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Introduction

The Born-Oppenheimer adiasbatic or mplecular state method has
first appeared in atomic physics /1/ but now is widely used also in
nuclear physics /2/. Most of the textbooks consider it to some ex—
tent /3/. Nevertheless the method is defective by itself what has
not been so important at the beginning of the story in atomic physics
but became apparent when muonic molecules started to be widely trea-
ted by the same approach /4/. Again, it was not so important in the
nuclear physics as many other uncertainties were involved in that
case. To understand the essence of the problem we should return to
the simplest three-body molecular states with the well-defined inter-
action, without any additional complications like spin, etc.

S0, we have for example HD+ gystem consisting of three partic-
les with Coulomb interasction, namely p+d+e /5/. Much heavier
nuclei are almost fixed at some stationary poéitions and a valence
electron moving with rather a high velocity provides the binding of
the system. This clear physical picture gives grounds for tne usual
adiabatic strategy for the solution of the problem., At first atep
the nuclei are considered infinitely heavy (fixed), so that a much
simpler three-dimensional problem of the electron moving in the
field of two fixed centers is to be solved at the beginning. For &
psrticular case pf the Coulomb interaction this two-center problem
happens to be completely separable in prolate spheroidal coordinates
thus providing a comparatively easy way to calculate the eigenvalues
and eigenfunctions of the problem both depending on the internuclear
distence as a parameter /6/. Next, this parameter should again be
converted into a dynamic variable. In this treatment, the electronic
motion (with fixed nuclei) appear- in the zeroth order, the vibrati-
onel motion of the nuclei ie of the second order, and the rotaticns
are of the fourth order, The expansion parameter s (m/M )% .
where m and M are typical masses of the light and heavy partic-
les respectively /7/. This approach results in a strongly coupled
system of Schridinger equations for the radial motion of nuclei,
that persist to be coupled even in that part of the configurational
space where two particles are bound forming an atom, one of the nuc-
lei being far awey. As a result of such & nonphysical asymptotic
coupling the boundary conditions for the scattering problem in this
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approach are not easy to meet. The situation is rather strange - in
the zeroth order theory provides extremely good results but the sligh-
test attempt to improve this simplest approximation kills the theory
itself.

Several attempts were made to treat this disaster. In the most,
extensive calculations /8/ the authors used 52 bound and 792 conti-
nuum states of the two-center problem declaring that though the
theory is defective they have used almost a complete set of smolutions
go that one could be sure of their results. The variational calcula-
tions from /9/ have disproved this assertion. In another approach
/10/, see also ref. /11/, the authors are trying to treat the infi-
nite system of coupled radial Schroédinger equatlions by transforming
it to a more physically acceptable form., We shall mention here two
more attempts to treat the boundary conditions in the molecular sta-
te framework, that imply the introduction of translational exponen-
tial factors or the so-called diabatic (i.e. opposite to molecular
or adiabatic) states /12/. It Ls not an easy task to discuss these
approaches because both thingo have never been clearly defined. Even
more, when introducing them one usually supposes that some adiabatic
states are already available to use them for those speculations, So,
all the problems that appear when adiabatic states are introduced in
the study of the three-body states, namely, the effect of proper
masg, asymptotic radial and Coriolis coupling between slow and fast
degrees of freedom, are still open to a direct.treatment, In what
follows we present a formal theory which is free of all those draw-
backs but contains all the advantages of the usual Born-Oppenheimer
approach, Due to that, our method should be very appropriate for
studying the scattering problem and also weakly bound states in the
framework of the molecular state approach,

Our strategy is rather different from the classical one, though
the starting point 1s the same, i.e., three-body Hamiltonian in the
rotational frame with Z -axis being the internuclear axis. We exa-
mine carefully the structure of different coupling terms which are
parts of the total Hamiltonian and introduce two subsequent trans-
formations of the coordinate system and also of the wave function
and then arrive at the new much simpler expression for the total
Hamiltonian. This new Hamiltonian allowe one to redefine the partiti-
on of the physical system into its fast (originally electronic) part
and rather slov (nuclear) part. A new two-center Hamiltonian appears,
that exactly reproduces the spectrum of the assoclated atom when one
of the nuclei 1s put to be infinitely far away. Next, the partial wa-
ve gnalysis is made, that provides the states with exact quantum

numbers of the total angular momentum J and parity p ., After
that the two-center Hamiltonian converts into the system of (J+ 1)

or J coupled Schroedinger equations in two variables to account for
the motion of a fast sybsystem. This program has partly been presented
by one of the authors /13/. Here it will be reproduced in a more cle-
ar way with important physical detai&s being stressed, After that we
shall be able to construct a formal scattering theory with exact
asymptotic states and provide formulae for the amplitude and scatte-
ring crosgs gections in the laboratory frame in terms of the molecular
state 5.-matrix.

