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Introduction 

The BDrn-Oppenhe~mer adiabatic or molecular state method has 
first appeared in atomie physics /1/ but 1l0W Ls widely used also in 

nuclear physics /2/. Most of tbe textbook~ consider it to some ex­
tent /3/. Nevertheless the method i8 defective ~y itself wbat ~as 

not been 80 important at the beginning of the story in atomie physics 

but became apparent when muonic molecule8 started to be widely trea­

ted by the same approach /4/. Again, it was not so important in the 
nuclear physics as many other uncertainties were involved in that 

case. To understand the essence of the problem we ahould return to 

the simplest three-body molecular otatcs with the well-defined inter­

action, without any additional eomplications like :lp1n, etc. 

So, we have for example ~D~ system consisting of three partic­

les wíth Coulomb interaction, narne Ly p e d Te. /5/. Mueh h eav er í 

nuelei are almost fixed at some stationary positions and a valenee 

eleetron moving with rather a high velocity provides the binding of 

the system. This elear physieal picture gives grounds for toe usual 
adiabatic strateRY for the solution of the problem. At first step 
the nuelei are considered infinitely heavy (fixed), 80 that a mueh 

simpler three-dime~8ional problem of the electron moving in the 
field of two fixed centers is to be 801ved at the beginning. For a 

particular case pf the Coulomb interaction this two-eenter problem 
happens to be completely separable in prolate spheroidal coordinates 
thUB providing a eomparatively easy way to calculate the eigenvalues 

and eigenfunctions of the problem both d~pending on the internuclear 

distanee as a parameter /6/. Next, this paramete! should again be 
converted into a dynamic va r i a b I.e •. Jn this treatment, the electronic 
motí on (wí t h fixed nuc Le i ) app ea r-: in the zeroth order, the vibrati­

onel motion of the nuelei ie of the uecond arder, and the rotations 
()r e 01' t he f'ou r-t h order, The expa ns on parameter "is (m / M )'/1, ,í 

""hera m and M arE' typi c a I ma a s ea o f t he Lí gh t a nd hf!8VY partic­

los respectively /7/. This approacb resulte in a 8~rongly eoupled 

syetem Df SchrBdinger equations for the radial motian of nuelei, 

tbat persist to be coupled evrn in that part of the configurational 

space wher e two particles are bound forming a n atom, one of the nuc­
lei be ng far aW!3Y. As a r-eau l t of such 8 "nonphysical asymptoticí 

coupling the bounda ry conditions for the s ca t t e r i ng, problem in tbis 

D!t\tltitie'~mhlil BHcnrryr 't. 
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approach are not easy to meet. The situation is rather strange - in 
the zeroth order theory provides extremely good res~lts but the sligh­

test attempt to improve this simplest approximation kills the theory 

i tself. 

Several attempts were made to treat this disaster. In the most 
extensive calculations /8/ the authors used 52 bound and 792 conti ­

nunm states of the two-center problem declaring that though the 

t he ory is def ec t í.ve they have used almost o complete set of solutions 

so that one could be sure of their resulta. The variational calcula­

tions from /9/ have disproved this ü8sertion. In another approach 

/10/, see also ref. /11/, the authors are trying to treat the infi ­

nite system of coupled radial Schroodinger equatlono by transforming 

it to a more physically acceptflble formo We shall mention here two 

more attempts to treat the boundary conditions in the molecular sta­

te framework, that imply the Jntroduction of traoslational exponen­

tial factors or the so-called diabatic (i.e. opposite to molecular 

or adiabatic) states /12/. It la not an easy task to discuss these 

approaches because both thingo have never been clearly defined. Even 

more, wben introducing theru one usually supposes that some adiabatic 

states are already avaLloble to use them for those ~peculatitins. So, 

alI the problems that appear when adiabatíc states are introduced in 
the study of the three-bouy states, namely, the effect of proper 

mass, asymptotic radial and Coriolis coupling between slow and fast 

degrees of freedom, are still open to a direct ,treatment. In what 

follows we present a formal theory which is free of alI those draw­

bac~8 but contains all the advantages of the usual Born-Oppenheimer 

approach. Due to that, our mAthod should be very appropriate for 

studying the scattering problern and also weakly bound states in the 

framework of the molecular state approach. 

Our strategy is rather different from the classical one, though 

the starting point is the same, i.e. three-body Hamiltonian in the 

rotational frame with Z -axis being the internuclear axí s , We exa­

mine carefully the structure af different coupling terma which are 

parts of the total Hamiltonian and introduce two subsequent trans­

formations of the' coordinate system and also of the wave function 

and then arrive at the now much simpler expression for the total 

Hamiltpnian. This new Hamiltonian ellow8 one to redefine the partiti ­

on of the physical system into its fast (originally electronic) 'part 

and rather slow (nuclear) parto A new two-center Hamiltonian appears, 

that exactly reproduces the spectrum of the assooiated atam wben one 

cf tbe nuclei ia put to be infinitely far away. Next, the partial wa­

ve analysis la made, thát pr~vides the atates with exact quantum 
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numbers of the total angular momenturn 'J and pari ty p • After 
that the two-center Hamiltonian converts into the system of (J+ 1) 

or 1 coupled Schroedinger equations in two variables to account for 

the motion of a fast sybsystem. This program has partly been presented 

by one of the authors /13/. Here it ~ill be reproduced in a more cle­

ar way with important physical details being stressed After that wep 

shall be able tD construct a formal scattering theory with exact 

asymptotic states and provide formulae for the amplitude anà scatte­

ring cross sections in the laboratory frame in terms of the molecular 
state S.-matrix. 

