

обьедининиы
 иистітут
 лаериых исследоваий аубиа

E4-86-557

R.G.Nazmitdinov ', I.N.Mikhailov, Sh.Briancon ${ }^{\mathbf{2}}$

ON OCTUPOLE ALIGNMENT IN ACTINIDES

Submitted to "Physics Letters B"

[^0]During the last years, a lerfe amount of experimental inform mation on the low-lying octupole vivrational states was accumulated, in particular in the setinide nuclei (see for example ref.[1]). The properties of negative parity band differ much from what could be expected on the Lasis of adiabatically slow rotation superimposed on the vibrational excitation, with increasing rotation the vibrational angular momenturn tends to align in the direction of the rotational ancular monentum, givine rise

- to distortions in the spectra of rolational states and to the now regularities in the transitions fron the aligned states to the ground band states.

Thesc new features of the rotational bud have been understood in the framework of a phenomerological model including the pure poson (octupole)operators coupled to a rotor by the Coriolis force $/ 2,3 /$. It was shown that the Coviolis interaction aligns the octupole angular monentum and maxes nuclei softer with respect to the octupole deformation with increasing spin.

The conclusions of papers $/ 2,3 /$ mus: te cnecked within the microscopic approach taking into account the many-oody structure of the phonons that may change with rotavion. The convenient way to do this is provided by the model including eranking plus rarm dom phase approximation (Civa $/ 4-6 /$. In this note we report the results of calculations of the alicmaent of octupole phonons in the states of the $K^{\top}=0^{-}$band in three nuclei ${ }^{230,242} \mathrm{Th}$ and ${ }^{233} U$. The calculations of this one was also reported in $/ 7 /$ for ${ }^{322}$ Th and ${ }^{236,238} \mathrm{U}$. Our calculations differ in the treatment of the alipned angular momentum ard in parametrization of the Hamiltonian. Some preliminary results were announced in $/ B /$ We also calculate the oranching ratio $R_{I^{*}}=B\left(E A, I_{o m t}^{-} \rightarrow(I-1)_{y_{2}}^{+}\right)$/ $8\left(E A, I_{o k t}^{*} \rightarrow(I+1) y_{y}\right)$ for the reduced probaoilities of the
electric dipole transitions rom the one-phonon states to the grourd band states.

The Handitonian avseliwite; octupole excitations in the rotating nuclei mat pe mitoen

$$
\begin{aligned}
H & =H_{\Omega}+H^{\prime} \\
H_{\Omega} & =H_{M c}\left(\varepsilon_{2}, \varepsilon_{\mu}\right)+\sum_{\tau} \Delta_{\tau}\left(\hat{P}_{\tau}^{+}+\hat{P}_{\tau}\right)-\sum_{\tau} \lambda_{\tau} \hat{N}_{\tau}-\Omega \hat{J}_{n} \\
H^{\prime} & =-\frac{1}{2} \sum_{\tau \tau}, x_{\tau} \tau^{\prime} \sum_{m}(-1)^{m} \hat{Q}_{3 m}(\tau) \hat{Q}_{3 m m}\left(\tau^{\prime}\right),(1 c)
\end{aligned}
$$

where $H_{m o}$ is the NLlsson Haniltonian as defired in ref. $/ 9 /$, P^{+}is the monopole pair operator and \hat{N} is the particle number operator. The soparaule octupole-octupole interaction containa both an isoscaiar end isoveclor components with tie corresponding strength constants: $2 x_{0}=x_{p p}+x_{m p}\left(x_{n n}=x_{p p}\right)$.

$2 x_{1}=x_{p p}-x_{n p} \quad(\boldsymbol{\tau}=p($ provons $)$ or \boldsymbol{n} (neutrons)). we assume

 that the parity is a good quantum number and restrict the calculation to the states of the $K^{\boldsymbol{T}}=0^{-}$band only (negative signeture atates).As the Hamiltonfan (1c) may te divided into two parts differing in symmetry with respoct to rotation by art arigle T around x-axis, its KPA diatonalization separates into two independent parts $/ 4$ ' $^{\prime}$ / So, the negative signature states are formed by the negative signature part of Hamiltonian (1)

