

обьедМненнып
 ИНСтитут
 ядерных
 исследований
 дубна

E4-86-487

L.A.Kondratyuk* M.G.Sapozhnikov

INTERACTIONS OF ANTIPROTONS WITH NEUTRONS AND NUCLEI

at Lear energies

Submittad to "Ядорная физика"

[^0]
1. Introduction

Glauber model is one of those few theoretical schemes which are now successfully appiied for description of interactions between slow antiprotons ($\mathrm{p}_{\mathrm{I}} \geqslant 300 \mathrm{MeV} / \mathrm{c}$) and nuclei $/ 1-5 /$. A possibility of Glauber's model being applied to antiproton-nuclear scattering at intermediate energies is analysed in detail in Ref. ${ }^{11-2 /}$. We shall only stress that conditions for application of the eiconal approximation are quite good even at comparatively low energies owing to a very distinct diffraction structure of the elementary NN amplitude. (For example, the slope parameter in the differential cross section of elastic $\bar{p} p-s c a t t e r i n g ~ i s ~ b \sim 32(G e V / c))^{-2}$ even at $T \sim 40 \mathrm{MeV} / 6 /$, while in pp-scattering $\mathrm{b} \sim 6(\mathrm{GeV} / \mathrm{c})^{-2}$ at $\left.T \sim 1 \mathrm{GeV}\right)$. Therefore the main requirement for application of Glauber's model $P_{L} r \gg 1$ in the case of $\bar{p} A-s c a t$ tering implies that $p_{L}{ }^{r} \sim 3-4$: already at these energies the Glauber model describes the experimental data quite well. One should also bear in mind that the model camot be applied to description of a large angle scattering. Besides, the elementary amplitude f must not vary with the energy too rapidly, i.e. it is important that the following inequality was valid: $\mathrm{df} / \mathrm{dE} \cdot \mathrm{F} \cdot \mathrm{f} \cdot \Delta \mathrm{E} \ll 1$, where $\quad \Delta \mathrm{E} \sim \mathrm{k}_{\mathrm{P}}^{2} / 2 \mathrm{~m}, \mathrm{k}_{\mathrm{F}}$ is a characteristic Ferwi momentum.

A common difficulty of all $\overline{\mathrm{p}}$ A- scattering models is a poor experimental knowledge of the main parameters of the Mill-interaction amplitude Beside the fact that there is no phase analysis of $\bar{N} N$-scattering, and the spin and isospin structures of the $\overline{\mathbb{N}}$-amplitude are insufficiently studied, there are practically no accurate experimental low-energy data on the value of such fundamental characteristic of the elementary act as. the total cross section for interactions of antiprotons with neutrons $\sigma \frac{\text { tot }}{\mathrm{p}}$. The available data on direct measurements of $\overline{\mathrm{n}} \mathrm{p}-$ scattering either have 50% statistical errors $/ 7 /$ or are of preliminary character $/ 8 /$. In principle, the value of $\sigma \frac{\text { tot }}{}$ can ba determined with the help of potential models of $\overline{\mathrm{N}}$ - 马ntaractions via fitting the parameters of the NN-potentail by differontial oroon

However, these results strongly depend on the type of the NN-potential employed. Extraction of information on $\sigma \frac{\text { pot }}{\mathrm{p}}$ from the data on antiproton scattering on deuterium is much more ${ }^{\mathrm{pn}}$ model-independent/9-12/. Still, in this case there exist some problems related to final state interactions (e.g. see Ref. $/ 1,2 /$). Neglecting of these corrections leads to a wrong conclusion that cross sections for unnihilation of free neutrons and neutrons bound in the nucleus are the same $/ 9 /$. This error is reflected even in the compilation ${ }^{/ 13 /}$ where $\sigma \frac{\mathrm{ann}}{\mathrm{p} n}$ is taken from the data $/ 9 /$ on entiproton-neutron annihilation in the deuterium with no corrections.

This paper analyses the problem of determination of cross sections $\sigma \frac{\mathrm{p} n}{\mathrm{tot}}$ from the data on antiproton-deuterium intercctions at $\mathrm{p}_{\mathrm{L}}=$ $=200-800 \mathrm{MeV} / \mathrm{c}$. It has appeared that the available data on the value of $\quad \sigma \frac{\text { tot }}{\mathrm{p} d} 19-12 /$ lead to completely different values of $\sigma \frac{\mathrm{tot}}{\mathrm{p}}$. Recently, however, cross sections for interactions of antiproton with different nuclei have been measured at ILAR (CERN)/5,14,15/. This additionsl experimental information allows selecting the most preferable version of the energy dependence of $\sigma \frac{t o t}{\mathrm{p}}$. Calculation of cross sections for inelastic $\overline{\mathrm{p}}$ - scattering shows that the best agreement with the experimental data is achieved for $\sigma \frac{\mathrm{tot}}{\mathrm{p}} \mathrm{m}$ obtained from measurements of $\sigma \frac{\text { tot }}{\mathrm{D}} \mathrm{t}$ by Hamilton's group $/ 11$. pn In the interval $200 \leqslant \mathrm{p}_{\mathrm{L}} \leqslant 800 \mathrm{MeV} / \mathrm{c} \quad \complement_{\mathrm{p} n}^{\mathrm{tot}}$ is well approximated by the following simple expression:

$$
\widehat{\mathrm{p}} \mathrm{n}_{\mathrm{tot}}(\mathrm{mb})=65.52+38.09 / \mathrm{p}_{\mathrm{L}}(\mathrm{GeV} / \mathrm{c})
$$

The material is presented in the following way. In Section 2 netrisation of the elementary amplitude of the $\bar{N} N$-interaction is assed. In Section 3 the procedure of extraction of $\bar{p} n$ cross ions from $\overline{\mathrm{p}}$-scattering data is analysed. In Section 4 the results
 he results and the main conclusions are in Section 5.
L. Parametrisation of the elementary amplitude of the $\overline{\mathrm{N} N}$ interaction