1. Molecular Description: Jacobi Coordin~tcs, Recoil Operators 

In order to describe in a simple way the asymptotic states for
 
the transfer reaction
 

(G+C)em + ó -- ({; +C)t'm' +0 
(1 ) 

we	 need two sets of relative Jacobi coordinates (Fig.1a, lb ). 
c 
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Fig.1. 

Jaéobi coordinates for the left (1a) and right-hand 

(lb) sides of the transfer reaction (1). In Fig. lc 

the Jecobi coordinates one proceeds with in the mo­

lecular-like approach are given. Formula (18a) pro­
vides the value of CU 

Here are tWD cores a and !J wi th masses ma at;d m! and 
a ao r t of a valence partiele C wi t b mass me which can provide 

binding Df the total system. In that case for low relative velocities 

the proce8s (1) should proceed through some molecular stage. That is 
why one usually writes down the internaI Hamiltonian in terms of re­

lative Jacobj eo~rdinate6 (Fig. lc). The motion of_a valence particle 
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C is quantized onto the Ar -axis (rotating referenee frame). 
Three sets of Jaeobi eoordinates (1a)-(1e) are eonneeted with eaeh 

other. For instanee, 

( :: ) = G~) (~ ~) (:). 
(2 ) 

The eoefficients e and f depend on masses of the particles 

mg me 
e = ma+mg J> - ma +/il

o 

c (3) 

The transformation matrix (2) is factori~ed into two matriees of 

the subsequent shifts. 
Formula(2) provides the relevant formulae for the gradients 

(\/-) (I - ) ( VR)e\\7;: ~ -} I'e} Vi" 
(2a) 

The change of variables (2) can be treated as the change of the 

representation if one introduces the operator 

Ta = exp (e RYf) exp (fi \IR) 
(4 ) 

so that for any operator H I say, Hamiltonian, it yields in the 

new representation 

H = Ta H T - f • a a 

The 'operator Ta has the properties 

'T. RT-f=R-- T i r-f = i 
a a a) a a a 

T r7_ 'T'r-I _0- v. r.-f;::. '1­
{a VR a - vR 1 / Cl t a 7.. a 

o 

a (48 ) 

.These formulae follow immediately 'f r-orn the operator identity 

,?xp (Y) X exp (- V):: X + [Y, XJ + ~! [V,fY, Xl] +... (5) 

The translational operator (4) accounts for the recoil effect 

precisely /!4/, though it can hardly be recommended for a praetical 
use. Nevertheless, all numerous attempts /12/ to describe the asymp­

totic states in a molecular basis by ineorporating some additional 

expqnential faetor in front of the molecular wave functton are due to 

its peculiar form (4). 

.~ 

So, as it is usually done, we choose Jaeobi eoordinates (1e) 
with polar coordinates fR,FJ,CfJ} being introdueed for veetor R. 
Then, the Hamiltonisn of the associated three-body problem will be 

-2 
r-- f (f B)2 _L I -+v 
H = 2M R T aR - 2 MR z 2m Ll 'Z I 

(6 ) 

where the potential energy 

v = V ('ta ) + Vg ( 7.G) + V ( R ) a e 
(6a) 

and the square angular momentum operator 

2 iJ . a 1 a2

L :=. _ - _-.1 iJe S L n8ae - Sí.nze aep2 

(6 b ) 

The reduced masses M and m are gj ven by 

{ f
 

M ma 
+ m&
 

.L - _1- + __I
 (6c)m - me ma + m 6 
and se ::. (m& - ma)/ (ma I- m& ) fDr further use. 
Next, the opera tor . 

Cf) (cp, 8, D) = e -icf>fx'e-ieel/' 

(7 ) 

ie applied 80 that the transformed Hamiltonian js f.iven by 

H= q)HCJ.Y(. 
(8 ) 

Now, Ã? -veetor ia atill referred to thc injtial laboratory frame 
but the motion of the valence partiele is described in the rotating 
eoordjnate ~ystem with /7/ 

ex' = êe (8,ep), êy ' ::; etp(B,C/J) ,o ê'l.' =êR (e,cp). (7a) 

Thíe i8 due to a speeifie form of q) -operator that depende on the 

angu Lar- momentum projeetions ti' ez ' oJ' C -partiele in theJ 

(7a) frame. The transformation (8) i s ua ua Ll y introduced as a simple 
coordinate transformation due to 

-r- z rrv ! -I 9) RCfJ -t ; R'--1J"t'-1J =-"t 

(9 ) 

In order to receive the standBrd Born-Oppenheimer picture the 
prolate spheroidal coordinates /6/ should be used for the motion of 

s 



the light ~article 

~ =' "ta- f 'tI . h _ ta - 'lg Cf = a'tcfj f/x /5" R '( ­
(9a) 

and after that we arrive at what can be called an original Born­
-Oppenheimer or adiabatic Hamiltonian /15/ 

R 1 
. 