$$
H^{(-)}=H_{\Omega}-\frac{1}{2} \sum_{\tau \tau^{\prime}} x_{\tau}, \sum_{n=1}^{4} \hat{F}_{n}(\tau) \hat{F}_{n}\left(\tau^{\prime}\right)
$$

where

$$
\begin{gather*}
\hat{F}_{m}=\frac{a}{\sqrt{2}}\left(\hat{Q}_{3 m}-(-1)^{n} \hat{Q}_{3-m}\right), a=\left\{\begin{array}{l}
i, m=1 / 3|m=1| 3) \\
1, m=2 f|m=3| 1)
\end{array}\right. \\
\hat{Q}_{3 m}(T)=\sum_{k=1}^{N_{i}} 2_{m}^{3} Y_{3 m}\left(\theta_{\tau}^{k}\right) \tag{3}
\end{gather*}
$$

and m is the megnetic quantum number (the x-axis is the quantization axis). Then, representing Haniltonian (2) in the rotating frame by bosons $/ 4,5 /$, we obtain

$$
H^{(-1}=\frac{1}{2} \sum_{\tau \mu} E_{\mu}(\tau) b_{\mu}^{+}(\tau) b_{\mu}(\tau)-\frac{1}{2} \sum_{\tau T} x_{\tau \tau^{\prime}} \sum_{m} F_{m}(t) F_{h}\left(1 \tau^{\prime}\right)(4)
$$

Index M denotes sumation oyer the two-quasipartic]e atates: ik(positive signature+) and iḱ(negative signature-),
$E_{\mu}=E_{i k}$ or $E_{i \bar{k}}\left(E_{i k}=E_{i}+E_{k}, E_{i(k)}\right.$ is the quasiparticle energy obtained from solving the Hartree-jogoluvov equations in the cranking model $\left.{ }^{4-6 /}\right)$. $F_{n}(t \tau)$ is lincar boson part of the corresponding operator:

$$
\begin{equation*}
F_{1,3}=i \sum_{\mu} F_{\mu, 3}^{13}\left(b_{\mu}^{*}-b_{\mu}\right) ; F_{2,4}=\sum_{\mu} F_{\mu}^{24}\left(b_{\mu}^{*}+b_{\mu}\right), \tag{5}
\end{equation*}
$$

where $b_{\mu}^{+}\left(b_{\mu}\right)$ is two-quasiparticle boson and F_{μ}^{μ} is a quasiparticle matrix element. Solving the med equations of motion for the negative signature phonons

$$
\left[X_{\lambda-}, H^{(-)}\right]=i \omega_{\lambda-} P_{\lambda-} ;\left[P_{\lambda-}, H^{(-)}\right]=-i \omega_{\lambda-} X_{\lambda-} ;\left[X_{\lambda^{*}}, P_{\lambda}\right]=i \oint_{\lambda_{X}}(6)
$$

with operators $X_{\lambda \text {. and }} P_{A \text {. }}$

$$
X_{\lambda-}=\sum_{\tau \mu} X_{\mu}^{\tau}\left(b_{\mu}^{+}(\tau)+b_{\mu}(\tau)\right) ; D_{-}=i \sum_{\tau \mu} P_{\mu}^{\tau}\left(b_{\mu}^{+}(\tau)-b_{\mu}(\tau)\right)
$$

one ootains a homogeneous syster of cquations with the condition of solvaililty in the form of a sccular equation for the eigenvalues $\boldsymbol{\omega}_{\boldsymbol{\lambda}}$.

$$
\begin{equation*}
\operatorname{det}\left|x_{\tau \tau}, S_{k e}(\tau)-\delta_{\tau, \tau}, \delta_{k, e}\right|=0 \tag{8}
\end{equation*}
$$

where det \mid I is the eighth order doterminumt,

A solution of secular equation (b) allows us to define the corresponding negative signature pmonon operator

$$
\phi_{\lambda-}^{+}=\frac{1}{\sqrt{2}}\left(x_{\lambda-}-i P_{\lambda-}\right)=\frac{1}{\sqrt{2}} \sum_{\tau_{\mu}}(x+P)_{\mu}^{\tau} b_{\mu}^{+}(\tau)+(x-p)_{\mu}^{\tau} b_{\mu}(\tau) .(10)
$$