10 parametrised the amplitude of ini-scattering in the following

$$
\begin{array}{r}
\tilde{j}_{j}(\vec{q})=\frac{i k}{4 \pi} a_{j}^{t_{0} t}\left(1-i p_{j}\right) \exp \left(-\frac{1}{2} b_{j} q^{2}\right), \tag{1}\\
j=p, n
\end{array}
$$

here $\overrightarrow{\mathrm{q}}=\overrightarrow{\mathrm{k}},-\overrightarrow{\mathrm{k}} ; \overrightarrow{\mathrm{k}}$ is momentum in the c.m.s., $\mathcal{C}_{j}^{\text {tot }}$ is the total cross section for $\bar{p} p-$ or $\bar{p} n-s c a t t e r i n g, ~ b_{j}$ is the slope parameter, $\rho_{j}=\operatorname{Re} f_{j}(0) / \operatorname{Im} f_{j}(0)$. The spin dependence of the $\overline{\mathrm{N}} \mathrm{N}$-interaction is not tiaken into ccount in (1); there are experimental. indications that spin effects in \bar{r} coattering are small $/ 6,16 /$. An expression like (1) is quite often used for analysis of data on ppand $\bar{p} A-s c a t t e r i n g$, but one should keep in mind that it is not valid for description of large-angle scattering.

The total cross section $\sigma \frac{\text { tot }}{\mathrm{pp}}$ was determined from the results of the recent LEAR experiment, which showed that the simple dependence

$$
\begin{equation*}
\sigma_{\mathrm{pp}}^{\mathrm{tot}}(\mathrm{mb})=65.78+53.759 / \mathrm{p}_{\mathrm{L}}(\mathrm{GeV} / \mathrm{c}) \tag{2}
\end{equation*}
$$

works well in the interval $p_{\text {I }}=388-599 \mathrm{MeV} / \mathrm{c} / 17 /$. Unfortunately, the discrepancy in available data on $\sigma \frac{\mathrm{p}, \mathrm{t}}{\mathrm{p}}$ is quite large (e.g. see Ref. ${ }^{13 /}$). The use of approximation (2) at $p_{L}>600 \mathrm{MeV} / \mathrm{c}$ leads to values of $\sigma \frac{\mathrm{p} \text { pt }}{}$ which are $10-20 \mathrm{mb}$ higher than the results in the compilation $\mathrm{pp} / 13 /$.

To determine the energy dependence of the ratio ρ_{j}, we approximated the experimental deta $/ 18,19,6 /$ by a polynomial:

$$
\begin{equation*}
\rho_{P}=1.3347-10.342 \cdot p_{L}+22.277 \cdot p_{L}^{2}-13.634 \cdot p_{L}^{3} \tag{3}
\end{equation*}
$$

Here p_{L} is in $\mathrm{GeV} / \mathrm{c}$. A de-

Fig. 1 . Energy dependence of the value $\rho_{P}=\operatorname{Re} f(0) / \operatorname{Im} f(0)$. The solid line is the result of fitting by formula (3). Experimental data are talien from $/ 6,18,19 /$.

Further it was assumed that $\quad \rho_{p}=\rho_{n}$. Since ρ_{p} and ρ_{n} are small in the energy region under consideration, this assumption does not practically affect the final results (see discussion in sect. 4.3).

The energy dependence of the slope parameter b_{p} was, determined by fitting the data from Ref. $/ 6,18,21,22 /$ using the following formula:

$$
\begin{equation*}
b_{p}=0.25 \cdot\left(R_{0}+A / k\right)^{2} \tag{4}
\end{equation*}
$$

where $R_{0}=1.3395 \mathrm{Fm}, \mathrm{A}=0.691, \mathrm{k}(\mathrm{GeV} / \mathrm{c})$ is the antiproton momentum in the c.m.s. . Parametrisation (4) describes the experimental data in the region $p_{\mathrm{L}}=0.2-2 \mathrm{GeV} / \mathrm{c}$ quite well (see Fig. 2).

Fig. 2 . Energy dependence of the slope parameter b_{p} of the differential cross section for elastic $\bar{p} p$ scattering. The solid line is the result of fitting by formula (4). Experimental data are taken from Ref. $/ 6,18,21 /$.

For determination of the slope parameter in $\bar{p} n$ scattering it was assumed that $b_{n} / b_{p}=R$, where R is defined by the ratio

$$
\begin{equation*}
\mathrm{R}=\widetilde{\sigma}_{\overline{\mathrm{p}} n}^{\mathrm{tot}} / \mathcal{\sigma}_{\overline{\mathrm{p}} \mathrm{p}}^{\mathrm{tot}} \tag{5}
\end{equation*}
$$

This relation is characteristic of a purely diffractive scattering.

3. D.etermination of $\bar{p} n$ cross gectiong from the data on $\bar{p} d$ scattering

The total cross section for the $\bar{p} n$ interaction can be determined from the data on $\bar{p} d$ scattering by means of a standard Glauber technique
(see e.g. Ref. $1,23,24 /$). It is shown in Ref. $/ 1 /$ that the total cross section for the $\overline{\mathrm{p}} \mathrm{n}$ scattering $\sigma \frac{\text { tot }}{\mathrm{p} n}$ is related to $\sigma \frac{\text { tot }}{\mathrm{p} d}$ in the following way:

$$
\sigma_{\bar{p} d}^{t_{0} t}=\widetilde{\sigma}_{\bar{p} p}^{t_{0} t}+\sigma_{\bar{p} n}^{t_{0 t}}-\frac{\widehat{\sigma}_{\bar{p} p}^{t_{0} t} \sigma_{\bar{p} n}^{t o t}}{8 \pi}\left(1-\rho^{2}\right) \sum_{j=1}^{2} \frac{C_{j}}{\gamma_{j}+\frac{1}{2} b_{p}(1+R)}
$$

Coefficients C_{j} and $\quad \gamma_{j}$ are defined by parametrisation of the deutron formeactor in the form

$$
\begin{equation*}
F_{d}(q)=\sum_{j=1}^{2} e_{j} \exp \left(-\gamma_{j} q^{2}\right) \tag{7}
\end{equation*}
$$

For Hamada-Jonhston NN-potential $C_{1}=0.4, C_{2}=0.6, \gamma_{1}=4.6 \mathrm{Fm}^{2}$,
$\gamma_{2}=0.88 \mathrm{Fm}^{2}$, $\gamma_{2}=0.88 \mathrm{Fm}^{2}$.