1. Molecular Description: Jacobi Coordinates, Recoil Operators

In order to describe‘in a simple way the asymptotic states for
the transfer reaction

(@ec)y +b —— (b+Clyp . +a
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we need two sets of relative Jacobi coordinates (Fig.1a, 1b).
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Fig.1.

Jacobi coordinates for the left (1a) and right-hand
(1b) sides of the transfer reaction (1). In Fig. lc
the Jacobi coordinates one proéeeds with in the mo-
lecular-like approach are given. Formula (18a) pro-
vides the value of w .

Here are two cores g and & with masees Mg and /77§ and

a8 sort of a valence particle € with mass myp which can provide
binding of the total system. In that case for low relative velocities
the process (1) should proceed through some molecular stage., That is
why one usually writes down the internal Hamiltonian in terms of re-
lative Jacobi coerdinates (Fig., lc). The motion of a valence particle



¢ 1s quantized onto the /7 -axis (rotating reference frame).
Three sets of Jacobi coordinates (1a)-(1c) are connected with each
other, For instance,
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The coefficients ¢ and £ depend on masses of the particles
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(3)
The transformation matrix (2) is factorized into two matrices of
the subsequent shifts.

Formula(2) provides the relevant formulae for the gradients

V§a>_ ! -e V§>_
Vz B <-f /+ef>< Vi /-
e (2a)

The change of variables (2) can be treated as the change of the
representation if one introduces the operator

T.- exp (e RY;) exp (7 vz)

(4)
so that for any operator 4 , say, Hamiltonian, it yields in the
new representation
-1
/iz = 7; H 7;
The‘operator 7; has the properties
- - - - .l=-—
TRT =R, , TalT,'=1%,,
o v
Ta Ve Ty = Ve, T Vill'= Vg (48)

These formulae follow immediately from the operator identity

exp (Y) N exp (V)= X+ TYXTJ7 [N

The translational operator (4) accounts for the recoil effect
precisely /14/, though it can hardly be recommended for a practical
use, Nevertheless, all numerous attempts /12/ to describe the asymp-
totic states in a molecular basis by incorporating some additional
expqnential factor in front of the molecular wave function are due to
its peculiar form (4),

So, as it is usuaslly done, we choose Jacobi coordinates (1c)
with polar coordinates [R,8, @} being introduced for vector A .
Then, the Hamiltonian of the associated three-body problem will be

~ 44 VLT
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(6)
where the potential energy
V=V, (ta)* Vg (2Zg) + V. (R)
(6a)
and the square angular momentum operator
2
Zz___—/ isLn _67__ / d
T 8ind 98 06 sin‘e 9 ?
(6b)
The reduced masses M and /77 are given by
41, L
M Mg mg
! S !
o= mc-r T7ia + 7 (6c)
and o = (my —ma)/(m,, g ) for further use.
Next, the operator ,
-iﬁbfz' -t 8¢y
Db 6,0)-0 e 7.
(7)
is applied so that the transformed Hamiltonian is given by
H=DHD . @)

Now, ﬁ’ -vector is still referred to the initial laboratory frame
but the motion of the valence particle is described in the rotating
coordinate gystem with /7/

ezr = 89 (f?,qb), Eiy" t§¢,(£9.qb)’. E?Z': ézq (équb)'

(7e)
This is due to a specific form of D -operator that depends on the
engular momentum projections 4,‘ s fz' of C -particle in the

(7a) frame., The transformation (8) is usually introduced as a simple
coordinate transformation due to

DR -3 R =R.
(9)

In order to receive the standard Born-Oppenheimer picture the
prolate spheroidal coordinates /6/ should be used for the motion of
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the light particle The projections‘of‘ ] are given by
Tat?y . Ta- 2 /o 3
SR T == 7 -avctg 9/ : y -

E R 7 R ¢ 7 (9a) 3- 54- (SLnH E Cfd(zﬁa—) by (159) f g d‘P) (10e)
and after that we arrive at what can be called an original Born- For the volume element we have
-Oppenheimer or adiabatic Hamiltonian /15/ - . /?3 2 )

. e dRd7 - R'sinBd Rd 8P 5 (§-5)dFdyd -
1 2 _ 1 o Y
Hoo= A~ 2z B3~ 73 (& * 37) * 2 MR (108