The inverse transtommtion

$$
\begin{equation*}
b_{\mu}^{+}=\sum_{\lambda}\left\{\phi_{\lambda}^{+}\left[b_{\mu}, \phi_{\lambda}^{+}\right]+D_{\lambda}\left[\phi_{\lambda}, b_{\mu}\right]\right\} \tag{11}
\end{equation*}
$$

reprosents the completeness corrition for the phonon and boson states. Let us define the energy of the stave α of some rotabional pand in the rotating freme

$$
\begin{equation*}
R_{\alpha}(\Omega)=E_{\alpha}(\Omega)-\Omega I_{x}^{\alpha}(\Omega) \tag{12}
\end{equation*}
$$

where the averase rotational frequency Ω is obtained from the measured transition erergies oy the recipe given in ref. [10] and $I_{x}{ }^{\alpha}=\sqrt{\left(I_{\alpha}+\frac{1}{2}\right)^{2}-K_{\alpha}^{2}}$. The difference $\omega_{\alpha}(\Omega)=R_{\alpha}(\Omega)-$ $R_{q n}(\Omega)\left(R_{y}(\Omega)\right.$ being the same quentity defined for the yrast line) is the experimental excitation energy of the intrinsic degree of freedom responsiole for the formation of the state α relative to the yrast line in the rotating frame

$$
\begin{equation*}
\omega_{\alpha}(\Omega)=E_{\alpha}(\Omega)-E_{y_{z}}(\Omega)-\Omega i_{\alpha}(\Omega) \tag{13}
\end{equation*}
$$

Here

$$
\begin{equation*}
i_{\alpha}(\Omega)=I_{x}^{\alpha}(\Omega)-I_{x}^{y^{z}}(\Omega) \tag{14}
\end{equation*}
$$

is the corresponding experimental aligned vibrational angular mowentum [11] .

We shall compare the quantity $\omega_{\alpha}(\Omega)$ with the solution ω_{λ} of the secular equation (8) for given values of the rom tational frequency Ω. In conformity with eq. (14) the theoretical aligned vibrational anguiar momentum in the one-phonon state of the $K^{\pi}=0^{-}$band is

$$
\begin{equation*}
i(\Omega)=\left\langle\phi_{0^{-}}\right| \hat{J}_{x}\left|\phi_{0^{-}}\right\rangle-\langle y z| \hat{J}_{x}|y z\rangle \tag{15}
\end{equation*}
$$

at given value of Ω.
Boson representation of the $\hat{\boldsymbol{J}}_{\mathrm{x}}$ component of the engular momentum has the form

$$
\hat{J}_{x}=\langle\Omega| \hat{J}_{x}|\Omega\rangle+J_{n}(1)+J_{x}(2)
$$

Here $\langle\Omega| \hat{I}_{x}|\Omega\rangle$ is the expectation value of the operator \hat{J}_{x} In the cranking solution $|\Omega\rangle$ that is the vacuum state for quasiparticles and for b_{μ} bosons $\left.\left(\alpha_{i} \mid \Omega \Omega\right)=b_{\mu}|\Omega\rangle=0\right)$. The innear part of the operator J_{k} is defined by poitive sig:

Hature vosons and moreover $J_{x}(1)|0\rangle_{\sigma}=0 \quad(10\rangle_{\delta}$ is the phonon vacuum). Therefore, $J_{x}(1)$ does not give a contricution to the expectation value in the one-phonon negative sighature state. The second order termi of the poson expansion of the operator $\hat{7}_{x}$

$$
J_{x}(2)=\sum_{i j m}\left\{J_{i j}^{x}\left(b_{i m}^{+} b_{j m}+b_{i m}^{+} b_{j m}\right)+J_{i j}^{x}\left(b_{i m}^{+} b_{j m}^{-}+b_{i m}^{*} b_{j m}\right)\right\}(11)
$$

with the quantity $\langle\Omega| \hat{J}_{x}|\Omega\rangle$ defines the expectation value in the one-phonon state for the given rotational frequency Ω

$$
\left\langle D_{\lambda-}\right| \hat{J}_{x}\left|D_{A_{-}}\right\rangle=\langle\Omega| \hat{J}_{n}|\Omega\rangle+\left\langle\phi_{\lambda_{-}}\right| \mathcal{F}_{x}(\Omega)\left|\mathscr{D}_{\lambda-}\right\rangle \cdot(18)
$$