Relation (6) can be written in the form of a cubic equation with respect to R from (5) and solved by assigning values to $\sigma \frac{t}{p} d$ $\sigma \frac{\text { tot }}{\mathrm{p} p}, \rho, \mathrm{~b}_{\mathrm{p}}$ as well as to deuteron parameters $c_{j}{ }^{\mathrm{pd}}$ and $\gamma_{j} \cdot$

The energy dependence of the total cross section $\sigma \frac{\text { tot }}{\mathrm{p}} \mathrm{d}$ is well expressed by a simple formula:

$$
\begin{equation*}
\sigma_{\overline{\mathrm{p}} \mathrm{~d}}^{\text {tot }}=\mathrm{A}_{\mathrm{d}}+\mathrm{B}_{\mathrm{d}} / \mathrm{p}_{\mathrm{L}} \tag{8}
\end{equation*}
$$

Howfer, there is great difference between coefficients A_{d} and P_{d}, obtained in different experiments (see Table 1). Therefore we defined A_{d} and B_{d} from the data by fitting the σ pot taken from the compilation /13/, where the results of three experiments are given for the range $p_{L} \leq 900 \mathrm{MeV} / \mathrm{c} / 9,10,25 /$
Table 1. Parametrisation coefficients of $\quad \sigma \frac{\operatorname{tot}}{\mathrm{p}}=\Lambda_{\mathrm{d}}+\mathrm{B}_{\mathrm{d}} / \mathrm{p}_{\mathrm{I}}$.

Refs.	$A_{d}(\mathrm{mb})$	$\mathrm{B}_{\mathrm{d}}(\mathrm{mb} \cdot \mathrm{GeV} / \mathrm{c})$	p_{J} range $(\mathrm{GeV} / \mathrm{c}$
1. Hamilton et al. $11 /$	132	71	$0.355-1.066$
2. Kalogeropoulos et al.9/	30	126	$0.27-0.465$
3. Carroll et al. $/ 12 /$	129	78	$0.36-1.05$
4. Present paper	108.59	94.6	$0.27-0.813$
(fitting by the data of compilation $/ 13 /)$			

It is shown in Fig. 3 (upper part) how our approximation of C tot describes the data $19,10 /$ (dashed line). The solid line shows the experimental data from Ref. $/ 11 /$, the desh-and-dot line is for Ref. ${ }^{12 /}$. The total cross sections σ tot from Refs. $/ 9,10 /$ are seen to differ from the data of Ref. $11 /$, especially in the region $p_{L}<400 \mathrm{MeV} / \mathrm{c}$. The difference may seem of small importance, but it leads to differences in $\quad \widetilde{\mathrm{p}} \mathrm{m}$ which strongly affect calculations of cross gections for the antiproton-nuclear acattering.

The lower part of Fig. 3 shows the value of the ratio R from (5). One obtains the value when solving (6) with C tot based on data from $/ 11 /$ (solid line), Ref. $/ 9,10 /(d s s h e d ~ l i n e)$ or Ref. $/ 12 /$ (dash-and-dot line). It is well seen that the largest difference between these dependences is in the low energy region $p_{1}<400 \mathrm{MeV} / \mathrm{c}$, where R from $9,10 /$ is noticenbly larger thm one, and it follows from $/ 11,12 /$ that $k<1$ in the whole energy region under consideration.

Fig. 3 (above). Energy dependence of the total cross section for $\overline{\mathrm{p}} \mathrm{d}$ scattering. The solid line shows results of the experiment /11/, the desh-and-dot line is for results of $/ 12 /$. The dasbed line is approximation of the data $/ 9,10 /$ by formula (8). Experimental points are taken from $/ 9,10 /$.
(below). Energy dependence of the ratio $\mathrm{R}=\sigma \frac{\text { tot }}{\mathrm{pn}} / \sigma \frac{\text { tot }}{\mathrm{p} p}$. The solid line is the result of calculationa by (6) with $\sigma \frac{\text { pot }}{\text { tot }}$ from data of $/ 11 /$, the dashed line is for calculations with $\sigma \frac{\text { tot }}{\text { pd }}$ from $/ 9,10 /$ and from Ref. /12/ (dash-and-dot line.

4. Calculation of cross sections for scattering of antiprotons on nuclei

Calculation of cross sections for the antiproton-nuclear scattering was performed in order to find which of the dependences for $\sigma \frac{\text { tot }}{\mathrm{p} n}$
discussed in Sect. 3 is setter ir describing the experimental data. The amplitude of the antiproton-nuclear interaction in the

$$
\begin{aligned}
& \vec{f}_{f i}(\vec{q})=\frac{i P_{L}}{2 \pi} \int e^{i \vec{q} \vec{b}} \Psi_{f}^{*}\left\{\vec{z}_{j}\right\} \Gamma\left(\vec{b}, \vec{s}_{1}, \ldots, \vec{s}_{A}\right) \\
& \cdot \underline{\Psi}_{i}\left\{\overrightarrow{2}_{j}\right\} \cdot \prod_{j=1}^{A} d^{3} z_{j} d^{2} b \delta^{\sim}\left(\frac{1}{A} \sum_{k=1}^{A} \overrightarrow{2}_{k}\right)
\end{aligned}
$$

where p_{I} is the antiproton momentum in the lab frame, $^{\Psi_{f}}$ and Ψ_{i} are the wave functions of a nuclens in the final and initial states, and $\Gamma\left(\vec{b}, \vec{s}_{1}, \ldots, \vec{s}_{A}\right)$ is the nuclear profile function which is expressed via nucleon profile functions $\Gamma_{j}\left(\vec{b}-\vec{s}_{j}\right)$ in the following

$$
\left.\Gamma\left(\vec{b}, \vec{S}_{1}, \ldots, \vec{S}_{A}\right)=1-\prod_{j=1}^{A}\left[1-\Gamma_{j}(\vec{b}-\vec{S},]_{j}\right)\right]_{10}
$$

here \vec{b} is the impact parumeter, $\overrightarrow{\mathcal{F}}_{j}$ are projections of the radiusvector \vec{r}_{j} on the plane, perpendicular to \vec{p}_{L}. The function Γ_{j} is a Fourier transform of the amplitude $f_{j}(q)$ from (1).

