ie€er "

" —_ + A
Flgpt) = 2 5 qpb) §.(p) (15).
; (q.pt) € & , n is some collective index of summation.
: O;e;ator /A~ satisfies the normalization condition
SEpetrdgdo =1 e # (16)

and the system of the integral equations
S{H(q,p,z‘),A(q.,o,ﬁ)}v’f'/q,p,é)dﬁo — SAGp) . Fapdep =
=it CHgpr Al [ Flapd), Flrpp)l ddpdqdp 5 0

which follow from (12a) and represent the dynamical correspondence.
Therefore to fulfil the procedure of quantization based on the

rule (14) with a probability operator it is necessary,on the first

hand, to so%ye the system of equations (17) with respect to the

operator /& , having the structure (15), satisfying the normaliza-

tion (16) and conserving the mathematical sense of the integrals(14).
In this case three different cases may occur:

«1. The problem has no solution. It means that the C-theory
under consideration cannot be gquantizated with any probability
operator within the chosen algebra 69'(analogue to the Pauli theorem
in quantum field theory).

2. The problem has a unique solution,i.e. the C-theory is
quantizated and the sought for Q-theory is constructed.

3. The problem has a set of solutions. In this case it can be
attempted to narrow the set of solutions either with the system of
the additional to (17) equations "

S /4[7,/7,*)-9# f’(q,p,z‘)o/yo//o =0, (18a)
S {A(y,p,t), B(q,p,i)} . ﬁ‘(y,p,t)a/f’//o =
h = iﬁq S A@»ﬂ*)'g(f,zz‘)' [ﬁ'@‘ﬁ{)a ﬁ(bf,i)]_o/"‘/fjf'{o,ﬁgb)
8

with /4, A & {Aje,‘,a 5 following from (13 a,b) and
representing the canonical correspondence, or by broading the set
{,A_}e% in (17) and at the same time in (18) up to a certain
multitude {A} = {Aj.z,f, .
In conclusion we will note that the quantization procedure
with a probability operator

a) always conserves all the dynamic invariants of the initial

C-theory in the set of dynamic invariants of the constructed Q-theory

and

b) profoundly depends on the hamiltonian of the quantizated
system, i.e. even within the same algebra 6@ it may appear to be
different for two diffevrent physical system$8 being described in one
and the same C-theory.

6. Probability operator in commutative algebras

If the problem (14)-(17) has a certain solution ﬁ;(q,fgfj
in a commutative algebra C*% than it cannot satisfy the system of
equations (18). In fact,for A = 7"- " and B = Px the
relation (18b) due to the general commutativity contradicts the
normalization (16). So, while quantizating with a probability
operator within a commutative algebra the canonical correspondence
cannot take place.

Broadening the set €/4(qﬁp,£)} exp up to the multitude
of analytical in /a%p functionsy from (17),after integrating by
parts and taking into consideration the arbitrariness of /4(9¢zi)
and commutativity of 59% s we find:

"9, ﬁ(y,/o,t) + {Higp®, Fapbl =0 (19)

Introducing now the distribution F-}p (gp2) = <,Cﬂ"/¢vo)zt) >y
for its derivative with respect to 2 we will find, taking into
consideration the evolution equations-(2b) and (19), the classical
Liouville equation

% Fylapt) + (Hapd, Folgpdbl = 0. (0

Thus, the quantization of a C-theory based on a probability operator
in a commutative algebra brings us to a Q-theory which coincides
with the classical statistical theory.




7. Coordinate-momentum probability operator in the Bose algebras

The permutation relationms,

LX, Y 1. =-ig 1, Llx,x1_=L%%1l=0, @

for the self-conjugate generators X =(X,,...,X, )and VY =(Y,,.. V¥,)
of the Bose algebra ogB(N) allow'us to write down the operators
/:T‘ and j:n from (_15) in some arranged form, for example:

A X+pY)
Flapd) = SFGpyptr-e 4 7

/jo} & ‘#3[”)’ (228)
. :
:§ (4.p,2) = Sﬂ' (9.p3.0¢) e §X+/y0/!/? € Folw). (20v)

Here ¢, p € RY 3 32X and pY are scalar products.
Putting (22) in (15) and (16) and using the Weyl identity

0,(/0 (4+8) = ex/o(g-' [8,41_). éx/?(A)- e%/o(B),
we obtain
Hpkp)
Ff%mzf) =2 S8 apgnoSaprippid ‘e
with the normalization requlrement )
S F(g.p.4.2,2) 0/7/,0 = SQ)S[f) - (24)

Nonnegativety of the operator (22a) was investigated [35 371
in & concrete representation of the algebra ‘ﬂ {ﬂ') and the space
connected with it:

'z,ll{z)sgf, T=(2,.,Tu) € R”, ;\;,-.—-;95, , Y=z .