Quite formally the coupling terms survive as R = =0 and the

/ J 0 A :7[ two-center Hamiltonian (10b) does not reproduce the spectrum of
MR ( [7/? )? MRZ ’ (a+c) or (5+c) "atom" in the same limit. One can say that the
(10) recoil effect is not accounted for properly at this stage. The most
Here, the squared total angular momentum impressive way to understand what it is all about would probably be
2 to look at matrix elements of the coupling terms from (10) calcula-
=2 / d g 1 0 % 0 P
Toem g ( — . Cosed—) - ‘/76 56 SL/?BL?Q 5’_952 J ted between different eigenstates of (10b) for pure Coulombic inter-
stn‘é (7<P ¥ St action /4/. Almost all of them tend to some constant values as
(10a)
R — o= .
and the two-center Hamiltonian ﬁ for the motion of the valence
particle (fast subsystem) is given as usual by \ 2. Elimination of the Radial Coupling: Hyperspheroidal Coordinates
5:2,77 Af' * V ) It has recently been shown /16/ that the radial coupling is
. (10b) unphysical in the sense that it can be eliminated exactly by some
where the Laplace operator is now given by isometric transformation of the total Hamiltonian (10)
A"' = + A -A
1 A ' Oc A
, F2 79 (100 Hy=2" Hgpe
with 11)
. 4 i 2 a ﬁ ﬁ with the generator A given by
A ‘—}7(—z—z[5’—(f ")3 W (/'772);5] p
5y F-57) 0% £ ' = n (V3 (i+_>, -
and A=t (Np)R(7 * 3R
2
4 0. (11a)
A(P T Rist Jw? \ where
7 z 2 2
Two last terms of (10) account for the radial and angular coupling JO = f+ W (? f-? -1- 291’}5? L4 )
of the motion of a valence particle with that described by R - (11b)

-coordinates, The precise form of the coupling operators follows is the dimensionless function of relative coordinates. The direct

from uge of the operator identity (5) produces for the transformed Hamil-

(5-5)( /)—*( ¥4 )(/ ) tonian and wave function

{g P 4 i f ?d?} ' H=5_L(6’+ii> 3 Jojzyfp R
é’x-z{y exp(—tsf’){; ?[<7 z’f),;— (&- z’;)d?hf—”zﬁ} 17T 2 \GRY " Ry GRy )T INR, S 2mRy " 2m RY Y
Z’;’=—13% ) S= [(? 1)(1- ?)_}/z ] and

(104d)
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A= o - -,
= R 71)=—= d— R, 7).
ty=e YR 1) 5 ¥ (b
(12a)
The expression (12a) follows just from the known identity

explln(@)TVs]1#(7)=§(ai).
(13)

So,both the coordinates and the wave function are changed by the
transformation (11). The new slow radial variable Rh is given

by /17/

—

RA ) Jﬁ R (12b)
The operator

R
AA:_Z/TI‘-P Ag:? V
(14)

is to be identified with the transformed Hamiltonian for the motion
of a fast subsystem. lere

~ R’
A .
AE? R/\ 5t (14a)

Now, one can see that the radial coupling term is missing in (12).

Due to thie fact the recoil effect ig exactly described now as ing-
tead of the original Jacobi reduced masses /7 and M the coordinate
dependent masses fﬂ[p and Abo are incorporated in the theory.

In order to see this, RA, should be changed back to R by

using (12b) in expressions (12) and (14). These variable reduced masses
have the important properties

Jo/m Ray=—co  ma’ m Mac = f, /m
Gt h==1)
- / { -/ -{
(Mp) ez 7 " e = Ma = (Mpy)
F=1,p=-1) (15)

Just like it should be for the left-hand side of the reaction (1).
In the case of R 7§/ - e 1limit formulae like (15) hold with a
and & Ybeing interchanged. As far as the transformation (11) leads
to the change of the independent variable by (12a), a new collective
radial variable /?A ghould te introduced, that has very useful
asymptotic properties

7 _

IV RATE Rt eapag b

Ry-\p R~ | Yoo Rovw R Re =g~/ 1)

PR Ry, Ry == (g1, 5 1),
(15a)

where /?a and f?s are the Jacobi radii that corres-
pond to 27, and 7¢ . Formulae (15) indicate that in the
region of pair collisions the transformed Hamiltonian has the pro-
per behaviour and the formula (15a) should be used for the matching
the eigenfunctions of /ﬂA with the asymptotic solutions that
represent the channels of the reaction (1).

The singularity connected with the triple collision should also
be considered in studying the general three-body system. It cen
easily be shown /17/ that Rk_ coincides with the hyperradius
of the system which is the proper variable to treat Fock’s singu-
larity., So, while restoring the proper pair collision behaviour of
the total three-body Hamiltonian, we have got the theory which is
adequate for treating the region of the triple collision,

The result of this section can be summarized in a simple way,
The R, E’ s ? coordinates of the usuel Born-Oppenheimer descrip-
tion should be changed to "hyperspheroidal" coordinates ﬁh ’ }' ’ 2 .
The change of the wave function (12a) is also desirable in order to
simplify the resulting Hamiltonian.

