06bEAHHEHHbIA
MHCTHTYT
ARBPHbIX
MCCAEAOBANUA

RYdna

E4-86-568

AY Matveenko

ON BETWEEN THE BORN - OPPENHEIMER
AND HYPERSPHERICAL

COORDINATE METHODS

IN A THREE - BODY PROBLEM

Submitted to XI International Conference on
Few Body Systems in Particle and Nuclear
Physics, Japan, August, 1986




1. INTRODUCTION

It has recently been experienced that rather different three-~
body pure Coulombic systems /é;' or/{§§+(molecular type)/1’2/,
}12 (atomic type) 3 , and eee* ('"nuclear" type) 495 can be freat-
ed on the same footing., The method is based on the old adiabatic
idea of Born and Oppenheimer/s/ of molecular physics. The details
of their argumentation do not matter here, we shall simply suppose
that the Schrddinger equation of a system should gpproximafely be
geparable though we do not yet know in which coordinates. In or-
der to find those coordinetes we start with the pure molecular
gystem }{:D*: where the adiabatic idea works excellently and try
to extend 1t to the others, As far as it is now believed/7/ that
the Born-Oppenheimer description is also applied to the physical
problems with short interaction our anelysis should actually be
applicable also in that case. In a more general context, we are
looking for the most convenient form of the kinetic energy opera-
tor for a three-particle system from both the physical and nume-
rical points of view.

2. LANGUAGE
2.1. Nonrotational Three-Body States with HD'-Ion as an Example

We use Mg and M for the messes of heavier particles and
M for that of a velence particle, Figure 1 shows the triangle
of the particles with Zn ,7:! s f{_ being the interparticle
distances., These are in turn used to define the prolate spheroi-
dal coordinates 8

Ta +7Z, T2 -~ 7,
}r:_‘ak;ﬁ . gf_%_f.

The molecular Jacobl reduced masses are

M= ma-m‘/{n}.-;ms), = Wie(Ma+ g ) fimg « mygem, ) (2)
So, three coordinates ;‘, ﬂ N are enough to describe the de-.
formation of the triengle from Figure 1 due to the Schr8dinger
equation
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Fig.1. Three-body triangle. Prin- Fig.?. Molecular Jakobi coordi-

cipal axes of the inertia tensor’ nates for a three-body- descrip-
are indicated. tion.
ij(m )=EW(R}.2). @

/8/

The precise form of H can be found elsewhere 3 it inclu-
des the Hamiltonian of the fast subsystem

1
% =“2m Af’l +V (4)

where A is af ,7} part of the Laplace operator and

V= ‘lfa.('la.) + lfg(?.,) + Ve (R) , as usual. The standard pro-
cedure of the qun—Oppenhelmer method is to approximate the wave

function from (3) by the form

\lj(RJJ?): \{’(f,?;R)‘f/(R), (5)

where Y( }' , 2 ; R ) is the solution .of the twoe~center problem

Ar=¢&R)r @

for the ground state with { ( R ) being its eigenvalue, After cal-
culating { (R) ana ‘(" ( }' , ‘2 ; R ) the molecular vibrational
spectrum is defined from

[ (R JR <\€J Hso ‘\F> \P(R EY(R

I=-0
Here the matrix element of HBO

containa the adiabatic potential

& (R) from (6) and the adiabatic corrections to it. One can
eagily imagine a formal procegure in which the solution of the
total Schroédinger equation (3) is searched in a form of the ex-
pansion over the total set of solutions of the two-center problem
(6)  In that casé the operators from Hgt;
elements and equation (7) turns into the system of Schroedinger

generate matrix

equations. These matrix elements exibit an unphysical asymptotic
behaviour as R o0 , thé so-called long-ranged radial and
angular couplings. The operators forcing these couplings include
. . J s
cross derivatives of the type 2K 5% and % Y , thus mixing

the fest{¥y%],

Here, we introduce the inertia tensor components

L=HRY I+, <,

and slow {R} degrees of freedom.

- ~
with the principal axes 6’2 and 63 , being given in Figure 1.
The function of coordinates and masses of the system from (7)

has recently/s/ been used in order to get rid of the cross-deriva-

tive terms in HB. by the transformation

H, = oxp (-1 ) Hgy Wr//’) )
with the generator A 6" [ )R I3 ')R ) The Hamiltonian H/l

ig of a rather simple form

H 1 _3.‘ 4 5 c))-éi-.: (10)
o 2H V58T R R/ 2 bR

where the redefined Hamiltonian of the fast subsystem 4 is

4 <L ap FV.

given by

A (11)
The formal simplicity of H_A is related with an important phy-
sical feature of N ,» providing the exact dissociation limit
of the molecule. That was not the case for the operator (4).