The expectation value of the operator \hat{J}_{x} in the jrast state as a function of Ω may de found directly from the experimental data. In fact, the parmeters of the Hamiltonian H_{Ω} (eq. (1b)) ($\boldsymbol{\varepsilon}_{\mathbf{2}}, \boldsymbol{\varepsilon}_{\boldsymbol{\mu}}, \boldsymbol{\Delta}, \boldsymbol{\lambda}$) are usually chosen so as to reproduce these experimental data withir the cranking model ansatz

$$
\sqrt{I(I+1)}=\left\langle y_{z}\right| \hat{J}_{x}\left|y_{z}\right\rangle \equiv\langle\Omega| \hat{J}_{k}|\Omega\rangle \cdot
$$

Therefore, it is reasonable to take

$$
\begin{equation*}
i(\Omega)=\left\langle\phi_{\lambda_{-}}\right| \hat{J}_{x}\left|\phi_{\lambda_{-}}\right\rangle-\langle\Omega| . \hat{J}_{n}|\Omega\rangle . \tag{19}
\end{equation*}
$$

Then, using eqs. (11),(17),(18) we obtain

$$
\begin{align*}
i(\Omega)= & 2 \sum_{i j m}\left\{J_{i j}^{x}\left[(x+P)_{i m}(x+P)_{j m}+2(x-P)_{i m}(x-P)_{j m}\right]\right. \tag{20}\\
& \left.+J_{i j}^{x}\left[(x+P)_{i m}(x+P)_{j m}+2(x-P)_{i m}(x-P)_{j m}\right]\right\}
\end{align*}
$$

the theoretical aligned vibrational angular momentum that will ue compared with the quentity $i(\Omega)$ from eq.(14).

Another experimental quantity is the oranching ratio R_{I}. Using the results from $/ 4,12 /$ in the franework of the model, we have

$$
\begin{aligned}
& R_{I-}=\left|\sqrt{I} \sum_{\tau} e_{\tau} P_{\mu}^{r} m_{\mu}^{-1}(t)+\sqrt{I+1} \sum_{\tau} e_{\tau} X_{\mu}^{\tau} m_{\mu}^{+\prime /}(t)\right|^{2} . \\
& \left|\sqrt{I+1} \sum_{\tau \mu} e_{\tau} P_{\mu}^{\tau} m_{\mu}^{-1}(\tau)-\sqrt{I} \sum_{\tau \mu} e_{\tau} x_{\mu}^{\tau} m_{\mu}^{+1}(\tau)\right|^{2} \\
& \text { where } m^{\prime-1}=\frac{1}{\sqrt{2}}\left(\hat{Q}_{11}-\hat{Q}_{T-1}\right), m^{(+1)}=\frac{i}{\sqrt{2}}\left(\hat{Q}_{+1}+\hat{Q}_{+1}\right), \hat{Q}_{1 m}(\tau)=\sum_{k=1}^{N_{\tau}} \tau_{k} Y_{1 m}\left(\theta_{\tau}^{\kappa}\right) \text { are }
\end{aligned}
$$

the components of the dipole operator, $e_{p}=N e / A, e_{n}=-Z e / A$ are the standard effective dipole charges, $I=I_{\text {okt }}^{-}$

In our calculation the spherical oscillator anells $N=4$, 5,6 for protons and $N=5,6,7$ for neutrons were taken into account. The parameters of deformation ($\boldsymbol{\varepsilon}_{2}, \boldsymbol{\varepsilon}_{4}$), gap (Δ) and chemical potential (λ) taken from $13,14 /$ are kept constant. This approximation provides an excellent description of some properties of the yrast levels in the entire deformed actinide re-gion/13-15/. The isoscalax strength constant \boldsymbol{x}_{0} was fixed to reproduce the $I^{\boldsymbol{T}}=1^{-}$level of $K^{\boldsymbol{\top}}=0^{-}$bend ${ }^{\prime}$. According to the estimate of ref. $/ 18 /^{4} x_{1} / x_{0}=-3.6$. The variation of this ratio gives an average value of $x_{1} / x_{0}=-3$, that permits one to reproduce simultaneously an alignment pattern and the branching ratio
$R_{I^{-}}$in three nuclei. The results of calculation for ω_{0} - are not so critical to the choice of the ratio value but the quantitative deacription of the aligned octupole angular momentum becomes worse for $x_{1} / x_{0}=-3$ (see fig. 1a).