I (I éJ )2 + :J 
-2 

'2 
HBO = n - 2MRZ' "t .1;z' - 2M R +- aR 2 MR 2 

I (I a) ~ 5l 
+ MR R + f)R ~ - MR2 • 

(10 ) 
Here, the squared total angula~ momentum 

-2 f (a a)2 _, L . eL _~ 
') = - si n 28 acp - cos e éJ t.p - si ne a8 S in i3{} acp 2 

(10a) 
and the two-center Hamiltonian A for the motion of the valence 
particle (fast 8ubaystem) i8 given as usual by 

't} =_1- 11-' + V
2m i 

(10b) 
where the Laplace operator i8 now given by 

/1 ... ,=-L1 t/\ 
1. J2 Dcp' (10c) 

with 

• A =- 4 [ iJ (1: 2_ ) L L ( _ 2) iJ 
and L'.H R2i! 2_f ) ar s I íJ g+iJ'2 I 1z iJ'2] 

!J 8'?
 
1J.<p = rfIsz aep2 .
 

Two last terms of (10) account for the radial and angular coupling 
of the motion of a valence particle with that described by R ­
-coordinates. The precise form of the qoupling operators follows 
from 

4= y~r[ (~-;,(?)(( IJ~ +(?-XIJ(I- '2
2
) at} , 

eX'! ift =exp (! i 'f) {!/~, [i7-xtJaf-(~-;;tP)/pJ + f;-z i ;'f J 
LJ' • a [z. ) ( ;,Z] fzLz,=-laep) S=- (f-f I-t) . 

(1 Od ) 

(, 

The projections·of. 1 are given by 

- - i a ta - a -.. ·13·'j =' e ' (-.- - - {C 'o8::r;;::) +e ,(-i --)+f '(-L _.).
]C sLn8 fJcp d ulf Y de z 8<f (1 Oe ) 

For the volume element we have 
3 

dRdi/= RZsin 8d Rd Bdep : (f~ pZ)dJ" d 2d lf . 
(IOf) 

Quite formally the coupling terms survive as R ~ 00 and the 
two-center Hamiltonian (10b) does not reproduce the spectrum of 
(a + C) or (lJ + C ) "atom" in the same limi t , One c an say that the 

receil effect ia not accounted for properly at this stage. The rnost 
í.mpr-eas í ve way to understand what i t is all about would probably be 

to look at matrix elernents of the coupling terme from (10) calcule­
ted between different eigenstates Df (10b~ for pure Coulombic inter­
action /4/. Almost alI oi them tend to some constant values 8S 

R--ao 

2. Elimination of the Radial Coupli.ng: Hyperspberoidal Coo:rdinates 

It has recently been shown /16/ that the radial coupling is 
unphysical in the sense that it can be eliminated exactly by some 
isometric transformation of the total Hamiltonian (10) 

-Jl A 
HA = e eHBo (11 ) 

with the generator J\ given by 

I a
!l=-fn({j)R(R +f)R)' 

(11 a) 

where 

p = I~' 4rz (fZf2z-·1-2;;ef.~ 'Jt2)f 

(11b) 
ia the dimensionless function of relative coordinates. The direct 

use af the operator identity (5) produces for the transformed Hamil­
tonian and wave function 

( (iJz 5 a ,3 :/271 pZ R2
 
HIt =hA - 2M aR2 + R aR )-2MRl. 'P 2MR-z - 2m R~ L1 'f
 

1\ !l A /I J1 (12) 

and 
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I,f -Al,!'" -I I ],J(.r--' ----I)
TA ~ e I ( R) 7. ) = 'V]5 -r "i R I "t . 

(12a )
 
The expression (12a) follaws just from the known identity
 

exp[fn(a)í Vi]/(f) = f(ai). 

(1) ) 

So,both the coordinates and the wave function are changed by the 
t ranaf orma t on (11). Tt1e new rs Low radial variable R is givení 

I1 
by /17/ 

R
II 

= {f'R. 
(12b) 

The operator 

p.. { z "-' 
nA = - 2m-.P t6 S? + V 

(14 ) 
i8 to be identified with thc transformed Hamiltonian for the motion 
of a fast subsystem. Here 

. z 
rv R A 

t6S? = R~ LJ5" 2 
(14a) 

Now, one can aee that the radial coupling term is missing in (12). 

Due to this fact the recoil effect is exactly described now as ins­

tead of tbe original Jacobi reduced masses rn and M the coordinate 

dependent masses m [p and M'p are Lnc orporated in the theory. 
In o.,rder to see this, sbould be changed bac k to R byRit 
using (12b) in expressions (12) and (14). These variable reduced masses 
have the important properties 

f -I 
+- m..p/ m R7.;f __ :a ma fTlc 

a c =Pa/m 
(j--f,7-- f ) 

- f I f -I ( -f
( Mp) R'Z~f __ '= mg + !TIa = Ma = M..Pã)-f me 

(r-f,p--I) (15) 

just like i t should be for the left-hand siele of the r-eac t on (1).í 

In the case of R7JI-- 00 limit formulae like (15) hold with a 

and Ó being in t erc ha nge d , 1\8 fel' 8S the trarisformation (11) leade 

to the change of the independent variable by (12a), a new collective 

radial va r a al e RI\. should be introduced, that ha s vely usefulí 

aSYll1'ptotic propertie8 

11 

R ={P-R--- r fp;; R = ~; Ra , R'L~ ~= (~-- t, 2---1) 
.11 J- j rM~ Il ~ R= ~ K R5) Rli --- 00 ($-- (, ?- f), 

(15a) 

where Ra and Rg are the Jacobi radii that correB­
pond to 'la. and 7..g • Forrnulae (15) indicate that in the 
region of pair collisions tbe transforrned Hamiltonian has the pro­

per behaviour and the formula (15a) should be used for the matching 
the eigenfunctions of Hll. with the asymptotic solutions that 
represent the cbannels of the r eac t on (1).í 

The singularity 60nnected with the tripla collision should also 
be considered in studying the general three-body syetem. It csn 
easily be shown /17/ that RA caincídes with the hyperradius 

of the system which is the proper variable to treat Fock's singu­

larity. 30, while restoring the proper pair colli8ion behaviour of 
the total three-body Harniltonian, we have got the theory which i8 
adequate for treating the region of the triple collision. 