4.1 Calculation of cross sections for $\bar{p}^{4} \mathrm{He}$ scattering

For wave functions of ${ }^{4} \mathrm{He}$ ground state the approximation of independent particles is used: \&

$$
\begin{equation*}
\left|\Psi\left(\vec{z}_{1}, \cdots, \vec{z}_{4}\right)\right|^{2}=\prod_{j=1}^{4} P_{j}\left(z_{j}\right) \tag{11}
\end{equation*}
$$

where one-particle densities $P_{j}\left(z_{j}\right)$ were determined in the oscillator besis:

$$
\begin{equation*}
P\left(z_{j}\right)=\left(\sqrt{\tilde{\pi}^{1}} a\right)^{-3} \exp \left(-z_{j}^{2} / a^{2}\right) \tag{12}
\end{equation*}
$$

The value of the parameter a^{2} was determined from the data of $/ 26 /$ by the ${ }^{4} \mathrm{He}$ charge radius $R_{c h}=1.672 \mathrm{Fm}$. The corresponding value of a^{2} for this $R_{c h}$ is $a^{2}=1.916 \mathrm{Fm}^{2}$.

From (9)-(12) we obtain the following form for the amplitude of the elastic $\overline{\mathrm{p}}^{4} \mathrm{He}$ scattering:

$$
\begin{equation*}
F_{i i}(\vec{q})=2 i K_{A C M} e^{\frac{q^{2} a^{2}}{16}}\left(\sum_{j=p, n} D_{j}\left(q^{2}\right)+C_{p n}\left(q^{2}\right)\right) \tag{13}
\end{equation*}
$$

where $k_{A C M}$ is the antiproton momentum in the nuclear c.m.s., and the terms $D_{p}\left(q^{2}\right)$ and $D_{n}\left(q^{2}\right)$ describe single and double scattering on p:otons and neutrons of ${ }^{4} \mathrm{He}$:

$$
\begin{equation*}
\mathcal{D}_{j}\left(q^{2}\right)=\sum_{m=1}^{2} C_{2}^{m} \varepsilon_{j}^{m}(-1)^{m+1} \frac{\gamma_{j}^{2}}{m} e x p\left(-\frac{q^{2} \gamma_{j}^{2}}{m}\right) \tag{14}
\end{equation*}
$$

the term $C_{p n}\left(q^{2}\right)$ corresponds to a consequent rescattering on protons
and neutrons: anđ neutrons:

$$
\begin{align*}
& C_{p n}\left(q^{2}\right)=\sum_{m=1}^{2} \sum_{k=1}^{2} C_{2}^{m} C_{2}^{k} \varepsilon_{p}^{m} \varepsilon_{n}^{k}(-1)^{m+k+1} \tag{15}\\
& J_{p n}^{2}(m, k) \cdot \exp \left(-\gamma_{p n}^{2}(m, k) \cdot q^{2}\right)
\end{align*}
$$

Here

$$
\begin{align*}
& \varepsilon_{j}=C^{t_{0} t} / 8 \pi \gamma_{j}^{2}, \quad j=P_{1} n ; \tag{16}\\
& \gamma_{j}^{2}=\frac{a^{2}}{4}+\frac{b_{j}}{2}, j=p, n \tag{17}\\
& \gamma_{p n}^{2}(m, k)=\gamma_{p}^{2} \gamma_{n}^{2} /\left(m \gamma_{n}^{2}+k \gamma_{p}^{2}\right)
\end{align*}
$$

4.2 Cross sections for scattering of antiprotons on nuclei

 with $\mathrm{A} \geqslant 12$T.) describe the nuclear structure of nuclei with $A \geqslant 12$ a singlepartizle density of the form

$$
\begin{equation*}
P(2)=P_{0}\left(1+e x p\left(\frac{2-d}{t}\right)\right)^{-1} \tag{18}
\end{equation*}
$$

was used. The parameters d and t were taken from the eA-acattering
data/27/ with account of the difference between the charce density and the nuclenr density (see the discussion in Sect. 4.3) .

Using expreasion (g), we transform the amplitude of the elustic scattering of the antinucleon on the nucleus to get the following:

$$
\begin{equation*}
F_{i i}(q)=i k e^{\frac{q^{2} R^{2}}{b A} c h} \int_{0}^{b_{\max }} y_{0}(q b) \Gamma_{a}(b) b d b \tag{19}
\end{equation*}
$$

where $b_{\max }=4 \cdot k^{2}$, and

$$
\begin{equation*}
\Gamma_{a}(b)=1-\left(1-p_{0}^{p}(b)\right)^{z}\left(1-p_{o}^{n}(b)\right)^{N} \tag{20}
\end{equation*}
$$

Here $\mathcal{P}_{o}^{j}(b), j=p, n$ are profile functions

$$
p_{0}^{j}(b)=\frac{\widetilde{\sigma}_{\bar{p}}^{t_{0} t}(1-i \rho)}{4 \pi b_{j}} q^{j}(b), j=p, n, \text { (21) }
$$

where

$$
\begin{align*}
& P^{j}(b)=2 \pi e^{-b^{2} / 2 b_{j}} \int_{0}^{S_{\max }} T(s) \cdot \\
& \therefore \exp \left(-s^{2} / 2 G_{j}\right) \cdot T_{0}\left(G \cdot s / b_{j}\right) s d s . \tag{22}
\end{align*}
$$