One cen also say that A —transformation simulates in its
own way a "radial" part of the recsil operator (4) regulting in
Hemiltonian (12) with good asymplotic behéviour in radial variables.
The original Born-Oppenheimer quesiseparation of variables is subsitu-—
ted by the new one,

3. Rotationsl Coupling: Inertia Tensor of a Three-Body System

The commutational relation [A , T-£ ] =0 holds so
that the structure of the rotstional coupling operator is not
changed by A ~transformation. This is an additional indica-

9 . .



tion to that‘ﬂ& is a good three-body generalized rfdial coordinate.
On the other hand, the asymptotic properties of Cf‘?l operator
are still poor, Due to this fact we have solved the problem of

the proper asymptotlcal behaviour of the theory only for the gimp-
lest case of U = 0 as yet. A further transformation is needed
and it is almost evident that this should be a rotation. In order
to simplify the presentation, this rotation should be accomplished
in two steps. The first one is to restore the proper commutational
relations of the components of 7 that are until now more
than abnormal, Indeed, using 3&./ , :ayl and :ZZ' =
= fzﬂ from (10e), -we have

[Tor, Gy le-ictg@Tp-iTy [T, Iy 1= LTy T 020 ()

though providing (10a) for q;f7 . To restore a usual é}geb—
ra for the projections of '.j we define anow the unit
vectors £, , ¢, and ls by

= Epr SLNP - Z’y’ cos¥ | bs =Eg

(17)

[N
~
n

BrrcOSP by sing

go that for the components of = e, JE, Jo+ Px Js
we have [:71 3&] = -1 SG and so on. These properties happened
to be useful /13/ to introduce one more transformation of the total

Hamiltonian

_ 8 Q (18)
/—;!m—@ Hp €™,

where Q =‘-[aJ:ﬂ and w defined by

A= s

77 (E h-2)5 .
ﬁ4 f? (18a)

SanCJ—ZM PY'—/—A— !

LY

is the angle between the vector K and the principal axis of the

10

inertia tensor of the three-body system. So, (18) provides the new
rotational reference frame in which by using (5) we arrive at

_ g g? d ) 3
Hra = Maa ZM(BRA RA,BR

The operator

/ 2 iz E220 1 (20
Paa=Fr et ZMR’ 7314 '7;*‘71[433*2/%@* ) B

with

2

ZMR, ' (19)

; [0-25) 75 (E- af;),,azj
;z, rdtlis ’)ﬂf R (o

should be referred to as a rotational dynamlc two-center Hamiltonian,
It contains the operator

2 2 2
T _L .‘_7’_ + .22_ +_‘75_.)
Rzl ]
I L 5 (208)
that is just the Hamiltonian of an acymnetric top with the clas-
sical expressions for the principal inertia moments

I-1,+I, = MR, I,= 4 MRP(/+V1-4), o)

so that fj already given by (11b) is simply deflned by I,
The original long-armed Coriolis coupling term :7[ from (10d)
is now transformed into the rotational coupling terin that is given
in the curly brackets of (20). Now it has a multiplier in front of it
that makes it zero as /?Z;ig —~ o= , S0, the transformed /{ASI
Hamiltonian is completely separable in that part of the configuratio-
nal space that is defined by the channels of the transfer reaction (1).
Three subsequent rotations were involved to arrive at the resul-
ting Hamiltonian (19) with its rotational part given by (20), Finally
Wwe give the expressions providing the luler angies o« , /3 , d‘
of the resulting rotation that puts original-space-fixed frame into
that making the inertias tensor of the three-body system to be diago-
nal /13,18/

m‘dn (ct-P)= cos@a‘da‘f + céiw sifg—g

cais[s = c058cosw-s5inBsinw cosy

sinw
siny , (22)

tgy = -coswctgy - ctg b



This rotation depending on internal coordinates of the system
again can be thought of as an angular part of the total recoil
operator (4), but opposite to /I -transformation it diagonalizes
the rotational coupling only in thg asymptotic region.

The sequence of the coordinate transformations used in this pa-
per can be finally summarized at this place. The original Born-Oppen-
heimer three-body center-of-mass coordinates K~ , & , P,

g , ? , @ were substituted by a special choice of the
hyperspherical coordinates ;eA , E , ? , of » B,

K . There exists a number of papers in the fields of the nuclear,
molecular and atomic physics where authors start by using hypersphe-
rical coordinates in their investigations. We shall indicate here
only representative references /19,20/, noting the papers by John-
son /21/, where there is an interesting discussion of different va-
riants of the Hamiltonien in hyperspherical coordinates, and the
papers by Macek who was probably the first to introduce the Born-

Oppenheimer-type description of a three-body system in hyperspheri-
cal coordinates /5,22/.