The result of this section can te summarized in a simple way. 
The R ,f ' 2 coordinates of t he usual Born-Oppenheirner descrip­
tion sbauld be changed to "hyperspheroidal" coordinates R

A 
, r ' P • 

The change af the W8Ve function (12a) i8 also desirable in order to 
simplify the resulting Hamiltonian. 

One csn also soy that A -transformation simulates in its 
own way a "radial" part of t hs recoi 1 op e.ra t or (4) resulting in 

Harniltonian (12) with good aaymp t ot o bel.a v í our in radial variables.í 

The original Born-Oppenheimer qU8siseparRtion of variable8 i8 8ubsitu­
ted by the new one. 

). Rotational Coupling: Inertia Tensor of a Three-Body 3ystem 

The commutational relation [A, j, ê ] = O bolds ao 

tbat the structure of the rotational coup~ing operator ia not 

changed by J1 -tre.!1sformation. This ia an additiop.al indica­

() 



tion to thatL~ is a sood three-body generalized radial coordinate. 

On the dther hand , tl1e ,asymptotic properties of '). '1 operator 

are still poor. Due to this fact we have solved the problem of 
the proper asymptotical behaviour of the theory only for the simp­
lcst case of j = O as yet. A further transformation ia need~d 

and ít i8 almost evident thai this sl10uld be a rotation. In arder 
to simplify the presentation, this rotation should be accolllplished 

in two steps. The first one is to restore the proper commutational 

relations of the componen~s of 5 that are uutil now more 

than a bnormal. Indeed, using Jx ' , :JJ' J and:1z ' 
E;;I from (10e ),we have 

~ Jx ' , .18"] :: - i. ctj e]x,-i JZ' ; [Jx ' , :Jz'] =[:]j'" J'z'1 ='D (16a,) 

5·j • To restore a usual algeb­thaugh providing (108) for 
j we define anow the unitra for the projections of 

byvec tors ê1 , 1z and 13 

ê1 f x. I si n cp - êy' cos« l; z: lI? 
(17 ) 

ê, = é.-r ' cos tp [/l' sincp-r 

80 that for .t he components 01' j = ê, 7,+ f z ':/2 T 1'5 .13 

we nave T'J 1 } 'Jz ] =- i 73 and 80 on•.These properties happened 
to be u8eful /13/ to introduce one more transformation of the total 

Hamiltonian 

_ -S'l.. .Q (18 )
H'I1fl - e HA e 

de'fined bywhere 12 = - i (,u:1, and w 

m (F7- X ) 'S L1;: lI!. -~~ 
Sin2úJ=2M /VI pZ (18a)jJ VTif 

R and tbe principal axis of theia the angle between the vector 

10 

inertia tensor of t6e three-body system. So, (18) provides the new 

rotational reference frame in which by using (5) we arrive at 

I (13 2 
5 {}) 3 

fi./in=f1An- 2M aR~ + RJI.~aRA - 2MR~ . (19) 

The operator 

Q O 1 I { 2.'J[1.""P / IP-Je)J} (20)
nAQ=nA + Tr?+2MR Z I-IJ L1'~ +L 1 ~Óv/2fJt:.{;t+ 2S­

,,\ 

wi th S iJ a 
x. = f Z - í 1. [ ( ?- Jt f) ar -(ff - :Jt2)Bf] , 
r-t __8_ [ 1. a r ( _~z, a]
0'-1- fZ-2 z 2(g- tJdf + ~ { c ) ar 

(20') 

should be referred to as a rotational dynamic two-center Hamiltonian. 

It contains the operator 

T. ~ -i( J; • J: .;J,z) 
. R 2 I, i, 13 (20a) 

that is just tbe Hamiltonian o f an aCYInI:,!·trit top with the clas­

sical expressions for the principal inertia moments 

l I 2~-
I = I + 1 = MR'p I, = 2 Jv1 Rp (f + V f -;j )) 

(2{)I Z 3 J 

so that.p already given by (11b) is simply d!~ined by 1 1 • 

The original long-armed Coriolis coupling term Yt from (10d) 

ia now transformed into the rotational coupling term that i8 given 
in the curly brackets of (?O). Now it has a multiplier in front of it 

that makes i t zero as R 'l~: & -- 00 So, the transformed HAQ..• 

Hamiltonian is completely separable in that part of the configuratio­
nal space that 1s defined by the channels of the transfer reaction (1). 

Three subsequent rotations were involved to arrive at the resul­

t i ng Hamiltonian (19) with its rotational part given by (20). Finally 

we gi ve the expressions provid ing th~ Euler angles o<. , j3 , r 
of the resul ting rota tion that puta o1'iginaJ.-space-fj xed frame into 

that making the inertia tensor 01' the three-body system to be diago­

nal /13,18/ 

ct» (oi. - 1» = cos ã cto €f + ciaco s~ne 
ri . ri d. SLn.ep 

COSf = COSBCDSW- sin8sinw cos v 
i si nco ti r :: -[OS LU C fJ <P -- ct9 8 si n<f (22 ) 

II 



This rotation depen9ing on internal coordinates of the system 
again can be thought of as an angular part of the total recoil 

operator (4), but opposite to A' -transformation it diagonalizes 
the rotational coupling only in th~ asymptotic region. 