It was shown that any nonnegative operator /:t [7,/),7_‘) can be
given by a set of functions S (7, S ¥:2 ). A comparison of
the representation [ 35-37] and the representation (22a) gives:

Fa.py.02) —oie Z g Py pgpyidy ey | 29)

N ~ i 2z’
3,6p22%) =0 e SU bt plppptre T4 | 2o
where 77 = (m,K), the functions U, and M, satisfy the
normalization condition

% S |Um(q:P'})i)‘zJ} =1 ) (27a)

10

»

% Sm(q,p,},ﬂym @GPt = Sle-). (210
The set of square integrable functions Um does not 1nf1uence
the results of the quan/t\ization a tran51t1Aon from the set :‘,- [ G(}
to a new set n = U{n ed , where (4 is any unitary in
operator,does not change the probability operator (15).
In order to fulfil a concrete quantization with /&(‘7, , %)
[ ‘#B (W) it is necessary to put the probability operator
(22a) into the dynamical (17) and canonical (18) equations. Tt
brings us to a system of integral equations which must be satisfied
by some choice of functions ./”H(?:P;f,i')-

The most interesting(from the point of vew of the generally
accepted quantum mechanics) quantization is such when between pairs
of classical generators (.Z"/Od' )

(Xe > Ye) of the Bose algebra exists one-to-one correspondence.
For example

and pairs of generators

q/"‘_i D RE X, T, (28)

in the sense that operator 4 aepends on operator’ A; (on
operator Y- ) then and only then, if the classical function
A{_q,p,i-) depends on the component of momentum /3- (of coordinate
Y7BRE

Replacement X =Y in (28) is insignificant because it
brings about the replacement & == p in the kernel (22a).

Putting operator (22a) in (14) and .emaniing, so that operaztors
for functions not depending on Io ( on qd. . ) do not depend on
operator ){I ( on operator ); ), we gzet the chain of relations:

SFfp. ~ 86, Scdg~ 8¢, SFopdgy~ 86)50,), -
and so on up to the normalization (24). From this it follows with
necessity:

A/ . . .
Flappp) = Woptrenp {-i 2 (Bl + SB)E ()

where ol and are real constants. Putting the kernal (29) in
(22a) and further in (18) with A 74
(16) we get: dJ% Jd=Hr7, o)v + q [2]
and Je )( + P [U“] (for more details see [}9] ).

The last relations allow us to introduce new self-conjugate
generators (q P ) J /V, having the physical sense of the
coordinate anu momentum operators,which satisfy the usual permu-

{

A = Pe ani using

&-

11 .

AL



tation relations:

[f}i,ﬁe]_f-‘iﬁ%ﬁ, 4.9, 1. =1p.pl. =0. (oa)

Now from (29) and (22a) after a substitution of variables it follows:

a v £1v0a- )+ p(8~q)

Flgpt) =) SZ/{;,p,z‘)- e? Lsp-prept 7]4,//, (30b)
where R) is a space isomorphical to « Finally,writing down
the nonnegative operator (30b) in the form (22a) with a kernel like
(25),we have:

; w737 x 157 2
Uty =7 Z \glemainmh, S Siguol=1. oo
Thus,the quantization of a C-theory on the base of a probability
operator .in the Bose algebras with one-to-one correspondence betv&een
classical and quantum generators brings us to the Q-theory investi-
gated in [34,38-47].

But in this case the set of "subquantum® [38-477 functions {(f,}
is related with the functions {‘A(q,[p,-t)j exp and H[%P,f) of
the initial C-theory through the system of the integral equations
obtained from (30) and the conditions of dynamical (17) and canonical
(18) correspondences. b

“ 8o Intrinsic moment probability operator in the Fermi algebra

Let us consider an example of quantization of the C—tﬁeory of a
point three-dimensional particle with mass . and charge € in a
magnetic field 2 = (¥, , Has, Hsz). The correspondent
Q-thedry with - &~ =0 is then defined by a probability
operator A(FBZ2) & Hg(3).

Let the particle under consideration has intrinsic mechanical

T = (&, $2,83) and magnetic M = geg/émc
moments, where g is the giromagnetic ratio, while J&|] = g =(7ons+.
In this case to the classical generators (?’,/‘o') two more
should be added, for example the spherical angles 9 and if of §,
Accordiﬂgly to the generators (q‘d‘f,ﬁ’) of algebra oqafs) should
be also added two gemerators. -

Let us suppose that the operators of the moments belong to the
Fermi algebra wp(f) » the two self-conjugate generators &3 and G
of which satisfy the permutation relations:

~L6:<162]+= 25,(41 Py k"!‘—“’,—z-, (31)

12

For a simplification we shall consider a stationary quamti-
A
zation rBtF = Q0 and not the whole probability operator

/5"[9,‘:}3“’ 9;?) < &8(3) x.ﬂFﬁ) but its integral
Fo,¢) = SEGR 6.9)d57d5 e ftn, G2

defining A for functions A[g)-‘-A(sﬂ,y) according to the correspon-
dence rule

A= O:As89)=S609 Fepde < 4oy, .,

The integration here is carried out -over the whole spatial angle,i.e.

dQ = 384804y, G<lorl, welo241.
To construct the probability operator (32) let us write down
the conditions of nonnegativity and normalization )

A

8,0y =23576,9506,9),  Chepde =7, oo

and also the condition of dynamical correspondence for the moment
->
KL and the part of H depending on the intrinsic moment:

Q(1%, F@Y) = 102050, 0 (HF]_ | (35

Putting in (35a) the evident form of /TVT, the classical Poisson
brackets and the reflection (33) we come to the system of equations:

