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1. INTRODUCTION 

It has recently been experienced that rather different three
body pure Coulombic systems f4.+- orH:z5.+(molecular type/ 1,2/, 

He (atomic type)/3/, andeee+ ("nuclear" type/4,5/ can be treat

ed on the same footing. The method is based on the old adiabatic 
idea of Born and Oppenheimer/ 6/ of molecular physics. The details 
of their argumentation do not matter here, we shall simply suppose 
that the Schrodinger equation of a system should approximately be 
separable though we do not yet know in which coordinates. In or

der to find those coordinates we start with the pure molecular 
system 11~~~ where the adiabatic idea works excellently and try 
to extend it to the others. As far as it is now believed/7/ that 
the Born-Oppenheimer description is also applied to the physical 
problems with short interaction our analysis should actually be 
applicable also in that case. In a more general context, we are 
looking for the rnost convenient form of the kinetic energy opera

tor for a three-particle system from both the physical and nume
rical points oi view. 

2. LANGUAGE 

2.1. Nonrotational Three-Body States with HD+-Ion as anExample 

We use ~~ and ~I for the masses of heavier particles and 
fone for th~t of a valence particle. Figure 1 shows the triangle 

of the particles with ~~ , ~~ , fl being the interparticle 
distances. These are in turn used to define the prolate spheroi
dal coordinates/8/ " 

'"{li. ....-r, c-= 7 a -7,.J~ ( 1 ) 
R 

The molecular Jacobi reduced masses are 

M=- Wlor"h1.g;;'. ofk-t~) J »r =~~(111*-+ rn~)/~~ "' 111~ -t Itfc.) (2) 

So, three coordinates ~', ~ , R.. are enough to descri be. the de- . 
formation o f the triangle. from Figure 1 due to the Schrt:ldinger 
equat í cn 

I ,1t)l>tilJiiitCHIllitl ~;SCTZn'y'1 f 
Ut!f1i!idX R(1.'"'1~110Jl;umtl ( 
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Fig.1. Three-body triangle. Prin Pig.~. Molecular Jakobi coordi
cipal axes of the inertia tensor" nates for a three-body" descrip

are indicated.
 tion. 

1-=0 
(3)HBO YCRJ,'l)=E'JI{RJ,'Z)· 

,t~O /~
The precise form of "80 can be found elsewhere ; it inclu
des the Ham~ltonian of the fast subsystem
 

-t =-0.2"m ~~~ +-V (4) 

where Ll},t is a {},~t par t of the Laplace operator and 

v= '\fel. ('Zelo) + Vd (~/) + Vê (R. ) , as usual. The atandard pro
cedure of the BQrn-Oppenheimer method ia to approximate the wave 
function from (3) "by the form 

(5)'Y(R,~,i)-:: 'r(S>?;R)'f/(R), 

where 'f ( f ' ~ ; R ia the solutionof the two-center problem 

i~ =é(R)Y> (6) 

for the ground state wi th é ( R ) being i ta eigenvalue. After cal
culating é (R) and 'ê (r'? j R ) the molecular vibrational 
spectrum ia defined fr~m 

1 (1 I. ):lo J 7~ó >] ~) V 
[ - 2M R +lR 4- <"f H8D t'f 't' \1{ ~E 't'(R). (7) 

,=-O )1.
He~e the matrix element of 1780 containa the adiabatic potential 

2 

t (R) from (6) and the adiabatic corrections to it. One can 
easily imagine a formal proce~ure in wh:i;ch the solution of the 
total Schroédinger equation (3) is searched in a form of the ex
pansion over the total set of solutions of the two-center problem

1-:0 
(6) • In that case the operato:cs from HBO generate matrix 
elements and equation (7) turns into the system of Schroedinger 

equations. Theae matrix elements exibit an unphysical asymptotic 
bohaviour as R.... ()D , thé so-called long-ranged radial and 

angular couplings. The operators forcing these couplings include 

cros s deri.vatives of the type ~ ,,~ and ~ ~ o, thus mixing 

the fast{~'~í, and slow {R ~ degrees of freedom. 

Here, we introduce the inertia tensor components 

I -= M R"LJ T + T "::: T (8) 
of , -2,. -3 - ... 

wi th the principal axe s i,. arid e; ,being given in Figure 1. 

The function of coordinates and masses of the system ~ from (7) 

has recently/8/ been used in order to get rid of the cross-deriva
tive terms in by the transforrnationH:;O
 

H = ~(-IJ)H;:o ~r(/})
 (9) 

with the~enerator 11:: -6. (1)R. (1·~). The Hamiltonian HII 
is of a rather simple form 

-= J -..L (1.'- +- S d) -l i- ( 10)HA nlJ 2H )~'J. R 'Jp. 2. hR t 

where the redefined Hamiltonian of the fast subsystem ~ is 
given by 

j'l. --I ~ - - .ó ~'l + y' f V. 
i' .2/'h J J ( 11) 

oLí, ci tv of HA 
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2.2. Rotational States 

When the particles from Figure 1 are al~ed to rotate. 
(Figure 2) we need six coordinates R ,e, rt", J ,7 , 't' to 
describe 4he system. Here -{ e ,q:,} are the polar angles of 
vector R and 'f measures the angle of the rotation of the 
plane of the triangle, 7{ being the axis of ro t at í.on, The ·ori... 
ginal Born-Oppenheimer (molecular) Schroedinger equation takes 
the form 

H Y (P. ,~ 1 ~ JB) cP, 'r) ~ E'fi(R ,~ ,1,6,1» Y) fso	 (12) . 

where/ 101 
-1	 - ....