The sequence of the coordinate transformations used in this pa­

pel' can be finally summarized at this place. The original Born-Oppen­
heimer three-body center-of-mass coordinates R , EJ ,cP 

g , 2 ' cp were subati tuted by a speeial choice of the 

hyperspherical coordina tes R.!I. ,f '2 . o( ,j3 ,
t . There exists a nurnber of papera in the fialda Df the nuclear, 

molecular and etomic phY8i~s where authors start by using hypersphe­
rical coordinates in their investigations. We ahall indicate here 

only representa tive references /19,20/, noting the papera by John­
son /21/, where there la an lnteresting discussion of different va­
riants of the Hamiltonien in hyperspherical coordinatea, and the 

papers by Macek who was probably the first to introduce the Born­

Oppenheimer-type descrlptiDn of a three-body system in hyperspheri­
cal coordinates /5.22/. 

4.	 Partial Wave Analysia Df HJ1f2 states with Good ~uantum 

Numbers 

The asymptotically adapted three-body molecular Hamiltonian 
(1~) allows one to rneet proper boundary condit10ns for the trans­

fel' process (1). In the uaual Born-Oppenheimer description the 

two-center" Hamil tonian (1 ou) is us ed to pr.ovide the molecular·-type 

eigenfunctions as a basis to expand a total three-body wave function. 

In our case the operator (20) plays that role. Th~ angular degrees of 

freedom should ~e separated at the first step. This procedute can be 
combined with an introduction into the theory of the states with good 

quantum nurnbers of total angular: momerrt um J and total pari ty p 
by writing the expansion of a three-body wave function in the form 

'Jp _ _, ':!.-::Jp 'Jp

1fM (RA , 'Z ) = L BM K (eX J j3 ,r) <.pK (RA ~ h)· 
, K=O ~ 5 ) ! (23) 

This function has to satiafy the Schroedinger equation 

fl/lQ'ry = E tir . 
(24') 

In (23) the summation i8 oVer the values of the total unguler moroen­
tum ~rOjection onto the rotating Z I -axia. The quantum number M 
is the total angular rnomentum projection onto the original fjxed 

12 

7	 -exis. The angular part of the wave function has the form 

B:; [cc,(3 I t )=1J_~_K («, (3, t) + P(-I) JCJJ_: K (Dl I j3 (O- ) . 
(23a) 

1\: It contains Wigner qJ -functions defined as in /18/ and provides

1fl	 good quantum numbers J and p . The number of terms in the expan­
aion (23) is not higher than J +1. Hence, tha projection onto the 

states (23a) leads to the aystem of J + 1 01' Y Schroedinger equa­
tions with the matrix Hamiltonian 

Jp ~ :Jp I ( az 5 a) 3 
~n = Al1- 2M aR~ + RA aRA - 2MR; 

(25 ) 
which includes the matrix operator of the dynamic two-center prob­

lem for the rotational states ~~~ that is just the operator 

(20)	 averaged over the angular states (23a). The operator of an a~sy-
T ' +metric rotator / R couples the states (23a) for K ::: K - 2 

and the Coriolia-type operator from (20) includes BIso K' c K : 1 

-type coupling. Both couplings disappear in the asymptotic reg10n
{	 . . 

wh er e R7; 01' R 7i'-- and then K aturts to be 8 good00 

quantum number which is not true in the general case. Again, only 

,asymptotically the rotational part of.the total wave function 

decouples into the (23a) forro with arguments of ~ -function being 
rf-t 'í[

converted into rr ,8 , cp - "2 due to forrnulae (22) 
where cU should be put equal to zero. 

The system of Schroedinger equations in three variablea 

1R , f,?} with Hamiltinian (25) that we rewrite 
I1 

Jp. Jp Jp
H, '-fl ( RA I ~) ?)=E t;J (R11 , ~ J ?) 

Jp J (26) 
using l.fJ for 'column-vector "fJK P from (23) ia ready for 
the solutlon. If a three-dimenaional code ia available, the eolution 
Df (26) ia straightforward to provide the spectrurn and eigenfunctions 

of a three-body system. The scattering problem ia more complicated as 

ft ahould be. In the next section we ahall introduce the Born-Oppen­"I 
heimer-like approximation for tpe Bolution of (26) that will be a 

~, tool for ~reating both the eigenvalue problem snd the acattering 
" problem (1). 

I :J 



5.	 Generalized Born-Oppenheimer Description: Two-Center Problem 
wi~h Good Quantum Numbers 

Now we are ready to make use of a rather general Born-Oppen­
heimer ar adiabatic idea, i.e. to separate approximately the total 

dynamic system into its fast and slow parts. The starting Hamiltonian 
ia given by (25) in our case, the collective "slow" variable will 

Ibe f?A ,so that a fast subsystem will depend on two intrinsic 
variables .f, ? wi th the gene ra Lf z ad two-center rotational I 
Hamil t ornan /; Jp f r orn (25) that Ls just the opera tor (20) pro- I: 
jected anta rotational states (2)a). The a8sociated Schroedinger 
equatian reads 

!J JPr--- Jp', 'Jp "J -:Jp . 
n <fn (f) 2) RI'.J = e; (RA ) 'e; (~) 7) RJ\)­

Its eigenvalues and eieenfunctions depend on Ri\ 
ter for the momento The "vibrational" quantum number 
interpreted by inspecting tbe R 'l~~d -	 OC> limit 
system (27). As i t follows f r-oi , expressions (20) and 