(1851 Fo,q)d2 = 283 @891 F6,9), A6l 4042’ (350,
Permutation relations (31) of the algebra 63'/:.[1) allow us
to write down the probability operator in an arranged form; for
example:
A A — . —_ ‘¥==
F=FR1+R6+F&+ifGE, , R =F = F(64). i,

In this case from (34) we have:
& 2 2 2 ' C - _
Frhs0, RERI2EVES, SEda =1, (Rde=0.gq,
Introducing the following designations

%,~(8kde | N =g5¢’} 2, dp=13, (360
putting (36a) in (35b) and taking into account arbitrariness of the
magnetic field strength F we get the system of equations

¥, =0, ﬁafxf =2 (L_f;,ftfp ~ Sun Fpp) (364)
where {dﬁ-‘), .[/f)f) = (123), (230),(312).
13 .



It is naturally to demand, as in the previous paragraph, one~to-one H
correspondence between the classical and the quantum generators, for =,
example in the form: :l

i

5, = sjin&.&’zétf =g, , "sgmﬁ.&m{’«

"(37)
The replacement G, == 63 in the right-hand sides of (37) is ¢
not significant because it is equivalent to the substitution A=K, I:
F3 = -F5 in (36).

The simplest consequences of the corr°epondence (37), 730,2
Yis = Y2y = Yas = O , allow us to solve the system '
of equations (36d4):

Yio = Ysy = Yu2 = O, Yy =22 ~fas = —g_i - (38)

A
Using (38),while setting the operator & according to the rule (33)
with the probability operator defined by (36),we get:
s AR 3 2 __.4k

S, =29, 5;2%2, S$;5-t36/6, . (39)

Relations (39) allow us to go over to new selfconjugate
generators of (1), hav1ng the physical sense of the 1ntrinsic
moment component operators ( 5, s g,_ and related with them S3 5
1;53 = -2 é,4éz ) and satisfying the permutation relations

IS ,éP]_= kS, , 3 = —ﬁ;? , (40)

where (fo) = (123),(231),(312).
Thus,the quantization of the C-theory of a particle with an intrin-
sic moment on the base of a prabability operator in the Fermi
algebra J?F(l) with one-to-one correspondence between the clas-
sical and the quantum generators bring us to a Q-theory of a particle
with spin 1/2+ :

The other concrete properties of the functions /:'(07)111 the
probability operator (36a) have to be determined from the set of
requirements (36). The simplest solution of the problem is:

F8,9) 3#{?'*%} [&'n&(('06506,’+-55ntf-6;)-1(550-5:6;]} (41) A

where .S ,>,3f;/a plays the role of an auxiliary ("subquantum") para-
meter of the quantization. 4
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9. Nonrelativistical quantum mechanics with a probability
operator

Let us consiaer the mathematical formulation of the Q-theory,

arising as the result of -the nonrelativistical classical mechanics’
quantization based on a probability operator.

Following the generally accepted quantum mechanics we shall
admit:

a) All the quantum operators belong to the Bose algebra ﬂg.

b) There exists a one-to-one correspondence between the clas-—
sical variables (9,/3) = (Grsivis GusfPrseen Pr) and the gene-
rators (X,Y) = (X¢oee:), Xapy ¥y s .vv, ¥ )  of the algebra g (W)

To simplify the comparison of the considered Q-theory with the
generally accepted quantum mechanics we shall choose the usual
coordinate representation of the state space ol and of the genera-
tors (X,Y), i.e.:

Pep@ed, X=-id, Yex. j-im aew

where o € R,. , which is a space isomorphical to R
Then, in accordance with the results of the prev1oua paragraphs,
we have to write the coordinate-momentum probability operator as

follows: .
,. ~2m #Lotc-9) - 30p+ ik 7 )}
F(y,p,z‘) = 2r}) SZ/(}.f,é)-e 4% (42b)

The kernel 2/(},7,1') here 18 defined (see (30 c)) bty a set of
auxiliary functions {ffx(bé)} (s R ,isomorphical to R ).
The auxiliery functions satisfy the normalization requirement

= Sleaolds = 1 (43)
L3 3 2

and the set of integral equations, which follow after the substitu-
tion of the probability operator (42b) into the requirements of the
dynamical (17) and canonical (18} correspondences.

The provability operator (42) and the correspondence rule (14),
determined by it, can be written down in different equivalent
differential and integral forms. In particular, with the help of the
relations (30 c) and the Weyl identity one may rewrite the proba-
bility operator (42b) in the regulated differential form:

A ol » -4 +2
/:[9,},’{) = (3,#) % S ?”(7-3:— 2) ﬁak(7'23*)e % ¥ thzﬁ__(Ma)
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From this one obtains

/~“(9 XY gl'/x 2) = @uk) Z Slf G2 § (g-xp)e P %4}/;’(4410)

that reflects the action of the probability operator on a vector
3&1&;&) of the quantum state space L.
The correspondence rule (14) with the probability operator
(44) defines the quantum operators of all physical variables:

A . - ) L .

Ak) =) Z SA(qm,P,é) GG g abe ¥ f(’wm‘z% (45)
Here, as it was before, /4(9,,5) is the function, representing
a physical variable A& HV‘{Ajexp in the initial C-theory.