4., Partial Wave Analysis of ffnn : States with Good Quantum
Numbers

The asymptotically adapted three-body molecular Hamiltonian
(19) allows one to meet proper boundary conditions for the trans-
fer process (1). In the usual Born~Oppenheimer description the
two-center Hamiltonian (10b) is used to provide the molecular-type
eigenfunctions as a basis to expand a total three-body wave function.
In our case the operator (20) plays that role. The angular degrees of
freedom should ‘be separated at the first step. This procedure can be
combined with aﬁ introduction into the theory of the states with good
quantum numbers of total angulaf momentum J  and total parity P
by writing the expansion of a three-body wave function in the form

P oo, 7 J
| 'LffM (Q ’z):Kz:aBMi(d/ﬂla‘)(ijp(RA;E)?).

This function has to satisfy the Schroedinger equation

(23)

HyoW = EW.
(24
In (23) the summation is over the values of the total angular momen-
~

tum projection onto the rotating 2’ -axis, The quantum number M
is the total angular momentum projection onto the original fixed

12

Z -~axis., The angular part of the wave function has the form

B:,? (d'ﬂ,z)‘)ﬁ)_i_,((o(.ﬂ,mvp(—/)7@_{4 cyR9)

(23a)

It containg Wigner 9 -functions defined as in /18/ and provides
good quantum numbers J and P - The number of terms in the expan-
sion (23) is not higher than J +1. Hence, the projection onto the
states (23a) leads to the system of J + 1 or 7 Schroedinger equa-
tions with the matrix Hamiltonian
' jp~/ (ﬁz 5 5

.7,0 g 2 2 )_ 3
GRZ " Ry OR,' 2MR)

Mha = 543 M

(25)
which includes the matrix operator of the dynamic two-center prob-
lem for the rotational states ﬁ;?; that is just the operator
(20) averaged over the angular states (23a). The operator of an assy-
metric rotator Tk couples the states (23a) for K'= K toa2

and the Coriolis-type operator from (20) includes also K’ = K %
~type coupling. Both couplings disappear in the asymptotic region
where /Q’Z;l or R'Z&—'-—oo and then K

quantum number which is not true in the general case. Again, only

atarts to be a good

_asymptotically the rotational part of, the total wave function

decouples into the (23a) form with argggpnta of 9 -function being
converted into P , 8 , - é} due to formulae (22)
where should be put equal to zero.
The system of Schroedinger equations in three variables
{ k; VE b } with Hamiltinian (25) that we rewrite

HP0 (R, E0) = EW PRy B0

(26)
. Jp Jp

using ¥ for column-vector Vﬂ( from (23) is ready for
the solution. If a three-dimensional code is available, the solution
of (26) is straightforward to provide the spectrum and eigenfunctions

of

a three-body system. The scattering problem is more complicated as
it should be. In the next section we shall introduce the Born-Oppen-
heimer-like approximation for the solution of (26) that will be a
tool for treating both the eigenvalue problem and the scattering

problem (1).



5. Generalized Born-Oppenheimer Description: Two-Center Problem
with Good Quantum Numbers

Now we are ready to make use of a rather general Born-Oppen-

heimer or adiabatic idea, i.e. to separate approximately the total
dynamic system into its fast and slow parts. The starting Hamiltonian

is given by (25) in our case, the collective "slow" variable will

be Rﬁ s 80 that a fast subsystem will depend on two intrinsic
variables ?, ? with the generalized two-center rotational
Hamiltonian

from (25) that is Just the operator (20) pro-

Jected onto rotatlonal states (23a). The essociated Schroedinger
equation reads

TP~ Tp .- ~
BP0 R = €P RN TP (E, 0 R, ).

. (27)
Its eigenvalues and eigenfunctions depend on /?A that is a parame-
ter for the moment. The "vibrational" quantum number /7 can easily be

interpreted by inspecting the A Z;%'*-°° limit of the Schroedinger
system (27). As it follows fro:. expréssions (20) and (20a) )
2
ﬁ R —— ﬁ + __/. i
AQ R} == A2 T
(F+1 h=21) 3
- (27a)

so that the projection of J onto the body-fixed ¥ -axis starts
to be a good quantum number in this limit, Por & general spherically
symmetric pair potential the orbital momentum £ of (a+c) sub-
system will be the additional asymptotically good quantum number,
Both can be used for the classification of the states. In order to
distinguish between (@+c) and (f+c ) asymptotic states
the third quantum number o =g or 5 will be introduced, This
specific?tion allows one, for example, to consider /aA - o limit
as /?'z’ - oo for o« =4 or as’ /?’Z!—-—w for & =4 .
One can say that the solutions of (27) dimgonalize the rotational
coupling exactly but unfortunately only by some numerical procedure.
Once equation (27) is solved, we can introduce the Born-Oppenheimer-like

expansion for the solution of (26) ( 7 p indices for the solutions
of (27) are omitted from now on)