2.2. Rotational States

When the particles from Figure 1 are_allowed to rotate |
(Figure 2) we need six coordinates , ,43, j'- R ? B 7’ to
describe__t‘he system. Here , are the polar angles of
vector R and megsures the angle of the rotation of the
plane of the triangle, R being the axis of rotation. The ori-
ginal Born-Oppenheimer (molecular) Schroedinger equation takes
the form

HBOW(RJ)‘l)@)q)’Y)‘:E\V(R ’§.7‘Z’8’¢’Y), 12y,

/10/
where - -~ =3
10 y2.2%-€
Heo = Hso + gz

—r - -

The /\ -transformation commutes with both 72 ana J{ so that
the experience of the previous section can be used without any
change but an additional attention should be paid to the long-
ranged angular coupling term 7[ that contains W 3y
,)3" 3 cross derivatives. This coupling was transformedho/
in order to make it zero in the fragmentation regions ( R— -,

P—* 1, ‘Z——b i”’ where & molecule dissociates into an atom
and a core. The resulting Hamiltonian H/\Q is obtained by

' -

-/
Hyg = € € H,e” e, "

where a new generator Q = -cW l " was introduced

with J{

momentum onto the normal to the plarie of thg.particle triang-

le,(u giving the angle between vector R and the nearest
principal axis of the inertia tensor, which is known to be in the
plane of the triangle. The transformed Hamiltonian can be written

in the form 2
H - f i j. + .S. 2 - ——3- ’ (15)
AQ=PAQ =~ T (5fr 7 RIR 2MR*

being {:he projeci"t'ior{ of the total angular

where {152 should be referred to as the dynamical two-center
operator for the rotational states, One further step of notation

/11/ /12/)

was proposed for practical purposes (see also

iqg-:/ﬂ"‘rk + T ’

Coriolis (16)

where Q
T 4(1,14' ‘7211- 73'
=% -~ - - 17)

R™ 2 1-4 Iz 1'3
is the operator of the classical rotator of the problem. By com-
paring the Born-Oppenheimer total Hamiltonian (13) with the trans-
formed ft4gl , Wwe note the important features of the resemb-
lence and repudiation.Both utilize the idea of quasiseparation of
the degrees of freedom. In 'the case of f4ﬂ§1 this quasisepara~
tion turns into an exact separation in the fragr}lentation regions.
The operator of radial coupling was diagonalized exactly while
that of the angular coupling only asymptotically. The main rota-
tional part was changed from that of a spherical rotator to an
asymmetric top operator. The natural behaviour of f{q{l in the

fragmentation regions can be utilized/13/

in producing the formal
molecular-state scattering theory without unphysical difficulties

of the traditional molecular-state approach/14/.

2.3. Change of the Language

The effect ofA and fz transformation is equivalent to
the change of slow variable R to Ky = f R and of the
angular variables {@, (D)‘f} to oo, /?,}" that are the
Euler angles of the rotation putting the original leboratory axes
E‘ ’ é; N e: into the principal axes (body-fixed) of the
in;rtia tengor of the system/“o/. ’l‘he_A -transformation also
changes the Hilbert space,where Hamiltonian ects. . The chan-
ge of the molecular Jacobi coordinates is accompanied by the
change of the Jacobi reduced masses M and M to the effective
coordinete dependent masses Mf and ”'/f having the property of
reproducing the reduced masses of fragments in the fragmentation

regions/'g/.



The Born-Oppenheimer method was transformed into a hyper-

gpherical coordinates way of treating a three-body problem/16’17/-

2.4. Backspace

In order to restore the Born-Oppenheimer description on a
new level, we introduce the partial wave decomposition of the
elgenfunction of HAQ by

w5 (o(;F,Y) AR AV
k=o {)

with the angular part [ My, Producing the exact quantum numbers
of total engular momentum end parity P

Y y 7
B f’ = ‘237 ("(}Fyr) + P(—1) Z’Nk (’(,/3))7.(19)
MK -M-K I

After projecting onto BMK s }-//\_Q is brought into the mat-
rix Hamiltonian ;o

b/ p_ 4,52 Y 3
HA_Q = {/‘Q 271 DR: RA’)RI‘:’ ZMR:
P

that contains the other matrix operator 4[2 ~ the Hamiltoni-
an of the dynamical two-gpenter problem with exact quantum numbers.
The eigenfunctions of {, are to be used in the Born-Oppenhei-
mer like decomposition of Yf{yf (‘e/\ , }, 2) from (18) .