a)

b)

c)

Pig. 1. The excitation energy of the vibrational states of
angular the $K^{*}=0^{-}$band $\mathcal{S}_{o}-(\mathrm{MeV})$ and the aligned octupole angular momentum i (Ω) at different rotational frequency t Ω (mev) the solid line correspond to the experlmertice calculation for α, α, a and the dashed line, to the case $x, t-z$. Proton and neutron contributions are given respectively by the points and point-dashed lines. The parameters (Δ, λ) are gi

The strength constant may be obtained from the condition for restoration of translational symmetry of the Ramiltonian (2). But in the last case early RPA calculation in this region of ruc(only $\sim 4 \%$) and the energy of the etates of $K^{\circ}=O^{\circ}$ bend practically do not change[16]. Moreover, \boldsymbol{F}_{0} depends very little on the rotation at low spins[17]. 6

In spite of the very scheratic residual interaction in our model we still observe a good qualitative agreement of $\omega_{0}(\Omega)$ and $i(\Omega)$ with experimental data up to 0.17 MeV . The worse agreement in the case ${ }^{230} \mathrm{Th}$ may be due to the Coriolis antipairing effect that descreases the gap at large rotational frequency ${ }^{16 /}$. Another source of the discrepancy is the possible change in the deformation of the mean field.

It is easy to understand the structure of octupole alignment from the point of view of the behaviour of the meximal twoquasiparticle components of the phonor (see fig. 2). Their weight is defined from the normalization condition of the phonons

$$
\begin{equation*}
\left[g_{\lambda}, g_{\lambda}^{+}\right]=1 \Rightarrow \sum_{\tau \mu}(x+p)_{\mu}^{\tau^{2}}-(x-p)_{\mu}^{z}=1 \tag{22}
\end{equation*}
$$

at each value of the rotational frequency changing with step 0.05 市w. in the region from 0 to 0.2 MeV .

In 232 Th up to the value $\hbar \Omega \leqslant$ $\leqslant 0.15 \mathrm{MeV}$ the aligned octupole angular momentum forms due to the collective octupole vibrations (aee fig. 16 and 2). This is beceuse the weight of the maximal component ia lower than 15\%. The octupole phonon blocks the two-quasipaxticle alignment. At $\hbar \Omega>$ 0.15 MeV the proton component $(p+)$, the structure of which is defined by the octupole interaction of the quasiprotons from $h_{1 / / 2}$-shell with the quaaiprotons from $\mathcal{C}_{1 / 2 / 2}$ shell carrying large aligned quasiparticle angular momentum, begins to dominate in the alignaent.
$F 1 \mathrm{~g} .2$. The maximal two-quasiparof the octupole phonon at different of the octupole phonon at different
rotational frequency $\hbar \Omega \quad$ (MeV).

Consequently, the quantity $i(\Omega)$ increases sharply with angular frequency. The collective nature of the actupole phonon defines the alignment in ${ }^{238} U$ up to $\hbar \Omega \leq 0.18$ wieV. With increasing rotational frequency the comperilion petween two-quasiparticle neutron components ($n-$) and ($n+$), in winich the quasineutrons of the $6 / 3 / 2$-shell interact by the octupole forces with quasineutrons of the $j 15 / 2$-shell, influences the aligment behaviour. But the aligned quasiparticle angular momentum corresponding to the maximal components ($\boldsymbol{n}-$) is small, and therefore, the full octupole alignment is dictated whore "collective" (with small weight) proton and neutron two-quasiparticle components. The octupole phonon Dlocks the two-quasiparticle alignment in ${ }^{238} \mathrm{U}$.

The alignment of the octupole phonon of the negative signature influences the oranching ratio $\mathcal{R}_{I^{\prime}}$ (see eq. (21) and the table). In ${ }^{230}$ Th R_{1}-is seen to change slightly with increasing angular momentum as there are the proton ard neutron two-quasiparticle components with the same weight in the transition operator.

Iable The branchine ratio $R_{I^{-}}(e q .(21)$) as a function of the apin of trie octupole state at the $K^{\pi}=0^{-}$ band. The experimental data are taken from ref. ${ }^{19 /}$ for (a), from ref. $13 /$ for (b) and trom rert for (c).