To finish the formulation of the nonrelativistical quantum
mechanics with a probability operator we have to note once more
that here, as in the generally accepted quantum mechanics, the state
vector evolution satisfies the equation

0, Y (mt) = FE)fat) (46)

and the value <A > of a physical variable A in a state “SU is
given by the formula

<>, =GQAR/ ), Ghi= SO,

Thus, the mathematical formalism of the quantum mechanics with
a provability operator differs from that of the generally accepted
quantum mechanics only vy the dependence of the physical variable
operators (45) from some auxiliary functions f 3}({#}3 which have
no analogues nreither in the classical nor in the generally accepted
quantum mechanics. Following the works [34—45] we shall call these
functions and all the other notions related with them "subquantum®".

It shoud be noted that with the help of the construction

YGp2) =@Jr)§)"”/ze"#/ 4?_ 30,‘(;,14)-'{(*(”5) (48a)

of the "suovquantum" functions, where

?f;(f,’f) = (&8) % S Y3 éTf/’of{: ,  (48b)

the action of the operators (45) on a vector (x,2) € "
may be written in the integral formulation (equivalent to (45)):

At = @fﬂ”ﬁ%z ) Alzsy, prpt) o+ P, 3&[1,4)/,%//”‘ (48¢)
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The last relations with an arbitrary set of {g;}, normalized as (43),
coincide with the correspondence rule of the "quantum mechanics
with a nonnegative phase-space distribution function" [34] ,
investigated in details in the works [32-45],

It is necessary to underline,that the "subquantum" functions are

“not arbitrary in the "quantum mechanics with a probability

operator". They must satisfy not only the normalization (43) but

the whole complex of requirements, which reflect the dynamical and
canonical correspondence between the C- and Q-theories. These
requirements include the multitude F/U-{A}exp and, consequently,
may be written down only for concrete systems.

10. The main theoretical consequences

In this paragraph we shall consider the main features of the
"quantum mechanics with a nonnegative phase-space distibution
function" [32-45] because the formulated above "quantum mechanics
with a probability operator" is its particular case.

Firstly let us note that a change in the number or explicit
form of the "subquantum" functions changes the whole set of the
operators (45) and, consequently, all the results of the theory. In
this sense by saying the"quantum mechanics with a nonnegative-
phase-space distribution function'" we understand an infinite
multutude of theories, each of which corresponds to a fixed set

1 g}(bt)} satistying the normalization (43).

a) 'Correspondence rule, Quantum-mechanical formalism. A de-

‘tailed analysis of the correspondence rule (48) is performed in
[30,32,34—37] . Here we give only its main properties, which are
independent on the explicit form and the number of "subquantum®
functions {3&}: the standar}y commutaticn relations for coordinate

and momentum
G@pw - poge) = i3, (498)

A A
self-conjugate operators A{) for real A(?,p,t), nonnegative A4{2)
for /4(9vp,t) = O , differential operators

Ap) = ColG2) A, (oxt)de + Sj-}(pi)A (p-ihV, Wddp (agp)

for classical functions of the multitude

= {A(q,p,i)_g‘, = Agd)+ Ay(pd). (49¢)
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The functions GL and B, in (49b), which turn to be very
important in the considered theory, are the following constructions
of the "subquantum"” functions fg,,j :

— 5 = |~ 2
L = Zlyanl’ s == Gl

The totality of the quantum operators /-?(i-) v {/i‘(ﬁ)}ex s
the evolution equation (46) and the definition of physical variable
values (47) represent the quantum~-mechanical formalism of the
considered theory. This formalism differs from that of the generally
accepted quantum mechanics only by the dependence of the quantum
operators on "subquantum" functions.

b) Statistical formalism. Interpretation. The substitution of

the quantum operators (in the form (45), or (48))into the relations
(47) gives

<A>y = <A> = (AGpd Fapidpd, ..

where ~ is the quantum distribution function, related with the state
'lﬁ{x,z‘) and the "subquantum" functions -f(fk.(f,t')} as follows:

- . -i 2
Flopty =@t 2 | Siar e ¥ o | @) > 0, 51y

It can be easily proved,that the nonnegative distribution (51b) is
normalized to one and, as it has to be, coincides with the quantum
average (47) of the probability operator (44).
The differentiation of the distribution (51b) with respect to
Z , takigg into account the equation (46) and the relation (45)
between A/(¢) and H(?./O,t) » leaus to the integral equation

0 Flapt) = L [ Hap0), 14.6,03) Fg,p8). (52

Here cf L}{,{g&j ] is'a linear integral operator in the space of
real coordinate-momentum functions, which functionally depends on
the classical hamiltonian and the "subquantum" functions (fore more
details see [34,43] ).

The totality of the classical functions H(y, ,4) V{A(q',/zz')}eﬂf:,
the evolution equation (52) and the definition of physical variable
values (51a) represent the statistical formalism of the theory under
consideration. This formalism differs from that of the classical
statistics only by the dependenhce of the evolution on the "sub-
quantum" functions.