AAD Rrz- f ; - ~ nA<:t, D 

(F--I, ?- ~ I) 

-
so that the prajection af :J 
to be a good quantum number 1n 

I	 J} 
+ ­

2 13 

anta the body-fixed 

(27 ) 
that is a par8me­

n can easily be 
of	 the Schraedinger 

(20a) 

(278 )
 
Z / -axis starts
 

this limito For a general spherically 
symmetric pair potential tbe o rb t e I rnomentum t of (O+C) sub-í 

system will be the additional asymptotically good qLanturn number. 
Both can be used for the clasBification of the states. In arder to 
distinguish between (a «c ) and (& + C ) a aympt o t Lc states 
the third quantum number o< =: a ar b will be introduc ed , This 
specification allows one, for example, to consider J?A - ~ limit 
a s R "t;f _. c:>o f or o( =a or a s R 1.! (__ 00 f or o( =: 8 

One can S8Y that the solutions of (27) diagonalize the rotation81 
coupling exactly but unfortul1ately only by some numerical procedure. ; 
Once equation (27) is solved, we can introduce the Born-Oppenheimer-like 
expansion for the solution of (26) ( ~) P indices for the solutiollS 
of (27) are omitted from now on) J. 

;/p 

'P (RA , $) ? ) =- L ~Ko( ( f'?; RA ) XeXc< ( Ri')
t/(Ol 

(28') 

1·1 

Equa t Lcn (26) projected orrt o the a oLutd one of '(27) provides the 

aya t em of Sc hr-oed i ng er equations for Xn ('RA ) • The index n=.{tKo<;} 
enumerates a number af states that ah ouLd 'be inyolved in a paz't í.cu­

lar calculation. Those are chosen due to the following rea80ns. As 
far as ,we are interested dn some specific two-body asymptotic fftates 
for reaction (1 /) these define at least twa corresponding 17 • The 

Los	 Lmp Le a t ane Lye.ís o f the ·( R ) bahay ur' supplies one witht n A 
physical understanding af their pan.ticu1ar .role in the process in­
voLv ed , 'l'his ia just dtre .to the fact t ha't ,'f;n(P:n) are the gene­
ralized effective potentiala that define molec~lar-like dynamics of 
the problem in questiono Of coursa, we 'hope that only few of them 

are really impor.tant. This i8 a "definition" of a claas of pliysical 

problems that should be treated in this wa~. 

6.	 One Level J\pproximation: Classica,l Rotator.Model 

The success ar the 'Born-Oppenheimer method is mainly due to a 
rather high accuracy of its simplest one-state approximation. The 
theory g~ven in this papel' should provide more accurate results a180 

on that level of approximation as far as'í t incorporates addi tional 
operators into the generalized two-cerlter operator (14). Its eigen­

functions should be chosen for the case of the zeroth total angular 
rnomentum 5 . If 'J::j:: O the generalized two-center Hamiltonian 

f Dl' the rot~tional states ~ook~too much complicated. Recently, the 
one-level alternat±ve was tpropoaed for the states with normal parity

J	 . 
p	 = (-1)., 7 » O '/2.4>/ • 

In tha~ case ~he last teml of the genera1ized two-center opera­

tal' (20) is 1eft .out and in addition only K ='0 projection i8 used 
ln	 the decompos:Ltion (24) of the total wave -f'unc t Lon , Under these 
simplifications ~he ~y~tem of equations (27) ia reduced to the only 
S(;hroedinger ~quatoion. The authors Df- /'2:4/ have given no motivation 

for.this approximation though 6 -terms ( f( =0) are known to be 

the most important in~h~ Born-Opp~nheimer method. The special choi~e 

of	 tbe rotational part c;f the to,tal Hamiltonian in the forro of (2Ga;) 
can find justification 1n425/, where ~he author declareo that in two 

cases, where the Corioris coupling can be eliminated witb tbe help of 

redefinition Df the bady axe~, the rotational part of tbe operator is 
transfOrmBG inta the forro ,(20a,). The numerical example from /24/ 

nlso supports this modelo 

15 
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7. Scattering Amplitudes: Body Fixed to Laboratory Freme Transf'ormation 

Jp The coupled syetem of Schroedinger radial-like equations for 
XeKoC (R A ) that follows from the Born-Oppenbeimer ansa tz (28)
 
has the usual form
 

[ I (f d)2:Jp 3 I Jp:Jp d ,7:Jp ::Jp
 
-2M RA +dRI1 1-[ (RA ) - 4MR;+2M(U +Q dRA~X :: EX o
 

J. (29 ) 
Here é Pc RlI.) ia the diagonal matr'ix from the generalized two-- i 
center problem (27). The matrix elements of U Jp and Q:Jp are oi 

<,
defined by 

':Jp <a~ à,lf; )­ 7p ,....... 
f\
 

U = - BYj »Q .. =<lf.ij r3 R aRAÀ 'J l. aRIl 

o, i ::: D ~ i.)i = [ II X, eX )
 