¢k JE, b= Z m(;p Ra) Xopr (R

(28)

———

Equation (26) projected onto the solutions of (27) provides the
system of Schroedinger equations for ‘K (/QAJ . The index N1+ {ﬂﬁx}
enumerates a number of states that should 'be involved in a particu-
lar calculation. Those are chosen due to the following reasons. As
far as.we are interested .in some specific two-body asymptotic states
for reaction (1)) these define at least two corresponding /7 . The
simplest analysis of the &p (R, ) behayiour supplies one with
physical understanding of their pamticular .role in the process in-
volved. This is just due to the fact that En(RKp) are the gene-
ralized effective potentials that define molecular-like dynamics of
the problem in question, Of course, we -hope that only few of them
are really important. This is a "definition" of a class of physical
problems that should be treated in this way.

6. One Level Approximation: Clasgical Rotator.Model

The success of the ‘Born-Oppenheimer method is mainly due to a
rather high accuracy of its simplest one-state approximation. The
theory given in this paper should provide more accurate results also
on that level of approximation as far as ‘it incorporates additional
operators into the generalized two-certter operator (14). Its eigen-
functions should be chosen for the case of the zeroth total angular
momen tum 3. . If J#£0 the generalized two-center Hamiltonian
For the rotational states .looks too much complicated. Recently, the
one-level alternative was ;proposed for the states with normal parity

p = (-1, 7>0 s2u.

Tn that case the last term of the generalized two-center opera-
tor (20) is left out and in addition only A ='£ projection is used
in the decomposition (24) of the total wave 'function., Under these
simplifications .the sygtem of equationq (27) is reduced to the only
Schroedinger equation. The authors of £24/ have given mo motivation
for .this approximation though G ~terms ( A =0) are known to be
the most important in the Born-Oppenheimer method. The special choice
of the rotational part of the total Hamiltonian in the form of (20&))
can find justification in./25/, where 'the author declares that in two
cases, where the Coriolis coupling can be eliminated with the help of
redefinition of the body axes, the rotational part of the operator is
transformed into the form .(20a,), The numerical example from /24/

also supports this model.




. . rgies.
7. Scattering Amplitudes: Body Fixed to Laboratory Frame Trangformation numbers 55‘:"(0‘,) provide Fthe exact values oft:hann;zl e:ztim
E . ’ wi good qu
The coupled system of Schroedinger radial-like equations for Our basic solutions LV (llerl; .
e
X;Ko[ (RA) that follows from the Born-Oppenheimer ansatz (28) numbers J and  p are now g 7
has the usual form
IpeKe pé’/(oc'
/({ d) Tp_ o Y (R {/)_j ( w (EDR (/?)R . (33)
- 5 + =L g f}(o(
[ze'%, € (Ry)- 4MR am(uha” ar, " Ex | v (RUT20 By Copli (&
o (29) |
Here & (R is the diagonal matrix from the generalized two-. —_ ] )
2) N Ip Ip fi here %yp(f,% R, ) are the solutions of the generalized
center problem (27). The matrix elements of U] and @ are whe A ] 8) uged. As
% two-centern problem (27) and the expansion (28) was .
defined by ! >op 7P implified
9 . déz 7 —~ d¢ ' R+ oo both ?EKM and BMK are simp
P < ﬁ/? > QP=<%[ dQ > 2 M A A 'i/\’(‘f"%)
) ¢ A ! ~Jp D ’
A | B0 g ) YR
B =05 ij=[t Ko} -
P 2>
ﬁg o (30) ,ﬂf)‘* 5 (?6 P-Tz) .
where ‘PL- P are the solutions of (27) corresponding to ek
E:’P - In some way the matrices U 7P and Q77 regtore . . For the functions XE,’:’,OCC,’( (;?A) we have ch;ien the solution
the radial coupling of the problem but this is an inherent feature ! 0£(29) subject to the boundary conditions Xg ;/ “(0} 0 and
of the Born-Oppenheimer scheme. Tt is rather straightforward to find i : N
the discrete spectrum of (29). It should be close to that of the total To kol ) (-1) Kot Ra
projected Hamiltonian (26) if our approximation is valid, In the cage ! Xg/(o( g P (A’g,( [E'Z KK °‘°C ’0
of the scattering process (1) we look for a body-~frame solution kM R (34)
w ' a
S witn the initial relative motion to be in the direction - S‘UP(['K;('/ZA'M)E e’ ]
of the lsboratory VA ~axis . : '