-
+ The statistical formalism gives the only posgsible [23,34—38, [
b
I
)

—— i — - —————

43,44] interpretation of the considered theory - the distribution
(51b) 1s the joint coordinate-momentum probability density.
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The correspondent integrations of A lead to the probability

densities of coordinates

dge) = SF@,,o,t)a,fD = Sol g0 | pg-pol®dy . (53a)

an of momenta

pe = Shapvdy = Sp0 | F0al%, (o

where clo and o are the *subquantum" constructions (50), ,~>* means
the transformation (48b). The expressions (53) show, that in the
"quantum mechanics with a probability operator" lqua determines
the correspondent probability density, but in a general case does
not coincide with it.

¢). "Subguantum" uncertainties of coordinates and momenta.
Writting down the coordinate uncertainties <(47‘_)e> for a state
@U in the statistical formalism with the heélp of the probability
density (53a) or, that is the same, in the quantum-mechanical
formalism as the values (47) of the operators (45) for /46¢¢3i) =
= (Z -<g;> )2 and minimizing them by varying '¢’€ &£  one can
show [34,44] the following restrictions:

‘/((AZ-)Z) = SiJ' = VS[}‘;, - S%dp(f,t)JﬁJ'ado(}Jé)J} . (54a)

The analogous problem for the momentum uncertainties gives:

— 7
2
\/<(4/i-)‘> = % =V S[pfggﬁ,(,;f).//]ueu(gt)c/g . (54b)
Thus, in the theory under consideration in a géneral case there

exist no states with a fixed coordinate, as well, as there exist no

states with a fixed momentum.

The 'subquantum'" coordinate uncertainties S% and the '"sub-
quantum" momentum uncertainties Sf% lead [34,44)° to the
generalization of the Heisenberg uncertainty relations:

2
<@g)>-<apy> > —575“ + (82 (3p)° . (55)

It should be underlined, that the equality in (54a) (in (54b))
is attained here only for states with an eigenvector of operator
7'}(;‘) (of operator p‘d.(t) e ‘
d) Limiting cases of the "subquantum" functions. The uncer-
tainty relations (54) .indicate such 1limiting ocases of the
considered theory, when its coincidence with the generally accepted
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quantun mechanics is maximum. In fact, to allow the quantum states
with a fixed coordinate and the quantum states with a fixed momentum
it is necessary and sufficient that the constructions (50), which
aetermine the "subquantum'" uncertainties Sé. and ap- in
accordance with (54a) and (54b), would have %he prope?ties:

oL (1t) = 84, ﬂo(f,l‘) = 3(;). (56)

It is important to note that the set meflf,,f of "subquantum"
functions,which provides the properties (56), is not unique. The
successions of the sets {ﬂ%‘§ —_— ehn{g%} are given and
investigated in {407 .

If some set Zhn{g;} is chosen, that is the properties (56)
of the "subquantum" constructions (50) have place, then:

1. The "subquantum'" uncertainties S?. and Sﬁy are equal to
zero and the restrictions (54) vanish. ¢

2. The operators (45) for physical variables of the multitude
M, (see (49b) and (49¢c)) coincide with those of the generally
accepted quantum mechanics.

3. The evolution equation (46) with hamiltonians from M, takes
the form of the usual Schrddinger equation.

4. The relations (53) define the standard interpretation of a
state vector "I,D'.

5. The restrictions (55) turn to be the usual Heisenberg
uncertainty relations.

Thus, the considered theory with any set é%wffij of "sub-
quantum" functions coincides with the generally accepted quantum
mechanics as far as the physical variables of the multitude /H,(49c)
are concernede.

e). Limit transitions. Correspondence scheme. Different limiting

cases of the considered theory have been investigated in [34 - 447 .
The main results are given in the following simplified diagram,

named here as "correspondence scheme"., The scheme contains three
different levels of theories, separated by the concrete content of
the relations (54) and (55).

Level 1- includes the set of theories, written down in the form
of quantum-mechanical (QF), or statistical (SF) formalism, each of
which 1s the result of the quantization of the same initial C-theory
with the help of some fixed normalized set of "subquantum" functions
and has the mentioned above properties.
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| {AGpdl, 14423

¥ 1 faupat, F20 1 {Awy, A

I. ’atF =Q{[H,{tfxﬂp itatl}’ = ﬁ[f)”‘/’
<A> = SAFdgep <A> = /A /)

I

g5 biml. 143 bindepe §

1imSF 1imQF

I

1. ’%F = bl [H1F

CcS CM

1. 9, F = {H,F}

<A> = Alge, pri2 )

The limit transition {3&} —> Zh{g%}, leading to a fulfilment
of (56), separates from I the subset of theories, which foym level
J[ . A theory of level I may be written down either in the quantum-
mechanical (1imQF), or in the statistical (1imSF) formalism. The
quantum-mechanical formalism of any theory of level 1[ is close to
the generally accepted quantum mechanics (QM). This allows to include
the last into the scheme as the dotted parallelogram, partially cove-

ring the parallelogram 1limQF.
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.
The successive limit transition b —o in 1imSF of any

theory of level JI leads to the classical statistics (CS), because

the evolution equation (52) transforms tothe classical Liouville

equation when {¢.§ — 5mf59,¢} and #— o [347 . Pinally, the

choice of the probability density in the form /c_'[?,/o,zf) =

:8[7-¢/{)): 8(/'0-/3['1)) (that is possible only in the theory of 1eve1ﬂ_l)

brings over to the classical mechanics (CM) with the Hamilton

equations for 7(#) and /U[i). _
Classical theories of level Jll can also be obtained from 1limQF

by the methods (dotted lines in the scheme) of the generally i

accepted quantum mechanics.

f) Uncertainty problem. In the considered theory, as in any
theory which deals with probabilities, any value <A> of a physical
variable A4 'must be characterized by some uncertainty <;@44){> s
which has the physical sense of dispersion, i.e. < (44)?> is some
mean value of the square deviation of A from <A>.