Here $I_{o}\left(b \cdot s / b_{j}\right)$ is the modified Bessel function, $T(s)$ is the socalled thickness function

$$
\begin{equation*}
T(s)=\int_{-\infty}^{\infty} p(z, s) d z \tag{23}
\end{equation*}
$$

where $z^{2}=r^{2}-s^{2}$, and $\rho(z, s)$ is the nuclear density from (18). The optical approximation $/ 23 /$ is good for calculation of cross sections for interactions between antiprotons and heavy nuclei. In this approximation the profile function $\Gamma_{a}(b)$ is defined by averaged parameters of $\overline{\mathrm{p}} \mathrm{p}$ and $\overline{\mathrm{p}} \mathrm{n}$-amplitudes:

$$
\begin{equation*}
\Gamma_{a}(b)=1-\exp \left(-A \cdot \widetilde{C P}_{o}(b)\right) \tag{24}
\end{equation*}
$$

where $\widetilde{F}_{0}(b)$ is given by (2१) with the following parameters:

$$
\widetilde{\sigma} t_{0}=0.5 \cdot\left(\widetilde{\sigma}_{\bar{p} p}^{t_{0} t}+\hat{\beta}_{\bar{p} n}^{t_{0} t}\right) ; \quad \widetilde{b}=0.5 \cdot\left(b_{p}+b_{n}\right) \cdot(25)
$$

Note that the use of $\Gamma_{a}(b)$ in the form (20) or (24)-(25) in calculation of cross sections for the inelastic scattering of antiprotons on nuclei with $A \geqslant 12$ makes little difrerence.

Fresently the most complete experimentul duta are available for reaction cross sections σ_{R}, defincd as

$$
\hat{\sigma}_{R}=\hat{\theta}_{\text {tot }}-\hat{\sigma}_{e l}
$$

Therefore we mainly analysed this feature of the $\bar{p} A$ scattering. Another reason for consideration of just, \widehat{O}_{R} is tlat it is determined through $\sigma_{\text {tot }}$ and $\sigma_{\text {el }}$ which depend, mainly, on the scattering amplitude at small angles. So, the Clauber approach is more reliable for calculations of these cross sections.

4. 3 Influence of various model parameters on vilues of $\bar{p} A$ cross sections

In our scheme the amplitude of the elementary Nif interaction is given by four experimental parameters: $\mathcal{C}_{\mathrm{p}}^{\mathrm{p}} \mathrm{p}, \mathrm{b}_{\mathrm{p}}, \rho_{\mathrm{p}}$ and $\sigma \frac{\text { tot }}{}$. Besides, two assumptions re mude: $\rho_{p}=\rho_{n}$ and $b_{n} / b_{p}=R$. Therefore we first checked to what extent these assumptions influence calculations of $\bar{p} \Lambda$ scattering cross sections. It appeared that a 20 , change in the relation $b_{r} / b_{p}=R$ only causes a $2-3 \pi^{\circ}$ change in the value of $\sigma_{R}\left({ }^{4} \mathrm{He}\right)$. The umplitude of $\overline{\mathrm{N}} \mathrm{N}$ scattering being considered purely imacinary ($\rho_{p}=\rho_{n}=0$) leads to pructically negligible variation of σ_{k}. At last, if the value of b_{p} is simply changed by $20, \%$, this.leads to a 5% change in $\sigma_{R}\left({ }^{4} \mathrm{He}\right)$ Undoubtedly, such variations of NN interaction parameters must affect the differential cross sections for $\bar{p} \Lambda$ scattering much stronger (see/4/), total cross sections for $\bar{p} \Lambda$ scattering are mainly defined by the total cross sections $\sigma_{\overline{\mathrm{p}} \mathrm{p}}^{\mathrm{tot}}$ and $\sigma \frac{\mathrm{p}, \mathrm{t}}{}$ as well as by nuclear density parameters.

For description of $\bar{p} A$ scattering one must in expressions (18)-(23) give the nuclear matter distribution. For this purpose one should determine relation between parameters of the charge distribution, measured in e Λ scattering, and parameters of nuclear density (18).

It is known /28/ that the root-mean-square radius of the point-like nucleon density $\left\langle r_{m}^{2}\right\rangle$ is related to parameters of the Fermi density (18) with a good accuracy in the following way:

$$
\begin{equation*}
\left\langle 2_{m}^{2}\right\rangle=\frac{3}{5} d_{m}^{2}+\frac{7}{5} \pi^{2} t_{m}^{2} \tag{26}
\end{equation*}
$$

where d_{m} and t_{m} are the half-density radius and diffuseness of nuclear matter distribution. A similar relation for the charge distribution like (18) is :

$$
\begin{equation*}
\left\langle z_{c h}^{2}\right\rangle=\frac{3}{5} d_{p}^{2}+\frac{7}{5} t_{p}^{2}+\left\langle z_{p}^{2}\right\rangle \tag{27}
\end{equation*}
$$

where $\left\langle r_{p}^{2}\right\rangle,\left\langle r_{c h}^{2}\right\rangle$ are r.m.s. radii of charge distribution for the proton and for the nucleus.

The values of d_{p} and t_{p} dipfer in general from d_{m} and t_{m}. We assumed that $d_{m}=d_{p}$. Then the diffuseness parameter t_{m} can be determined from (26)-(27) :

$$
\begin{equation*}
t_{m}^{2}=\frac{5}{7 \pi^{2}}\left(\left\langle z_{c h}^{2}\right\rangle-\left\langle z_{p}^{2}\right\rangle-\frac{3}{5} d_{p}^{2}\right. \tag{28}
\end{equation*}
$$

In Fig. 4 one can see how this renormalisution of the diffuseness parameter changes the results of calculation of σ_{R} for interactions of antiprotons with ${ }^{20}$ Ne and 27 Al nuclei. A strong dependence of $\widetilde{\sigma}_{R}$ on t_{m} is seen. In principle, the antiproton-nuclear scattering must indeed be most sensitive to the size of the nuclear diffuse edge, since this is the region the mujority of $\bar{p} A-a n n i h i l a t i o n ~ e v e n t s ~$ occur /30/. Table 2 lists $t_{\text {m }}$ and $d_{\text {in }}$ values used.

Table 2. Parameters of the Fermi density (23). Data on $\left\langle r_{c h}\right\rangle, d_{p}$ and t_{p} were taken from $/ 27 /$.