"-'::Jp (0)
 
where ~i are the eolutions of (27) correaponding to
 
é l.:tp. • In some way the matricos u:Jp and Q.:Jp restore
 

the radial coupling of the problem but this is an inherent feature
 
of the Born-Opponheimer scheme. It ia rather straightforward to find
 

the discrete spectrum of (29). It should be close to that of the total
 
projected Jfumiltonian (26) if our approximation ia valido In the case
 
of the scattering proces8 (1) we look for a body-frame solution
 

4'f
m 

« with the initial relativa motion to be in the direction
 
of the laboratory Z -exí s
 

rp (mo< (I~o< , i",) = exp (i K(o< Ro<) SOem ('lo< ) 

f ~' , , R~~ c: (Ro(-J CPrm ,(i«,) exp (i «: Rrxo) , 01 ) 
m «em ec ~... p 

where <ftm(~)"lft ('Zoc)Ytm (ice) wi th o( = a 01' o are the wave
 
functions of the bound atatea for the ecattering process (1) in the
 
laboratory frame. The oh8nnel wave numbera are defined by
 

Z :Jp
K!c:( =2 M!,x (E-ceo{ (00)) o 

02 )
This ~quation followa from Schroedinger Byetem (29) when the relation 

between R and RA given by (158) ia ua ed , Equations (29) had 
better to be eolved in their original form with !. 

A Z . :Jp
(K!o() -2M(E-é!« (00») 

I, 
Â 1;I,z (328 )ao ~ = /<"eo( .PKeot oe In the expressions for the channel wave 
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numbers é/,P ( OQ) provide the exact values of channel energies. 
o( r/':JpeKcx .... .. /

Our bos1c solutions 'M (R
A

, 'l.) with good quantum
 
numbers ':J anel pare now given by
 

'JpeKtX. __I :/p ~Jp . 7pfKoC .( 

cyM (~, 1. )~;f:.t?MK' (o(13J)~K(x' (5,7) RII ) Xe'K'O< '(~)RJl . OJ) 

'-"'-:Jp .
 
where l.f (5) 2 I RA ) are the solutions of the generalized
 
two-centern problem (27) and the expansion (28) was uoed. As 

,...... ::Jp ::Jp
R/l -- 00 both 'fe.KcI.. and B are simpli fied:

MK 

.......... :Jp ~ 1\, -iK(lf- %)

(Pe «« Cr:., 2;Rj. )R-- <fe (i:X) YeK (~o(.) e 

S A-CO OJa) 

B~: (c()f3lt)R~ B:: (CP, 8, .CP_1l/2 ) 
J\ 

:Jpe K~ 
For the functions X e'K'oe' (R A ) we have chosen the a oLu t Lon
 

of(29) subject to the boundary conditions Xf~P;~o<.(O)::: O and
 
. K o< 

'JpEKoC M )(12 e _. K A R
 
Xt'K'cx' ~(K~:.r' [~l,d~K,(td:'P(-I) B r-c
l A 

S:Jp , I ) i. K~" , RAJ 04 )
I 

- "(l K~ I eKoC e foe 

The phase factor p (_I)! should be incorporated into the theory 
to simplify the presentation of the free motion term of (31) when 
it is transformed to the body-fixed system /26/. It i8 

exp (i Keoe Rol) Cfem (i cC) rr=-oo 
O( • 

. Me .
 
_l_ L. (2L ~/) ftP(-I)p' (cosB)8_I/e-iKtatR"'_eLKe«Rclj »: (i",) (35)
 
2 Keo( ROI. P,L 2 i.
 o 

=4~ L (2:1+ I)[p(-ffe -iK&,(R"_e i Ke..<.R~JB:: (1, B) rp- fti2 )~mo( (f. ?; 00 ) •
 

Ke~ oi. Jp m
 

t m ot ­
Now the scattering wave function cp (Rã., Zoc) can be found
 
by e xparia í on
 

rt/n l.':>(' - ;:/ptKol _ 1 

I ,(R« ,T.-:) = 2.. A('J P M) e, »r. ex) Cf
M 

(RA ) Z ), ()6 ) 
J,~'" I' 
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where A ('J,p, 11 .t, m , o: ) should be given by 

i l' r I A-fíA (1, PIM, e, m, cx) = li (2 :J+ f ) U m M O/w-(K (M ' Kecf. ) 07 ) 

in order to provide the asymptotic form ()1). A further body-fixed 
to space-fixed frame transformation should be appl~ed /26/ to rece­
ive the expression for the scattering amplitude from ()1) 

emoi i. ( Mo(.)~ 
:!ef-nd' (e, CP) = 4'(Keot Ke'o( ' )'/2 Mo('
 

"L d.a,m,[r~p(_l)e~J.:J(2:J+I)r7p(d..'t'n.'!ext.f2)
 08 )Jpl.níf 
I.:m:rn L'O L cp )
 

)t C7 - mt 'm ' CJ-n.'tn' 0 m '-m o ( ,B, o .
 
In this expression the transition matrix 

T:J
P 

=- d;.e' d,KK' de(e(' - S ::Jp 

()88 )cr
and the Clebsch-Gordon coefficients C are involved ina oe 8f3 
summation. 

The degeneracy-averaged acattered int~nsity is given by 

{ , , -I - ( '\ / ~ em..l ( m)/ Z
, I ,o< f/oe.f}'= (21,.1) K eoe Ke'oc' f1.m' .Te;n 'cc , 8,'f" (9) 

a~d the integral cross aection 

2H: 7[
 

6 (c( ,e /0<: e)=J1 d cp si n 8ae i (o( ,t 'j o( e)
 
(40 ) 

() () 

is simplified to 

r.:-	 ::Jp 
6 (o('t'jo([) = + I (2J+f)p {eX 'e/eX!) , (41 )

Keol 'J,P 

where average transition probabilities are defined by 

:J	 ,1ft )1hP p{o<. '[/0( e)= tzt-li' l. ,Ir 7p(tK~ '/t KoC )/7-;'A~ 
KK	 /'{O</ (42) 

The scattering amplitude from (38) is the main result of 
this paper. It was not p08sible to receive it without some or 

other approxJmat1ons involved in prev10us attempta /2,4,15/, because 
the asymptotical1y adequate two-center }~miltonian was not available 
until now. 