7-: i) 1 -21"{

H :: HBO -r
 ( 13)ao /2111<'1. 

-2 _ ... 

The!\ -transfor~ation commutes with both :r and JO( so that 
the experience of the previous section can be used without any 
change but an additional attention should be paid to the long

- -	 ~ :>ranged angular coupling term J'I that contains ')8 d~ 

~~ cross derivatives. This coupling was transformed/10/ 

in order to make i t zero in the fragmentation regions ( R~ - , 
}t- 1, ~.-. 2;1), where a molecule dissociates into an atom 

and a core. The res111tingHamiltonian Hllfl is obtained by 

- Q	 -/1
H/\Q	 ~ e e H e /I eQ (14 )80 ' 

where a new generator .0= -t CJ:J, . was introduced 

with ~{ being the projeétion of the total angular 

momentum onto the normal a;; the plane of th~article triang
le, W giving the angle between vector R and the nearest 

principal axis of the inertia tensor, which is known to oe in the 
plane of the triangle. The transformed Hamiltonian can be written 
iil the form 

1 .s ~))_ 3 ( 1'5) H,,~ :: ~A!l - 2M »~+ R~ 2M.Rt 

where -tA Q should be referred to as the dynamical two-cent.er 
operator for the rotational states. One further step of notation 
was proposed for practical purposes/ 11/ (see also/ 12/) 

~Sl -= '11 + TR + ~or.iolis (16) 

where 
J-t?.. %'l.f
r	

!~ )f-	 (17)TR =i ( i,	 I"J--1 

is the operator of the classical rotator of the problem. By com
paring the Born-Oppenheimer total Hamiltoninn (13) with the trans
formed 11~~ , we note the important features of the resemb

lence and repudiation. Both u t Ll.Lz e the idea o f quas Lsepara t.Lon of 
the degrees of freedom. In ·the case of H/ln this quasisepara

tion turns into an exact separation in the fragmentation regions. 
The operator of radial coupling was diagonalized exactly while 

that of the angular coupling on~y as~nptotically. The main rota
tional part was changed from that of a spherical rotator to an 
as~etric top operator. The natural behaviour of fi~!L in the 
fragmentation regions can be utilized/ 13/ in producing the formal 
molecular-state scattering theory without unphysical difficulties 
of the traditional molecular-state approach/ 14/. 

2.3. Change of the Language 

The effect of 11 and {2 transformation is equivalent to 

the change of slow variable R to /(/\ -: JIfR. and of the 

angular variables {e, r.[) /tff to Ir;{ J I,; l that are the 
huler_ angles of"-9 the rotation putting ~he original laboratory axes~ 

e , e, ,e2 into the principal axes (body-fixed) of the 

in~rtia tensor of the system/ 10/• The~ -transformation also 
changes the Hilbert space~where Hamiltonian acts,,/13/. The chan

ge of the molecular Jacobi coordinates is accompanied by the 
{l	 change of the Jacobi reduced masses J1 and ~ to the effective 

coordinate dependent masses /'11 and "'/1 having the property of 
reproducing the reduced masses of fragments in the fragmentation 
regions/.8/. 
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The Born-Oppenheimer method was transformed into a hyper
spherical coordinates way of treating a three-body problem/ 16 , 17/ 

{ (~ 
2.4. Backspace , f) 

In order to restore the Born-Oppenheimer deacription on a 
new leveI, we introduce the pârtial wave decomposition of the 
eigenfunction of }{An by 

J 'P ( ) Jrr )~Jp,:: LB rJ,j3,Y 'f \/~A,5,.( (18 ) 
MK	 K 

M k-zo 'jr 
wi th the angular part B-MK producing the exact quantum numbers 
of total angular momenturn :J and parity p

'Jr:r	 :t ] fJB =Z (oi) P, r) + P(- 1) :tJ_H k (~, p, ~. (19) 

MK -H-K 
11' 

Aí'ter projecting onto BMK , /-//t.fJ.. ia brought into the mat
rix Harniltonian ' 

..... 
p _ 1 ('d t	 

(20) 
Q 2M dRt oi

~ 

3. ILLUSTRATIVE MATERIAL 

3.1.	 Exact Shroedinger Molecular-Like Equation for ( J a 1, 
p 1:1-1) State of (dtr)+ Ion 

<r 
We materialize the ideaa given above uaing a weakly bounu 

state of (dt~ )+ ion that have becorne v~ry ,popular lat~ly/18-20/ 
'~ue' to its role in theJ\-cataly~ed fusion/ 21/.we are sure that 8~the equations sketched below are nicely suited for a precise
 
calculation of this ~tate. (~~
 

With J'n,q-=h'1cl ,1"( =11?~ and me -= iI?~ and leaving J, r ' /1 
indices out, we have in this case ~ 

