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Introduction

In this paper we intend to generalise and develop the results
obtained in ref.‘l for the problem of three classical particles with
arbitrary masses Mi23 , that move along a fixed straight line.
0X., Congider the systems with the total energy

3

E:‘U/Z)Zl/mx;(i +V(x1,xz;x:!) ) (1)

where the potential \/ixq,xl’x5)= (x‘-xz,x[)(”xj‘)\,] is the horiogeneous coO-
ordinate function
V(ﬁX“SX“SXa)zsnka“xz)x}) . 2)

In the center of mass system we apply a modification of the

hyperspherical Delves coordinatesz'Blj)e[O,m) , welo,2q) .
-2 ’ o

In them X, =C(5,5,5,) /j)‘COS(lP—-(p:ém) »  where ¢.=cos¥, ;5=5in¥} W, =(chfg(m,(/f«),
11/;6[0,25],' J;:’E\(mLm)/(m“m,fmj)” is the reduced mass, are
the angles of pair collisions and the Hamiltonian is

2 .z n
He(/2p)p + 97p%) + gex o) 9 | 3)

Here g is the dimensional constant and the form of the di-
mensionless function o(y)=ox(y+25) is defined by the poten-
tiel, For instance, in the two—partic}le interaction with'VL,N}xL-xai”
from IV"VQ'Vza* a1 we get d((p/:;u(lsinw—wﬁ“))” , where A,
are some constants; for the three-particle potential V—'V([) N
where Ixﬁpz is the system moment of inertia, we have \/=gS)n
(at nf0) or V=gﬁ1(‘p/po) (at n=0) and ©™=1, etc.

1. The trajectory equation for the three-particle system

In the coordinates we have chosen, one can easily reduce the
Hamilton system of equations to-one differential equation of the se~
cond order for the system trajectory given hy the function Ply) =
:&Emm , where PQ is the lergth scale, By analogy with the
reduction in the problem with %let)\dl_i 4/ we can get

(51/2)= (1 879 wm X 2 (85 ) = £ /1 877 [(1- ¢ ix g2t a0, "
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where & =E/W€"g is the dimensionless total energy, w=41rn/2
and the prime denotes a derivative with respect to P .
The law of motion is obtained by quadrature

#
t-to=J¢¢hﬂ&K9ﬂ+92XE—gm9nytIW
%o

Suffice it to solve the problem at &£:=0 and £=1 since
the following proposition holds:

Proposition 1: Transformations X -»sSx and t->5%t trans-
form a solution of the problem with the total energy E £ O into the
solution with the total energy s"& .

Proof is based on the properties of the total energy (1) and
the Hamilton equations at the described scale transformations and is
easily carried out by using (2). )

2. Completely integrable case

At £=0 the classical three-particle problem with the Newton
or Coulomb two-particle interaction can he considered as a completely
integrable one in a generalised sense1/. Let us show that this takes
place for potentials (2) at any n .

\

Proposition 2: At €=0 eq.{4) is reduced to the first order
differential equation,

Indeed, at £=0 substitutions wa.gp//p and K'=NUQ« trans—
form eq.ﬁ4) into the first order Abel eguation

vlotis vH(w-pe)=0.
PO (5)

At the initial conditions 50,@ the trajectory 5(¢.4,)

is expressed through the solution W(Y ¢,) of eq. (5) in the form
Lp .
S(e, ) =?§oen=[fctwww,%)]. ©)
Yo

Proposition 3: At £=0 there exists an additional first in-
tegral of the system, that does not depend explicitly on time

- Dlop g, v)- )

Al
Indeed, the function q%:(b(@;w) inverse in ), for the solution
V(Y @) of eq.(5) satisfies the equation 9,®+(# v w-yu)9,P=0
used for calculating Poisson bracket

[O,H] :@_I(ZM@ pf -n)H.
2

It is seen that(at H=E=0 we have UD,H]:C), i.e. by the
Birkhoff terminology’/ d§ is the conditional first integral of the

problem, Its value may be due to the energy distribution between
particles.

Propogition 4: At €=0 the‘variables in the Hamilton-
Jacobi equation ’

QWY+ 520 ] - gug? <

(8)
are separeted.

Indeed at E=0 the ansatz

ey
w
Wip.0) =2t p® feo)
(9)
transforms eq.(8) into that on }(w) :
2
£ Wt e tace,
) (10)
where i=&%n . One can easily verify that the relations
-1/ -1 { -
v fwh - $2)- 172 and § =0 v 41e1e?) 12 define the relation
between the solutions of eqs. (5) and (10).

By using the solution {(w,u,) of eq.(10), one can obtain
the trajectory 5(¢,w,) from the relation O, W=const =
=V2uigl 86 23, f(g.0,) in the form

’ -1,
5(.0) =5, fww) /2, o] "™ |
(11)

Comparing of (11) with (7) provides one more relation between
U and f

v
19,0, =3, {o@rexpl-w ftitw(w. )] .
%

The above separation of variables in the Hamilton-Jacobi equation
is unusual. It is related with factorization of the action itself
rather than with factorization of the exponent of W



Proposition 5: Invariant manifold of solutions with ga(
is diffeomorphic to a two-dimensional torus.