A	$\left\langle r_{\mathrm{ch}}\right\rangle(\mathrm{Fm})$	$\mathrm{d}_{\mathrm{p}}(\mathrm{Fm})$	$\mathrm{t}_{\mathrm{p}}(\mathrm{Fm})$	$\mathrm{t}_{\mathrm{m}}(\mathrm{Fm})$
${ }^{64} \mathrm{Cu}_{\mathrm{Cu}}$	3.88	4.2	0.569	0.527
${ }^{40_{\mathrm{Ca}}}$	3.43	3.51	0.563	0.52
27_{Al}	3.05	2.84	0.569	0.526
20_{Ne}	2.969	2.805	0.571	0.5

Fig. 5 . Dependence of the cross section $\sigma_{R}=\sigma_{\text {tot }}-\sigma_{\text {el }}$ on the antiproton momentum p_{L} for different nuclei. The solid lines are the results of calculations with the data of Hamilton et al. $/ 11 /$, the dashed lines are the same with the data from $/ 9,10 /$. Experimental points: \triangle-from $5,14 /$, - - from $/ 29 /$, O-from $/ 31$, where the data of Garretta et al. 15/ are analysed. The data on σ_{R} for $\overrightarrow{\mathrm{p}}$ d scattering $/ 9,10 /$ are shown by black squares and triangles

Fig. 4 . Influence of renormalisation of the diffuseness paraneter t on the cross section $\widetilde{C}_{\text {R }}$ for inelastic reactions. The solid lines show the results of colculation of σ_{R} with t determined from (28), the dashed line is the same with t from en-scattering data (see Table 2) . Bxperimental data are taken from /5,29/.

5. Discussion of results and conclusions

Now let us consider influence of various neutron cross sections $\sigma_{\frac{\mathrm{p}}{} \mathrm{tot}}$ on σ_{R}. Fig. 5 shows results of calculation of σ_{R} for two extreme cases: $\sigma \frac{\text { tot }}{\bar{p} n}<\sigma \frac{\text { tot }}{p p}$ (i.e. the ratio R from (5) is less than one) - solid Iines, $\quad \mathcal{V}_{\overline{\mathrm{p}},}^{\mathrm{tot}}>\widetilde{\mathrm{p}}_{\mathrm{p}}^{\mathrm{tot}}(\mathrm{R}>1)$ at low energies - dashed lines. In the former case $\sigma_{\overline{p d}}^{\text {tot }}$ was taken from $11 /$, while the latter from a fit of the results by data from $/ 9,10 \%$.

It is well geen that the description of $\overline{\mathrm{p}} \AA$ cross sections is much better for $\mathrm{R}<1$. This is most evident for low energies end light nuclei.

Thus, comparison with the experimental data on antiproton-nuclear scattering is in favour of the solution with $R<1$, i.e. the total cross section for the scattering on protons must be larger than the cross section for the'untiproton-neutron scattering. A similar dependence is also observed at energies over 1 GeV (e.g. see ${ }^{\text {/32/ }}$) Taking into account the isospin structure of the $\bar{N} N$ amplitude, one may obtain the following relation:

$$
\begin{equation*}
R=\frac{\sigma_{\bar{p} n}^{+o t}}{\sigma_{\bar{p} P}^{+c t}}=\frac{2 \sigma(I=1)}{\sigma(I=0)+\sigma(I=1)}<1 . \tag{29}
\end{equation*}
$$

It means that the amplitude of the $\overline{\mathrm{N}} \mathrm{N}$ scattering in the atate with isospin $I=0$ is larger than in the state with $I=1$. This conclusion agrees with calculations of potential models of the $\bar{N} N$ interaction $133-35$ /. Despite completely different forms for $\bar{N} N$ potentiala, all theoretical models predict domination of the isosinglet atate in the \mathbb{N} amplitude.

The energy dependence of the total cross section $\sigma \frac{\text { tot }}{\mathrm{pn}}$ can be successfully approximated by the following simple expression :

$$
\begin{equation*}
\sigma_{\overline{\mathrm{p}} \mathrm{n}}^{\text {tot }}(\mathrm{mb})=65.52+38.09 / \mathrm{p}_{\mathrm{L}}(\mathrm{GeV} / \mathrm{c}) . \tag{30}
\end{equation*}
$$

This value was determined from (6) with the data on $C \frac{\text { tot from }}{} / 11 /$ and on $\sigma \frac{\text { tot }}{\mathrm{p} p}$ from $/ 6 /$. So the validity region for approximation (30) should not be too large ($\mathrm{p}_{\mathrm{L}} \leq 600-800 \mathrm{MeV} / \mathrm{c}$). It is however Interesting that the value of the energy-independent term in (30) turned out to be the same as in parametrisation of $\sigma \frac{t o t}{p p}$ (see (2)).

Energy dependence of $\sigma \frac{\text { tot }}{\mathrm{p} n}$ having been determined (p^{p}) , one can calculate the total cross section for the elastic $\overline{\mathrm{p}}$ n acattering:

$$
\begin{equation*}
\sigma_{\bar{p} n}^{e \ell}=\left(\sigma_{\bar{p} n}^{t_{0} t}\right)^{2}\left(\rho^{2}+1\right) / 16 \pi G_{n} \tag{31}
\end{equation*}
$$

and the cross section for $\overline{\mathrm{p}} \mathrm{n}$ annihilation:

$$
\begin{equation*}
\sigma_{\bar{p} n}^{a n n}=\sigma_{\bar{p} n}^{t_{0}}-\sigma_{\bar{p} n}^{e l} . \tag{32}
\end{equation*}
$$

It has appeared that these quantities can be satisfactorily described by approximate formulae:

$$
\begin{align*}
& \sigma_{\overline{\mathrm{p} n}}^{\mathrm{el}}(\mathrm{mb})=29.3+13.04 / \mathrm{p}_{\mathrm{L}}(\mathrm{GeV} / \mathrm{c}) \tag{33}\\
& \sigma_{\overline{\mathrm{p} n}}^{\mathrm{ann}}(\mathrm{mb})=36.22+25.05 / \mathrm{p}_{\mathrm{I}}(\mathrm{GeV} / \mathrm{c}) \tag{34}
\end{align*}
$$

Noteworthy is that the value of $\sigma_{\mathrm{p}}^{\mathrm{p}} \mathrm{n}$ calculated by formula (31) must be, generally speaking, somewhat underestimeted, since the eiementary amplitude $F_{i j}(q)$ was expressed vin (1), which is valid only for scattering at small angles. Consequently, the value of the annihilation cross section $\left(\frac{\mathrm{ann}}{\mathrm{p} n}\right.$ obtained from (32) will be a little overestimated.