In the "quantum mechanics with a nonnegative phase-space
distrivution function"ﬁthe mathematical image of a variable /A is
the quantum operator Al) and, in the same time, the classical
function /4@%/;1), related by the probability operator. So, it is
logical to write down for the quantum-mechanical formalism -

2 (@

<@AST = (/AR ~<A)%) /), (st

and for the statistical formalism -

<,(4/4)2>(S) = S (A(?aPﬁ-‘) =~ <’4>F )zﬁ—[?’ﬂzl)aéﬂ//o ) (57v)

Problems arise from the fact,that the expressions (57a) and
(57b) for some A are not equivalent. This follows directly from the
correspondence rule (14) with a protability operator,for which, in a
general case,

Qs (AGp)-CalAGph)) 7 Oz (ATgps) . (56)

The unequality (58) represents the main feature of the correspondence
rules named "non-Neumann". Their consequences have been investigated
in details in the work [327 . .

The choice of definition (57a) gives: the maximal certainty
of a value <A > (minimal, or equal to zero dispersion <(A/4)z>(a)
is achieved in the states 7b&, satisfying the eigenvalue problem:

ﬁ(t)% = Oz (Agp) Yy = 3y, d=o" (500 ;

)
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This result for /1 = M is in accordance with the sense of the
stationary otatoo,defined by the equation (46), But the choice of
(57a) leads to & partial deterioration of the “comsistent
probability interpretation' of the theory.

The choice of (57b) conserves the "consistent probability
interpretation'". The states ?bd of the maximal certainty of a
value <A> in this case satisfy the equation (for more
details see [327 ):

{0,3 (Ag,pt) — E<A>. Oﬁ(’q@’ﬂf’)} Yy = (59b)
%
~ {d*- ALY}y, d=o.

But now the dispersion <(4,4)"’->(5) in the states 1/);L in a general
case is not zero (even is not minimal),i.e. the eigenvalue problem
and the stationary states cease to play a fundamental role.

It is quite possible, that the consistent resolution of the
uncertainty problem demands that some new definition of <:@44]{>
shoud be proposed. This definition may coincide neither with (57a),
nor with (57b). But in any case such a uefinition must he closely
relatéd with the "subquantum" functions, the physical sense of
which is not yet clarified.

11. Some concrete applications

In this work we restrict ourselves by a consideration of the
simplest physical systems representing, from the point of view of
the classical theory, a particle of mass M in central potential
fields. The initial C-theory is then the classical mechanics of a
point particle in the three-dimentional space (i.e. 7 :7‘"://‘;,/;, )
and o = ,Zf = [Po/f’e,/).;) with the hamiltonian

2
HIEF) =2 F + V(IF). (60a)
To the set {/4}e1p we include the coordinate, the momentum, the
orbital mechanical moment, the kinetic, the potential and the whole
energies of the particle, i.e.:

- - — -
{AGpt3e, = (Ff, I=17p1, T=2ufs VYR, E=H), (o)
’ For the quantization based on a probability operator we choose
the Bose algebra 0@8(3) in the concrete representation (42a). Then
the coordinate-momentum probability operator takes the form (44).
The" "subquantum" ‘functions 4-3Q(§:t)} , determining the
probability operator, must satisfy the normalization requirement
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(43). The probability operator itself must satisfy the dynamical

correspondence equations (17) for any variable (60b) (that gives 12
integral equations for fﬂz‘j
equations (18) for any pair of variable (60b) (that makes 72
equations for f¢fx ¥ ). Besides, the set J¢fid
the invariance of the constructed Q~theory with respect to time

translations and to space rotations, because these invariances take

) and the canonical correspondence

must provide

place for the considered systems.
After a rather long calculation one may show that all the
mentioned above requirements are fulfiled if

oy — X 2,
In the "nonrelativistical quantum mechanics with the probability

operator (44)", where the "subquantum" functions are defined as (61),
the stationary isotropic normalized constructions

2 ~ 2
o, = AT— XGo]N B:57) =; l ‘j’,‘(lfn)] s (62a)
determine, in accordance with (54), the "subquantum" uncertainties

of coordinate and momentum:

r = 5 = VE Sedimdr, 8 =3p = VESPRp) . o

Putting the probability operator (44) with the "subquantum"

functions (61) into the corresponuence rule (14) we have the follow-
ing quantum operators for the classical functions (60Db):

id

F=®,  pFe-itv, [ =-itlEe], (632)

A A A 2 2 3 2
= = -~ = 4+ rq -\ [~
H=T=+vVv ErLARE - (& Vi)l di”, (63v)
The operators (63) act in the vector space QE of states ’yj('i’)
(X € R5)isomorphical to R= ).