B -= O-x 1 &QVI. 8 =Jf: {~P, r)~~_:1 (V< ),)y)
o .c ol..)_110\G Jr'v/J -1 -,1-1	 (21)(I 

1p 
for non-normalized ~MK from (18). The exact wave function 
looks like 

'V ':: Bo 'fio (R", )5)~) r 15-1 ~ (R/I., S/() . (,22) 

~f	 "lp 
The nontrivial part -t of projected HAJI. (20) has the formA51 

(23)i ~ (f (1~) oi- (1[0 o ) 
~n í t o ~ 

~t	 ~ 

wi th the precise form of" ( , f.t2. , 11; and lí., beirig easily ex
tracted/ 10 , 13/ . The three-dimensionai system of Schroedinger eq~
ations will be 

(24)(H
t1 Q 

-E)( 'Pa(RA),r,c))=o 
w, (R/\ , ~ , ~ ) 

.After specifying the boundary condi tions ( O ~ R/\ <00 , 
1~ t (~ , ~1 ~ 'l ~ 1 ), the aystem (24) can be aolved if a 
3d code ia available~ If not, we can aimplify the taak. 

3.2.	 Improved Born-Oppenheimer Descr1pt1on 

A 2d code should be used to provide the eigenvalu~s and eigen
functions of the problem

fi .. )) ( ~ O/l jR/l))_-- E R/\	 - O . (25)
ASl	 'r,(f}? ~ R,,) , 

After that the adiabatic decomposition of the type 

6	 7 



Thus we have got ~a c 0.44 eV for the binding energy of the 

~	 (RIt , ~, 7.) ~ F '('t(~, 1, RIt)X;h){~); K=O, 1 (26) 

can be introduced for the exact wave function of the state. The 
number of states in (26) should be limited, which is an approxi
mation. On the other hWld, the minimal physically meaningful de
comp.osition (26) should include two states of the problem (25)', 

which are to be -cho sen by t he í r asymptotic behaviour as RA~'t?O ; 
y:x~ I and	 'e(e) are such that 

(4) '-I In' • /n,/'f ---.. - __ 't 
R _00 ;2 
i\ 1171 + -i

(27) 
(ó') ,. I m".~
 

f RA-~ .2.
 
);,cl + ?n..r 

This choice is due to the quasidegeneracy of (27) and to the ex
perience gained in earlier calculations/ 9/. 

3.3. Classical Rotator Model 

A further simplification of the numerical task is achieved 
if.w~ adopt the classical rotator model/ 11/, in that case ~~ 
is substituted by 

pR "::" -I -I- T 
(2'8)~.Q 1\ R 

from (16)	 with Te . l' being omitted. The justification of this 
orlO lS /12/

step can be found in ref. • 

" 

4. RESULTS 

With two eigenstates ?f the operator (28) classified by the 
conditions (27), we have tried the improved Born-Oppenheimer de
compo~ition (26) of the total wave function (k' = O, n: = q ,(). 

weakly bound state of (dt~ )+ ion, which should be compared with 
E = 0.656 ~0.001 eV from 844 -state approximation/ 18/ of the 

;~	 usual Born-Oppenheimer scheme. In that case they have no binding 
at all if the number of states is less than eight. The importantJ, 
feature of the new basis should be mentioned. The spectrum of 
the operator (25) is discrete/ 22/.~ 
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MuaeeHKO A.B. E4-86-568 

0 CBR3H MeTona BopHa-OnneHrenMepa 
H MeTona rHnepclf>epH'IecKHX lPYHKUHH B 3RnatJe Tpex TeJI 

B pa6oTe npenno)f(eH HOBbiH MeTon pact~eTa TPext~aCTH'IHbiX CHC
TeM, KOTOpbiH RB!IReTCR 06'benHHeHHeM nBYX CTapbiX H XOpOWO H3BecT· 
HbiX no.nxonoa: MeTona BopHa-OnneHrenMepa H MeTona rHnepclf>epH
tJecKHX lPYHKUHH. Cna60CBR3aHHOe COCTORHHe ( dQ.t) + HOHa HCllO!Ib3YeT
CR nJIR neMOHCTpRUHH noCTOHHCTB 3TOrO MeTona. 

Pa6oTa BbinOJIHeHa B Jia6opaTopHH TeopeTHtiecKOH $H3HKH OM.HM. 

llpenpHHr Ofu.e~nU~eHHoro HHCTHryra .snepH&IX uccnenosaHHii. lly6Ha 1986 

Matveenko A. V. 

On between the Born-Oppenheimer and Hypersperical 
Coordinate Methods in a Three-Body Problem 

E4-86-568 

An original method for the calculation of three-body systems is given 
which is also a combination of two old and well-khown approaches. The 
weakly bound state of ( d~) + ion is used to demonstrate the merits of 
the new way . 

The investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 
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