In the derivation Df (38) we followed the paper by Pack /26/ 
where Bome important details can be found. 

Summary 

The formal theory for three-body rearrangement scattering 
processes in the molecular states approach was formulated for the 
first time without any difficulties with unphysical long-ranged 
couplings. The main idea used was to transform the traditional mo~e­
cular three body Hamiltonian into the form that has ne1thor radial 
nor angular coupling in the asymptotic region. Rence the wave func­
tion and the internal variablea were to be changed. 

The transformed Hamiltonian was projected onto tho atates 
wi th good quantum numbers of total angular momentum ') and pa­
rity p ,thus providing the system Df Schrqedinger oquations 
in three variables. Two Df these variables can be chosen to descri­

be the fast subsystem. The relative Ramiltonian is to be reffered 

as dynamic two-center Hamiltonian for rotational statos. Its eigen~ 
values and eigenvectors provide grounds for the Born-Opponheimer li­
ke approach with original physical intuition but without tranditio­

nal asymptotic difficulties. 
In this way the eigenvalues Df the generalized adiabatic 

Hamiltonian (27) form the family Df effective potentials for the 
radial-like system Df the Schroedinger equations (29) in slow vari­

able. The solution Df this eJetem for scattering states in the form 
(J4) defines the body-fixed molecular state S -ma trix S:7p 

The specific phas8 factor in (34) is chosen to simplify the matching 
Df the general body-fixed solution (36) with the scattering soluti­
on Df the usual form (31) given in the laboratory frame. The labo­
ratory frame scattering amplitude (38) follows from this matching. 
If molecular states are really involved in the scattering process only 

::Jp )those En (RA which are att;ractive and powerful eriough to sup­
port the bound states are important for the scattering processo A 
further preliminary information is supplied by the general behaviour

l . af the matrix elements of U:Jp and Q:JP ' matricea which are 

sensitive to such specific phenomena as crossing and quaaicro8sing! 
I'

I	 
of ê ~p ( RA ) that are very important for the dynamics of re:'" 
ac t í.cn (1). 

lU 
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,a result, only few . e1ements Df S:Jp 
for a I'. As matrlx lml­

ted number Df {J,p} -pairs should be included into the summa­
tion (38) in order to derive the molecular state scattering ampli­

tude. The important kinematical features are completely accounted 
for by the Clebsh-Gordon coefficients and the coefficients of the 
irreducible representations of the rotation group which are invol­

ved into summation. Thc angular distribution of the products Df reac­
tion (4) should be very sensitive to the particular form Df the 

scattering amplitude (38) and we believe that it also can serve for 
parametrization of the accurate experimental differenttal cross­
sections if the molecular description of process (1) is supposed to 
play a governing role. 

Expression (38) for the scattering amplitude is 8 kind of the 
partial wave decomposition which is very close in structure to that 

Df the usual theory Df elastic two-particle scattering /3/. In our case 

partial amplitudes are much more complicated and the angular distri ­
bution of partial waves is accounted for by Wigner 0D -functions 

that depend on two angles which define the polar angles Df the vec­
tor connecting the scattering products. From the formal point Df view 

we have the case Df multichannel scattering in a noncentral field. As 

usual, the partial wave representation Df the scattering amplitude 
should be used in the low energy region where only few partial WB­

ves are really important. 

The three-body Hamiltonian H/l D (19) W8S derived from 
the original Born-Oppenheimer adiabatic Hamiltonian (10) in order 

to describe exactly the effect Df the pair collisions in a three-body 

system•. The case of the triple colli8ions was not taken into account 
explicitly. Nevertheless, thé RI\. -part of HA.D. c o i nc des í 

precisely with the hyperradial part of a three-body Lapla~ian which 
is a proper way to a:cou~for Fock's eingularity /20/. It is clear 

that the rest of the Hamiltonian (19) can be given in the form Df 
the "angular hyperspherical part" o f a three-body Lap Lac La n , Due 
to this fact one can say that we have established the connectior. 
between the Born-Oppenheimer and hyperspherical harmonics metho 's 
in a three-body problem. 

At this point it should be mentioned that there exist recer:t 
calculations Df the molecular-like sjstems in the hyperspherical 

basie /27/. The convergence of the method happened to be rather po~r. 

In this paper we were going in tbe opposite direction. As the star­

ting point the traditional molecular Hamiltonian was chosen and 
transI'ormed to account better for the finite masses Df the "centers"! 

20 

The Dnn-ntaco Uorn-Oppenheimer-like calculations Df the binding 
ene rv l en o r s ee ' -eystem /23/ and the position of ('J =2, 

P -1) rencncnc o in t).r + t scattering proved that our appro­
ac h .lono r ! boa the dynamí c s of a three-body system much better than 

tho orlKlnnl Dorn-Oppenheimer method /24/. 
In 1981 Peno /28/ put forward a program for a u~ified treat­

mnnt cf 00111e10ne in e eJetem of few perticlee. In our paper this 

program ie partielly fulfi11ed. 
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