The evolution equation (46) of the "quantum mechanics with a
probability operator" may be reduced, as in the generally accepted
quantum mechanics, to the eigenvalue problem of the operator (63b)

A7) = <E % Yo (T) (64)

which defines the stationary states and the correspondent energy

gpectrum. '
. .
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a) A free particle. For V[lf“'l) =
defines the set of the stationary states

- Y _$PF _ -
wﬁ(f) = T ‘e_‘r x . z = ng R (65a)

with the energy and the momentum spectrums:

—

L° ., 3p)° 5. = B .
7 —2}?) , <prp = L. (65b)

Hence, a free particle _gas here a "subquantum" energy &, =3(§‘p)7.7.4,
that is achieved when £ = O.

b)_ An harmonic oscillator. When V{J#) f‘U 2/3 the operator

(63b) takes the form:
3(8p)° 2Sa)?
=P f‘—“’éd?l , (66a)

which dlffers from the usual energy operator by the constant £ .
That is why, the equation (64) defines the well-known eigenfunctions
‘3&”’,’:”& (‘x" Q}’xs) of an oscillator with the energy eigenvalues

the equation (64)

< -
E'>f

/~/=-—t J’“’x £, €=

3 - .
<A¢~C'),,’”’”‘1 #“3(”1*'7:*’73*3') tE, g"q,‘"'- (66b)

The "subquantum" energy &£ does not effect on the level-differences
and is not therefore experimentally ovservable. .

c) An electron in the Coulomb field. When \/[/F;) =—Zea/j‘,«7| >
from (63b) we have
A

2
H = 2‘ V-— +—@PL ZPu(x) (67a)

where X =)5) and 'z)’(x) is defined by the construction (62a):

V(x) = —“T g;*&(g‘/ﬁ +4y8§d@)o_@ (67b)

The eigenvalue problem (64) in this case can be approximately
solved prosupposing that "subquantum"uncertalnty /- is small.
Then, as it follows from (62b), ok, (1§1) differs essentially
from zero only for small }’ . ‘l‘his allows to evaluate the
function (67b): U(x —» oe) —» 27, wo) = (Sr)7"

Therefore, under small 3/" the function V(x) can be presented in
the form of the sum, containing the undisturbed part 2”7  and the
Vl(x)-x"1. In such approach the problem (64)
defines for O-order approximation the stationary states "(lb',,(m ()=
= Ryt () yem 1A y), known from the correspondent problem of
the generally accepted quantum mechanics, .and the spectrum of
eigenvalues (for more details see [ 44,45 1):

perturbance
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Ze? L 3Ep)* . Ze?

~E Zntm = T Zan? 2/ 2an? nt (67¢)
2 \2Ul1) CN" ry 2(Yes) ’
Se = & (22 sy (@
né + !
§ (2er). o(a) Folpd (674)

is the Bohr radius, (3: are the binomial
5 £=9,1,.., 7-7; m =—-£,4u, Z.

The first term in (67a) is the #?-fold aegenerate energy level
of a hydron-like atom in the generslly accepted quantum mechanics.

Here a = tz/buea

coefficients, »n=1,2 ..

- e m———_. . Pra—

The second term represents the "subquantum" energy of a free
electron (see (65b)) and does not influence the difference between
the levels. At last, the third term eliminates the ‘é,~degeneration,

———

that changes the level-differences, In particular, we have:

- LefZ? s5p2
AEr';,s),,f, —<E)ﬂﬂo <E>IHI77 - ans ' (E . (67e)

The shift (67e) résembles that of Lamb by its dependence on Z and
77+ This allows to estimate the "subquantum" coordinate, uncertainty:
S/\‘ = 4,06 - /0""? om if (67e) coincides with the Iamb shift,
Sr < 4074, » if the shift (67e) reflects some effect which is
beyond the accuracy of the modern experiments.

12, Conclusion

The investigations, the results of which are set forth in the
present paper, make it possible to conclude as follows:

1., The elimination of the "incompleteness of the probability
interpretation”" in quantum theory is possible and may be achieved
only by the introducing to the theory of a joint coordinate-momentum
probability operator.

2. The protability operator makes it possible to formulate a
new method of quantization, that allows to construct a quantum |,
theory, when the initial classical theory is written down in the
Hamilton form. The probability operator limitates the arbitrariness
in the correspondence rule and by this'way ives some restriction
to the "incompleteness of the mathematical formalism" of the quantun .
theory.

3. The quantization, based on a probability operator, leaus to L
a quantum theory which allows to calculate the probatilities to fina {
a Eystem in any infinitesimal volume of the phase-space. That
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actunlly ocorroopondo to the point of view of Einstein, de-Broglie,
S¢hrodingor and others, who considered the cooruinate and momentum

ao oimultonenusly existing physical realities. At the same time, this
dooo not contradict to the Heisenberg uncertainty relation.

4. The quantization, based on a probability operator, leaus to
the appearence in the quantum theory of some "subquantum" notions,
which have no analogues in the generally accepted quantum and clas-
8ical theories. The "suoquantum" notions may influence on the fesults,
which allow an experimental verification. By this reason one may
hope on the possibility of some experimental verification of the
quantization with a probability operator.