3. ILLUSTRATIVE MATERTAL

3.1. Exact Shroedinger Molecular-Iike Equation for ( 7 = 1,
P =-1) state of (aty)* Ion :

We materialize the ideas given above using a weakly bound
state of (dtj‘ )* ion that have become very popular lately/w_zo/
"gue' to its role in tbe/“—catalyged fusion/21/.We are sure that
the equations sketched below are nicely suited for a precise
calculation of this state,

o

-
-

3

withMa=Mg M=/  ana =My, and leaving j,/’ , M

indices out, we have in this case{ S ,
1 v
Bo = 2 ,,Z_HO(D(}IB,X); B»{ = :’X—Nﬁ(x'p' r)+z‘f77 (O()F/y/(zn

Jp
for non-normalized MK
looks like

Y= By % (Ra,3,%) +B, % (R, . 3,1) -

b7 e/
The nontrivial part "‘pA-Q of projected H/LQ (20) has the form

£ _(f ¢, 4_(% o 2
nQ - -

G, ¢ °
with the precise form of" / , (41 , ¥ and 2/4 being easily ex-

tracted/10’13 « The three-dimensional system of Schroedingér equ-
ations will be

%(PA)}? ? 2) — (24)

HAQ -E O -
wﬂ (RA ° r7 ? )

After specifying the boundary conditions ( O £ R/\ <oe,

1S§'<~ »~7$%¢ 4 ), the system (24) can be solved if a
3d code is available. If not, we can simplify the task.

from (18), The exact wave function

|

3.2, Improved Born-Oppenheimer Description

A 24 code should be used to provide the elgenvalues and eigen-

functions of the problem
B ) \F“ (%/ K¢ ;R/l)

{m’z - E(RA)] (50 Ro) " 0.

After that the adiabatic decomposition of the type

(25)



X (n)
Y (Ra,5.0)=Z RN Rl ko 1 o

can be introduced for the exact wave function of the state. The
number of states in (26) should be limited, which is an approxi-
mation. On the other hand, the minimal physically meaningful de-
composition (26) should include two states of the problem (25),
which are to be chosen by their asymptotic behaviour as A—Sﬂo 3
foQland X?(e) are such that

A _24 My

Ry— o

e,

/ZQ *'/KL“
(27)

(¢) /
& Rm T2

A-—pd:

7 "

This choice is due to the quasidegeneracy of (27) and to the ex-
perience gained in earlier calculations .

3.3. Classical Rotator Model

A further simplification of the numerical task is achieved
if .we" adopt the classical rotator model/11/, in that case 4:52
is substituted by

7<>R - 7? + T
N (28)
2, R
from (16) with Tcoriolis ??é?g omitted., The justification of this

step can be found in ref.

4., RESULTS

With two eigenstates of the operator (28) classified by the
conditions (27), we have tried the improved Born-Oppenheimer de-
composition (26) of the total wave function (K: o, =R,6’).

R 1

e s mma A mm

Thus we have got Eﬂ = 0.44 eV for the binding energy of the
weakly bound state of (dtJA )* ion, which should be compared with
E = 0.656 +0,001 eV from 844 -state approximation’ '8/ of tne
usual Born-Oppenheimer scheme., In that case they have no binding
at all if the number of states is less than eight. The important
feature of the new basisg should be mentioned., The spectrum of

the operator (25) is discrete’ 22/,
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Mareeenko A.B. E4-86-568

O cBa3u meroaa BopHa-OnneHreiimepa
¥ Metoia runepcdepuuecKux GyHKIuil B 3agaue Tpex Ten

B pabore mnpennoxeH HOBBIA MeTOd pacueTa TPEXYaCTHYHBLIX CHC-
TeM, KOTODBIH ABNAETCA 00beIHHEHHEM ABYX CTAPBIX H XOpOWO H3BECT-
HBIX NOAXO0mOB: Merona BophHa-OnneHrefiMepa M Meroza runepcgepw-
yeckux ¢QyHkumii. CnabocBaA3aHHOe COCTOAHHE (di:u)+ HMOHa HCMONh3yeT-
CA ONIA J€MOHCTPALMH JOCTOUHCTB 3TOro MeToja.

Pa6oTa BeIMONHeHa B JlabopaTropun Teopernueckoii pusunxu OUAU.

Ipenpunt OGbeNHHEHHOTO HHCTHTYTa AflepHBIX HccliefopaHui. llyGHa 1986

Matveenko A.V. E4-86-568

On between the Born-Oppenheimer and Hypersperical
Coordinate Methods in a Three-Body Problem

An original method for the calculation of three-body systems is given
which is also a combination of two old and well-khown approaches. The
weakly bound state of (dtu)* ion is used to demonstrate the merits of
the new way.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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