I^{T}	$\begin{aligned} & 230 \mathrm{Th} \\ & \exp .(\mathrm{a}) \mathrm{calc} . \\ & \hline \end{aligned}$		$\begin{aligned} & { }^{232} \mathrm{Th} \\ & \exp . \\ & \text { (b) calc. } \end{aligned}$		exp.	calc.
$1{ }^{-}$	0.41	0.2	0.12	0.71		1.4
$3-$	0.51	0.23	~ 0.08	0.79	>1	4
5	0.31	0.24	~ 0.04	0.78		7
7^{-}	0.33	0.242	~ 0.02	0.73		10
9^{-}	-	0.245	-	0.6		13
11^{-}	-	0.254	-	0.53		15

The predomination of the proton two-quasiparticle component in the octupole state of ${ }^{232}$ Th leads to a decrease of the quantity R_{I} with increasing angular momentum. In spite of the collective nature of the aligned octupole angular momentum, the neutron two-quasiparticle component determines the branching ratio
in ${ }^{238} U$ by increasing the dipole transtion probadility of $I_{\text {oxt }}^{-} \rightarrow(I-1)_{y_{z}}^{+}$compared to $I^{-} \rightarrow(I+1)_{y_{z}}^{+}$. The qualitative correspondence of the quentity R_{I} to experimental data shows the importance of the isovector part of the octupole-octupole interaction in a low-spin region. Howeyer, it is necessary to investigate this question more carefully because the additional parameter \mathscr{X}_{1} in fact increases the collectivity of the interaction. The calculation shows that the rotation decreases the collectivity of the octupole phonon in ${ }^{232} \mathrm{Th}$, that is conserved in ${ }^{230} \mathrm{Th}$ and ${ }^{238} U$ up to $\hbar \Omega=0.2 \mathrm{MeV}$. Therefore, the microscopic analysis allows one to determine in which case the condition (collectivity or noncollectivity of the phonon) for stabilization of the octupole deformation of the quadrupole-deformed rotating nuclei is fulfilld.

REFERENCES

1. Briancon Ch. and Mikhsilov I.N., Sov.J.Part.Nucl., 13 (1982) 101.
2. Mikhailov I.N. et al., Yad.Fiz., 38 (1983) 297.
3. Briangon Ch, and Mikhailov I.N., Proc.Intern.School on Nucl. Structure (Alushta, October 14-22, 1985) ed by: Soloviev V.G. and Popov Yu.P., D4-85-851, p. 245.
4. Marshalek E.R., Nucl.Phys., A266 (1976) 317; ibid A275 (1977) 416.
5. Janssen D. and Mikhailov I.N., Nucl. Phys., A318 (1979) 390.
6. Egido J.I., Mang H.J. and Ring P., Nucl. Phys., A341 (1980) 229.
7. Robledo L.M., Egido J.L.and Ring P.,Nucl. Phys., A449(1986) 201.
B. Nazmitdinov R.G. and Frauendorf S., Yad.Spectroscopiya i structura atomnogo yadra. Tezisy dokladov XXXV sovechaniya. Leningrad, 16-18 apr., 1985, p. 166.
8. Nilsson S.G. et al., Nucl. Phy日., A131 (1969) 27.
9. Bengtsson R. and Frauendorf S., Nucl. Fhys., A327 (1979) 139.
10. Bohr A. and Mottelson B.R., Int.Conf. Nucl.Structure, Tokyo (1977), Journ. Phys.Soc.Japan Suppl., 44 (1978) 157.
11. Mikhailov I.N., JINR communication, P4-7862 (Dubna, 1974).
12. Chen Y.S. and Frauendorf S., Nucl.Phys., a393 (1983) 135.
13. Frauendorf S and Simon R.S., preprint GSI 80-25 (1980).
14. Egido J.L. むud King P* , Hucl. Phys., A423 (1984) 93.
15. Baznat l...I., fatov i.I., Salanov 3.I., Yed.Eiz., 25 (1y/7) 1155.
16. Kvasil. J. et al., Yad. Fiz*, 42 (1985) 586.
17. Borh A. and hottelson B. $\mathrm{K}_{\mathrm{*}}$, Huclear structure, vol. 2 (Benjamin, Reading, 19;5)
18. Gerl J. et al. Piys.Rev., C24 (1984) 1684.
19. Grosse h. et al. Phys. Rev.Lett. 35 (1975) 565;

Prys. Scripta, 24 (1981) 337.