b o - . The phase factor J (- l)f should be incorporated into the theory
¢ (;?a, 'Zo() =0xp (i K[d R )905 (7.) to simplify the presentation of the free motion term of (31) when
' \ ; 26/. It is
-7 {m,; (31) it is trans*‘ormed to the bod/—flxed system /
5 Rk, o (RN, (T exp (K, R,
z
where ‘Pem('lu) ‘/} (’l«)Yz,,,(z«) with o =0 oy £ ere the wave exp (¢ /(-‘-’04 R"‘) (705’" (Tec) R’ e .
functions of the bound states for the scattering process (1) in the L (Keot R =
/ .z/(,,‘,(’.;_ 2ot Kot
laboratory frame. The channel wave numbers are defined by ZK Z (ZL /) fr ,0( ) pL(CUSQ)[('/) e e ](’6’/71 (%) (35)
et Rex AL

2 Ip
= - o)) . R, Kot R, N .

Kew = 2Mpu (E-Epp () 329 : s (gy./)[p(r}e‘”‘* <" “R18” ($6,9-7)% (51
This equation followe from Schroedinger system (29) when the relation . '
between R  and R given by (15a) is uged, Equatione (29) had

Emot -
Now the scattering wave function (P (/Pd,'z,x) can be found
better to be Bolved in their original form with

by expansion

LSS

IpbKt .

A2 v/
(K[d) 'ZM(E_é‘[« (°°)) 3 ¢€md(R d):Z A{:ZID/M’ZJ’/T/)(X) L/JM (PA , %/), (36)
AN

(32a)
so K, = /\}d o - In the expressions for the channel wave
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where A(7,p0,M,0 m, ) should be given by

A(T p,M,E m, oz)=;f(2:7+z)d“mM e M - K2, = o

in order to provide the asymptotic form (31). A further body-~fixed
to space-fixed frame transformation should be applied /26/ to rece-
ive the expression for the scattering amplitude from (31)
8.9)+ pr—ir (i )
4 (Koot Koo' 72 Mo’
ey 7

*Z Oz ymy [1+PC1) I+ T P’ foc

Vmlm 10 £

’ Cy-:z’f'n' @m'-m o (?,6.0),

Zn7x
o (

xC

I-mEm

In this expression the transition matrix

Jp o/
= d;Z'JKK’ L‘&(o(f - S

and the Clebsch-Gordon coefficients (
summation,

s (38a)

e 5/3 are involved in

The degeneracy-averaged scattered intensity is given by

LI )= (2041) ) ‘
('t (20:1)7'K,. K, tiet 2 /ZM (6.2)/" (59,
and the integral cross section
227
G (o' ot £) Mmpsmadal(ozf/ocf) (40)

is simplified to

G (ot fex )= 7_ (27+1) P 7t et ) (41)

Zc( oy

where average transition probabilities are defined by

p’ “wejl)-(2601) Z TR P ko) M’()
Ma”" (a2)

. The scattering amplitude from (38) is the main result of
this paper. It was not possible to receive it without some or

18
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other approxi/mations involved in previous attempts /2,4,15/, becauses
the asymptotically adequate two-center llamiltonian was not available
until now.

In the derivation of (38) we followed the paper by Pack /26/
where some important details can be found.

Summary

The formal theory for three-body rearrangement scattering
processes in the molecular states approach was formulated for the
firgt time without any difficulties with unphysical long-ranged
couplings. The main idea used was to transform the traditional mole-
cular three body Hamiltonian into the form that has neither rudiai
nor angular coupling in the asymptotic region. Hence the wave func-
tion and the internal variables were to be changed.

The transformed Hamiltonian was projected onto the states
with good quantum numbers of total angular momentum J and pa-
rity p , thus providing the system of Schroedinger equations
in three variables. Two of these variables can be chosen to descri-
be the fast subsystem. The relative Hamiltonian is to be reffered
as dynamic two-center Hamiltonian for rotational states., Its eigen;
values and eigenvectors provide grounds for the Born-Oppenheimer 1li-
ke approach with original physical intuition but without tranditio-
nal asymptotic difficulties.

In this way the eigenvalues of the generalized adiabatic
Hamiltonian (27) form the family of effective potentials for the
radial-like system of the Schroedinger equations (29) in slow vari-
able, The solution of this system for scattering states in the form
(34) defines the body-fixed molecular state S  -matrix S %P .
The specific phase factor in (34) is chosen to simplify the matching
of the general body-fixed sclution (36) with the scattering soluti-
on of the usual form (31) given in the laboratory frame. The labo-
ratory frams scattering amplitude (38) follows from this matching.