‘5. The consistent probability interpretation of the quantum
theory with a probability operator and the existence of the "sub-
quantum" notions in its mathematical formalism show that such a
theory does not pretend to the complete description of the physical

reality. That ie why it is free from the problems like the Einstein-

Podolsky-Rosen paradox.
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E4-86-584
Koantonanuo rasMneToHOBMA TOOPUA HA OCHODO ONGBPATOPA OEPOATHOCTH

PAOGMATDHBAOTCA METOQ HDOHYOBAHUA € NUHGHHLIM oroBpaxeHnam Knaccuuackux
dyvryun A(mp.‘) KOOPAMNKAY, MMNYNLCOD U OPOMEHUM HA KDAHTODMO onaepatopn A(t)
anralpu & 0 NPOCTPANCTOO HDOHTOOMX COCTORMMA . Mpu 3Tom

Ao e raqp vy Papvadpe &,
8 oneparop BEPOATHOCTH } oBnagaer cBOMCTBaMu
fp(‘l.l\. })dqdp = 1, F'/,(q.p. t) -<¢|f‘(q. p.UY> 20,

W YROBNBTBOPRET CUCTEME ypasBHeHWii, OTPamanuux NMPUHUWNL AUHAMAYECKOrO W KaHG-
HRUECKOrD COOTBETCTBMIA MEMAY KNACCUMUECKONW U KBAHTOBOW TeOpuAMU. KeaHTOBaHue
C OnepaTopoM BEPOATHOCTH NPUBOAUT K KBAHTOBOU TEOPUM C HEOTPUKATENbHWM COB-
MECTHBM KOOPAUHATHO-UMNYNbLCHHM pacnpegeneHuem F¢ Ana nwboro coctoaHua ¢ . 06-
CYMAAOTCA OCHOBHHE CNEACTBUA KBAHTOBOW MEX3HUKM C ONEpPaTOPOM BEPOATHOCTU B
CpaBHeHUW C obWEeNPUHATHIMA  KNTACCUUECKOIA M KBAHTOBON TEOPUAMM. Nokasano, uto
KBAHTOBaHWe C ONEPaTOpOM BEPOATHOCTU MPUBOAUT K NOABNEHWIO B TEOPUM HOBHIX MO-
HATUNA, Ha3ldBaemux B pabote ''cyGreanToBHMM''. CnegoBaTenbHO KBaHTOBaA Teopua

C ONEepaTopoM BEPOATHOCTW He NpeTeHAYET Ha NosyiHoe OnMcaHue (PUandeckoii peanb-
HOCTU B TEPMUHAX KNACCUUECKUX NEPEMEHHHX M MO 3TON NPUUMHE HE COAepKMT Npob-
neM TMNa napagokca JnHuTerina-Nogonbckoro-PoaeHa. NpusegeHu peaynbTatu paga .
KOHKP@THMX 33pau: ceobogHan uacTuya, rapMOHMUECKMI "OCUMNNATOP, 3NEeKTPOH B Ky-
NOHOBCKOM none. 3Tv peaynbTaTe NO3IBONAKT HAREATLCA H3 BO3MOKHOCTD 3KCRepUMeH—
TONBHOR NPOBEPKM NPABOMEPHOCTH KBAHTOBAHMA Ha OCHOBE OnNepaTopa BEPOATHOCTH.

PaGora swnonHena 8 JlaBopaTopuu TeopeTuuecKoi manku OUAK,
TMpenprar OGseimmeHHOro MHCTHTYTA ANepHbIX Hccnenobanui. llyGHa 1986

Entralgo E.E., Kuryshkin V.V., Zaparovanny Yu.l. E4-B86-584
Haml ltonian Theories’ Quantization Based on a Probability Operator

Tho quantization method with a linear reflection of glassical coordina-
te-momentum-time functions A(q.P,t) at quantum operators A(t) of an algebra s
in a gpaco of quantum states ¢, based on a probability operator .f‘(q,p,t)cj-.
is consldorod. For such a quantization

A0 - ra@p) Fa o tasp c #,
wharo tho probabllity operator F has the properties
[F@p &l =1, Fu@pt) = <$IF@p.Y[¢>" 0,

and satlsflos o system of equations representing the principles of dynamical
and canonlcal corrospondences between the classical and quantum theories. The
quantization bosed on a probability operator leads to a quantum theory with
a nonnogative Jolnt coordinate-momentum distribution function Fy for any sta-
te ¢, The maln consequences of quantum mechanics with a probabllity operator
aro dlacussed In camperison with the generally accepted quantum and classical
thoorlon. It le shown that a probability-operator leads to an appearance of
somo now notlons called "subquantum'. Hence the quantum theory with a probabi
1ty oporator doos not pretend to any complete description of physical reali-
ty In tarme of classical variables and by this reason contains no problems
ITke Einstoln=Podolsky=-Rosen paradox. The results of some concrete problems
aro glvont o froe particle, a harmonic oscillator, an electron in the Cou-
lomb flold. Those rosults give hope on the possibility of an experimental
verification of tho quantization based on a probability operator.

The Invostigation has been performed at the Laboratory of Theoretical
Phyelice, JINR,
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