Fig. 6 . Cross sections of annihilation on free and bound neutrons (solid and dashed lines, respectively).

The solid line in Fig. 6 shows the energy dependence of $\sigma_{\overline{\mathrm{p}} \mathrm{n}}^{\mathrm{an}}$ calculated by (31)-(32). Experimental points correspond to measurements of $\widehat{\sim} \frac{\mathrm{ann}}{\mathrm{p} n}$ with a deuterium target. It is importunt that $\sigma \frac{\mathrm{ann}}{\mathrm{p} n}$ data from these experiments cannot be identifind with cross sections for annihilation on the free neutron. This problem arose lone ago as a result of experiments $710 /$ where the cross section for annihilation on the proton in deuterium $\widetilde{\sigma} \frac{\mathrm{ann}}{}$ was found almost to coincide with the cross section of anninilation on the free proton

$$
\sigma_{p}^{a n n} \widetilde{\sigma}_{\mathrm{ann}}^{\text {1.e. }} \approx \sigma_{\mathrm{p}}^{\mathrm{ann}}
$$

This unexpected result gave rise to a wrong conclusion that a similar relation is valid for annihilation on the neutron:

$$
\widetilde{\sigma}_{\mathrm{n}}^{\text {ann }} \approx \sigma_{\mathrm{n}}^{\text {ann }} 19,10 /
$$

Besides, applicability of Glauber's model for $\overline{\mathrm{p}}$ s scattering was doubted /9,36/, because the Glauber corrections were to lead to a noticeable difference between $\widetilde{\sim} \underset{p}{\mathrm{ann}}$ and $\sigma_{\mathrm{p}}^{\text {ann }}$. An accurate consideration /1/ showed, however, that beside shadow corrections δ_{n} and δ_{p} the corrections for rescattering of annibilation $\tilde{\sim}$-mesons should be taken into account:

$$
\begin{align*}
& \widetilde{\sigma}_{n}^{a n n}=\sigma_{n}^{a n n}-\delta_{n}+C_{1} \tag{35}\\
& \widetilde{\sigma}_{p}^{a n n}=\sigma_{p}^{a n n}-\delta_{p}+C_{2},
\end{align*}
$$

where C_{1} and C_{2} are corrections for rescattering effects. It was proved in $/ 37 /{ }^{2}$ that

$$
\begin{equation*}
c_{1}+c_{2}=0 \tag{36}
\end{equation*}
$$

Thus, if $\widetilde{\sigma}_{p}^{\text {ann }} \approx \dot{\sigma}_{p}$ ann , then $\tilde{\delta}_{p}=C_{2}$. Taking account of (36), we find that renormalisation of the cross section for anninilation on the coupled neutron $\widetilde{\sigma}_{n}^{a n n}$ is the largest

$$
\begin{equation*}
\widetilde{\sigma}_{n}^{a n n}=\sigma_{n}^{a n n}-\delta_{n} \dot{\sigma_{p}} \tag{37}
\end{equation*}
$$

The dashed line in Fig. 6 show the result of calculation of $\widetilde{\sigma}$ ann under an assumption of the maximal renormalisation (37). The values of $\widetilde{\sigma}_{n}^{a n n}$ and $\widetilde{\sigma}_{n}^{a n n}$ are seen to differ from 100 to 20 mb . Hence, one must take account of this difference.

We think, however, that the results of measurement of cross sections for pd scattering in bubble chambers $/ 9,10 /$ are somewhat overestimated. Evidence of this is, firstly, that they lead to $R>1$ for R from (5) at low energies, while this is in contradiction with both theoretical predictions $133-35 /$ and the experimental data at higher energies $/ 32 /$. Secondly, the cross section σ_{R} for reactions on deuterium obtained in $/ 9,10 /$ is almost the same as σ_{R} for the $\bar{p}^{4} \mathrm{He}$ scattering (see Fig.5). It is difficult to imagine the reason why $\sigma_{R}(\bar{p} d)$ differs so little from $\sigma_{R}\left(\bar{p}^{4} H e\right)$. Therefore it is quite possible that $\sigma^{\text {ann }}$ on the free and bound protons differ slightly from each other. Then renormalisation of the annihilation cross section on the neutron will be less then the maximum one (37). Consequently, one can expect that the solid and dashed lines in Fig. 6 determine only the upper and lower limits for $\sigma_{n}^{a n n}$, and more accurate determination of $\sigma_{n}^{\text {ann }}$ requires fresh ${ }_{n}$ reliable information on antiproton annihilation in deuterium.

The main conclusions of the paper are as follows. Reaction cross seotion σ_{R} for interactions of antiprotons with nuclei have been analysed within Gleuber's model for various $\sigma \frac{\text { tot }}{\mathrm{p} n}$ assumed.

Vomueo of $\sigma \frac{\text { tol }}{\ln }$ woro determined from the data on $\overline{\mathrm{p} d}$ scattering. It turned out thin the value of $\widehat{\sigma}_{R}$ has a quite a strons dependence on the Alffufionosa parameter of nuclear distribution. The nuclear data arc alown lo have the best description with $\sigma \frac{\text { tot }}{\mathrm{pn}}<\sigma_{\mathrm{pp}}^{\text {tot }}$. The energy dopondence of $\sigma \frac{\mathrm{tot}}{\mathrm{p}}$ is well described by relation ${ }^{\mathrm{pp}}$ (30). The elnatic and annihilation cross sections for antiproton-neutron intoractions have been calculated. It is shown that cross sections for annihilation on free and bound neutrons can strongly differ from each other. To clear the problem up, more experiments on annihilation in deuterium at LeAR energies are desirable.