Received by Publishing Department
on Auguat 14, 1986.

WILL YOU FILL BLANK SPACES IN YOUR LIBRARY: including the packing and registered postage

03, 4-82-704 Froceedings of the IV International

```
D11-33-511 Proceedings of the conference on Systems and
    Proceedings of the conference on Systems andApplications in Theoretical physics. Dubna, 1982.9.50
```

07-83-644 Proceedings of the International School-Seminar on Heavy Ion physics. Alushta, 1983.

```
02.13-83-689 Rroceedings of the Workshap on Radiation Problems 
    013-84-63 Froceedings of the XI International
        Symposium on Nucleax Electronics.
        Bratislava, Czechoslovakia, 1983.
E1,2-84-160 Proceedings of the 1983 JINR-CERN School of Physics. Tabor, Czechoslovakia, 1983.
02-84-366 proceedings of the VII International Conference on the Problems of Quantum Field Theory. Alushta, 1984.
D1. 2-84-599 Proceedings of the VII International Seminar on High Energy Physics Problems.
D17-84-850 Proceedings of the 111 International Symposium
010, 11-84-818 Proceedings of the \(V\) International Meeting on Problems of Mathematical Simulation. programming and Mathematical kethods for Solving the physical problems, Dubna, 1983
Proceedings of the IX All-Union Conference on Charged Particle Accelerators. Dubna, 1984.2 volumes.
Proceedings on the International School on Nuclear Structure. Alushta, 1985.
011-85-791 Proceedings of the International Conference on Computer Algebra and Its Applications in Theoretical Physics. Dubna, 1985.
013-85-793
Proceedings of the XII International symposium on Nuclear Electronics. Dubna, 1985.6.00
```

013-84-63 Proceedings of the XI International Symposium on Nucleax Electronics Bratislava, Czechoslovakia, 1983. 12.00

on Selected Topics in Statistical Mechanics.
Dubna, 1984. /2 volumes/.
17-81-850 Proceedings of the it Incernacional Symposiun ubna, 1984. $/ 2$ volumes/.

``` thods

You can receive by post the books listed below. Prices - in US 3.

School on Neutron Physics, Dubna, 1982

\section*{SUBJECT CATEGORIES}

\section*{OF THE JINR PUBLICATIONS}
\begin{tabular}{|l|}
\hline Index \(\quad\) Subject \\
1. High energy experimental physics \\
2. High energy theoretical physics \\
3. Low energy experimental physics \\
4. Low energy theoretical physics \\
5. Mathematics \\
6. Nuclear spectroscopy and radiochemistry \\
7. Heavy ion physics \\
8. Cryogenics \\
9. Accelerators \\
10. Automatization of data processing \\
11. Computing mathematics and technique \\
12. Chemistry \\
13. Experimental techniques and methods \\
14. Solid state physics. Liquids \\
15. Experimental physics of nuclear reactions \\
at low energies \\
16. Health physics. Shieldings \\
17. Theory of condenced matter \\
18. Applied researches \\
19. Biophysics
\end{tabular}
Наэмитдинов Р.Г., Михайлов И.Н., Бриансон l. E4-86-557

\section*{Об октупольном выстраиванин в актинидах}

В рамках микроскопической модели проанализировано выстраивание октупольного углового момента в ротационных состояниях полосы \(\kappa^{\pi}=0^{-}\). Модель качественно описывает ветвление El-переходов из этих состояний в состояния ираст полосы.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1986

Nazmitdinov R.G., Mikhailov I.N., Brianeon Sh. E4-86-557 On Octupole Alignment in Actinides

The analysis of the alignment of the octupole angular momen tum in the rotational states of the \(\mathrm{K}^{\pi}=0^{-}\)band is carried out in the microscopic model. The model qualitatively describes the branching ratio for the El-transitions from these states to the ground band states.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.```


[^0]:    'Institute of Applied Physics, Tashkent State University, Tashkent.
    ${ }^{2}$ Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, Orsay, France.