It molecular gtates are really involved in the scattering process only

those En (R’A)
port the bound states are important for the scattering process. A

which are attractive and powerful enough to sup-

further preliminary informatlon ig supplied by the general behaviour
of the matrix elements of U % and & Tp- matrices which are
sensitive to such specific phenomena as crossing and quasicrossing
of Egp( RA) that are very important for the dynamice of re-
action (1). .
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As a result, only few matrix elements of SJP for a limi-
ted number of {7,p } -pairs should be included into the summa-
tion (38) in order to derive the molecular state scattering ampli-
tude. The important kinematical features are completely accounted
for by the Clebsh-Gordon coefficients and the coefficients of the
irreducible representations of the rotation group which are invol-
ved into summation, The angular distribution of the products of reac-
tion (4) should be very sensitive to the particular form of the
scattering amplitude (38) and we believe that it also can serve for
parametrization of the accurate experimental differential cross-
sections if the molecular description of process (1) is supposed to

o

play a governing role.

Expression (38) for the scattering amplitude is & kind of the
partial wave decomposition which is very close in structure to that
of the usual theory of elastic two-particle scattering /3/. In our case
partial amplitudes are much more complicated and the angular distri-
bution of partial waves is accounted for by Wigner D -functions
that depend on two angles which define the polar angles of the vec-
tor connecting the scattering products, From the formal point of view
we have the case of multichannel scattering in a noncentral field, As
usual, the partial wave representation of the scattering amplitude
should be used in the low energy region where only few partial wa-
ves are really important.

(19) was derived from
the original Born-Oppenheimer adiabatic Hamiltonian (10) in order

to describe exactly the effect of the pair collisions in a three-body
system.'The cage of the triple collisions was not taken into account
explicitly, Nevertheless, the RA -part of h&f} coincides
precisely with the hyperradial part of a three-body Laplacian which
is a proper way to a:countfor Fock’s singularity /20/. It is clear
that the rest of the Hamiltonian (19) can be given in the form of
the."angular hyperspherical part" of a three-body Laplacian. Due

to thig fact one can say that we have established the connection
between the Born-Oppenheimer and hyperspherical harmonics metho s

in a three-body problem,

At this point it should be mentioned that there exist recert
calculations of the molecular-~like systems in the hyperspherical
basis /27/. The convergence of the method happened to be rather poor.
In this paper we were going in the opposite direction. As the star-
ting point the traditional molecular Hamiltonian was chosen and

The three~body Hamiltonian A, o

- ——

transformed to account better for the finite masses of the "centers", !

20

The onn=-ntata Born~Oppenheimer~like calculations of the binding
enerpyian of §68° -system /23/ and the position of ( J =2 ,

p =1) renonence in ty”+ 2 scattering proved that our appro-
ach donuribos the dynemics of a three-body system much better than
the or!ixinal Dorn-Oppenheimer method /24/. )

In 1981 Fano /28/ put forward a program for a unified treat-
ment of collislons in a system of few particles. In our paper this
program is partially fulfilled.
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ACHMITOTHYECKH KODDEKTHhEe MOJIeKYyisipHhIe ‘
COCTOSIHHA B 3ajaue Tpex TeJ

B sagadve Tpex TeJl BnepBhe nocTpoeHa dopManbHas TeopHA
paccedHHs C nepepacrnpeneneHHeM vacTul. PaccesHHe HpOHCXOHHUT
yepes cTaguw oBpa3oBaHMA KBAa3HMONEKYIH, /s ONMHCAHHA KOTOpPON
paHee Hcrnonb3oBanca mMeTon BopHa — OnneHreiMepa. IlocTpoeHo
npeobpasoBaHHe raMWIbTOHHaHa BopHa — OmnmeHrefiMepa, NpHBOAA—
mee K aCHMITOTHYECKH KODPPeKTHOH GopMysnHpOBKe TEOpHH.

PaGora BumosiHeHa B JlaGopaToOpHH TeopeTHuYecKoR ¢M3HUKH
OHAU.

Mpenpunt O6beAMHEHHOro MHCTHTYTa SNEPHBIX HCCNeOBaHMA. [lyGHa 1986

Matveenko A.V., Abe Y. E4-86-467
Asymptotically Adapted Three-Body Molecular States

For the first time formal theory for three-body rear-
rangement scattering processes in the molecular state ap-
proach was formulated encounting no difficulties with unphy-
sical long-ranged couplings.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR. '
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