The authors are greatly thankful to B.O.Kerbikov, Yu.A.Simonov, A.Rotondi, F.Nichitiu, V.V.Burov, B.Z.Kopeliovich, G.Piragino, S.A. Bunyatov and I.V.Falomkin for their interest to the work and valuable discussíons.

REFERENCES

1. Kondratyuk L.A., Shmatikov M.Zh., Bizzarri R., Yad.Fiz.,1981, 33, p. 795 .
2. Kondratyuk Lif., Shmatikov M. Zh., Yad. Fiz., 1983, 38, p. 361 .
3. Dalkarov O.D., Karmanov V.A., zheTP, 1985, 89, p. 1122 .
4. Dalkarov O.D., Karmanov V.A., Phys.Lett., 1984, 147B, p. 1 .
5. Balestra F. et al., Nucl. Phys., A452, p.573, 1986 .
6. Brückner W.et al., Phys.Lett., 1985, 158B, p. 180 .
7. Gunderson Bo et al., Phys.Rev., 1981, D23, p. 587 .
8. Pinsky I., Proc. Third LEAR Workshop, Tignes, 1985, p. 275 .
9. Kalogeropoulos T., Tzanakos G., Phys。Rev., 1980, D22, p. 2585 .
10. Bizzarri R. et al., Nuov.Cim., 1974, 22A, p. 225 .
11. Hamilton R.P. et al., Phys.Rev. Lett., 1980, 44, p. 1182 .
12. Carroll A. et al., Phys.Rev.Lett., 1974, 32, p. 247 . $^{\text {. }}$
13. Flaminio V. et al., CERN-HERA-84-01, Geneva, 1984 .
14. Balestra F. et al., Phys.Iett., 1985, 165B, p. 265 .
15. Garreta D. et al., Phys.Lett., 1984, 149B, p. 64 .
16. Birsa R. et al., Phys.Lett., 1985, 155B, p. 437 .
17. Clough A.S. et al., Phys.Lett., 1984, 146B, p. 299.
18. Cresti M., Peruzzo L., Sartori G., Phys.Lett., 1983, 132B, p. 209.
19. Iwasaki H. et al., Nucl. Phys., 1985, A433, p. 580 .
20. Kerbikov B. O., Simonov Yu.A., preprint ITEP, No 38, Moscow, 1986.
21. Ashford V. et al., Phys.Rev.Lett., 1985, 54, p. 518 .
22. Parker`D., et al., Nucl.Phys., 1971, B32, p. 29 .
23. Glauber R.J., Matthiae G., Kucl.Phys., 1980, B21, p. 135 .
24. Pranco V., Glauber R.J., Phys.Rev., 1966, 142, p. 1195 .
25. Burrows R. et a., Aust.J. Phys., 1970, 23, p. 819 .
26. McCarthy J., Sick I., Whitney R.R., Phys.Rev., 1977, C15, p. 1396.
27. de Jager H., de Vries C., de Vries Λ., Atomic Data and Nuclear Data Tables, 1974, 14, p. 479 .
28. Elton L., Nuclear Sizes, Oxford, Clarendon Press, 1961.
29. Nakamura K. et al., Phys.Rev.Lett., 1984, 52, p. 731.
30. Cugnon J., Vandermeulen J., Nucl.Phys., 1985, N445, p. 717 .
31. Heiselberg H. et al., Nucl. Phys., 1985, A446, p. 637.
32. Abrams R.J. et al., Phys.Rev., 1970, D1, p. 1917.
33. Bryan R. $1 .$, Phillips R.J., Nucl. Phys., 1968, B5, p. 201 .
34. Ueda T., Prog.Theor. Phys., 1979, 62, p. 1670 .
35. Richard J.M., Sanio M.E., Phys.lett., 1982, 110B, p. 349 .
36. Castelli E., Proc. Symp. on Nucleon-Antinucleon Annihilations, 1972, Chexbres, p. 259 .
37. Koṇdratyuk I.^., Yad. Fiz., 1976, 24, p. 477 .

Конлрытiok Л.А., Сапожников М.Г.
Впиимодоиствие антипротонов с нейтронами
и лдрами при энергиях LॄEAR
Выполнен анализ экспериментальных данных по полным сечениим рассеяния антипротонов на дейтерии в интервале $\mathbf{p}_{\mathrm{L}}=200$ 800 МэВ/с с целью определения величины полного сечения взаимодействия антипротонов с нейтроном $\sigma \frac{\text { tot }}{\mathrm{p}} \mathrm{n}$. Iолученные разные наборы для $\sigma_{\bar{p} \text { п }}^{\text {tot }}$ использовались в качес'тве исходных для вычисления сечений антипротон-ядерного взаимодействия. Оказалось, что данные по ра-рассеянио описываются лучше всего, если $\sigma \frac{\text { роt }}{\text { рп }}($ мб $)=65,52+38,09 / p_{L}(Г э В / с)$. Рассмотрен вопрос об определении сечения аннигиляции антипротонов на нейтронах.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Прспринт Объединенного института ядерных исследований. Дубна 1986

Received by Publishing Department
on July 16, 1986.

Kondratyuk L.A., Sapozhnikov M. G.
E4-86-487
Interactions of Antiprotons with Neutrons
and Nuclei at LEAR Energies
Experimental data on total cross sections for antiproton scattering on deuterium in the interval $p_{L} \underline{\underline{\mu}} 200-800 \mathrm{MeV} / \mathrm{c}$ has been analysed in order to determine the value of the total cross section for the antiproton-neutron interaction σ tot . Different sets obtained for $\sigma \frac{\text { tot }}{\bar{p}}$ were used as $\bar{p} n$ input data for calculations of cross sections for antiproton-nuclear interactions. It turned out that $\bar{p} A-s c a t t e r i n g$ data are best described if $\sigma \frac{\mathrm{p} \mathrm{n}}{}(\mathrm{mb})=65.52+38.09 / \mathrm{p}_{\mathrm{L}}(\mathrm{GeV} / \mathrm{c})$. Determination of the cross section for antiproton annihilation on neut rons is discussed.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

[^0]: *Institute of Theoretical and Experimental Physics, Moscow