Indeed, substitution of I}s‘%% transforms (5) into an
equation on torus 8/ T;;):ﬁi)x S:, (9= ['Rm/modd(Zﬂr)) :

X’=w—¥“(w)’tgx . (12)

3. Form of the function o (¥) and its analytical
continuation

If \f depends on the distances [xi‘ﬂ“ , the function &(v)
can be continued to a holomophic function on a certain Riemann
surface on the basis of the values of o((v) in an interval,where
X~ Xj does not change its sign. Since the uniqueness points
x-%x;=0 are not the points of branching of the function |Xi'ﬁ|:
:vzi;fZQEﬁ , we get the Riemann surface between the sheets of
which there are no transitions when going around these points.
Therefore, we can limit our consideration to only one sheet., For
simplicity we assume 1t to be diffeomorphic the Qﬁ? plane and an
analytically continued function X () to be moremorphic on it

.

(w)=atw) /8Cy) (13)

where a(y)=a(y+25) and 60@):6(w+2x) are an entire functions on
Cg) . These requirements are fulfilled in the most interesting

physical problems with neZs .
Under the assumptions accepted the fixed singular points of eq.

© (12) are {X(K:‘I}Wﬂ?o ,'%c} and “X’K’(K“/Z)W A %’ﬁ ! where kell 5 ¢,

and ¥, are zeroes of « and &’ , respectively, and ¥,
are the poles of () . Introduce also the notation
A(kﬂsJyg?) for an open interval on @L%) limited by the coordi-
nates ‘%5 and wf of two singular points with adjacent projec-
tions onto ER&"* . .On A@&%w&% (@) has a uniquely defined
real-valued inverse function Y=yY(«) . Since p(y) is indepen-
dent of sign o((y) , further in studying the solutions of eq.(12)
without loss of generality we shall assume that «(y)>0 for

wea(w',y,®) -

4, Trajectory on the torus WF;;) and the form

of an additional integral et ¢-=0 |,

Proposition 6: Under the assumption (13) on the form of the
function X () » one can describe the system trajectories on T‘u)

in the parametric form e
X(oT; Ko ) — Xo
= exp [At XolXo, \Po)] P
kP(A'CsX,o,LP‘,) LOO
(14)
where {loﬁ&)To9 is the initial condition and >QKX,W) is an

autonomous analytical vector field

—> — —r
Iy
Xm(x,w)=)(o+w\f=[2wagcosl —(cdg%a,)sur)da)C *Zaecoslap . (15)
The Teylor series (14) has a nonzero convergence radius in A??QE—Z;
in the vicinity of any initial condition §X,4,%le (E,‘,j;m, .
The proof is based on a direct application of the Cauchy theo~

rem and its generalizations6_lo/ to an analytical system of equations

X\ — Y
ﬁ(w):xw“’“’) (w) ’

that is used for studying eq(12),

(16)

.
Corollary: Analytical dependence of Xm on W leads to a

holomorphic nature of solutions with regspect to w in the vicini-
ty of point w=0 . Then, according to the Poincaree’lo/ at smali
w one can search for solutions with respect to perturbation
theory.

The case wW=0, i,e.,the problem with potentials (2) at n=-)
is exactly solved at any oX(y) . The solution is defined by the
integral Io(l,@) in the form

IO(X,Q)=\JO((W) sin X =const A7)
This allows one to construct an original perturbation theory for the
potentials of class (2) keeping unchanged the initial function o(y)
(that may depend on n ) and considering w as an independent
parameter in eqs. (4), (5), (10), (12) or (16). In this approach we
shall get an exactly solvable zero approximation with =0
minimally changing the initial problem, In particular, the properties
of tvo—particle interactions at a fixed moment of inertia I‘J*?Z
are conserved, Then, Hamiltonian (3) is written down in the form



H=He+ aH, , where AHQ=(.«JZD((I//{)<1BH(1/ﬂ):§L(;)‘&'\(I/ﬂ)l,(/(’(*’)! 3 '

i,e.,ylogarithmic terms arise in it, that have first been discovered
by Fock11/ in the expansion of the wave function in the quantum
three-particle problem,

Definition: Series in powers w obtained in the above desc-

W -expansions of solutions of the three-

ribed way are called the
particle problem.,

Proposition 7: Using the variable Io from (17) one can write
down the (W -expansion of the integral L“(X,W) from (12) in the
form

¢ v :

[ K *

1 9) =Z(-wu“ﬁm ---Jow, N W%J I, .

. k=0 7 ~ =i
(18) .

This series absolutely converges in the interval [W'P]CLA(% 8°)

at 0=17<m if

ol @ Wm < 6/8) arckgl3m-Am-T2 ) fm e Y- 1) - /3] + arccos(ITIAM)

where O<m=min K(W) and M=max oy)<oo . o
ee[¢F] wel§,¢]
Indeed, the solution of the equation .
RECR IS MU ) J,=0
for 3wG“W)=Im(XUW) under the initial condition :L = o is

easily obtained as a formal series (18). To estimate its convergence,
we should like to note that for the integrand r]( in (18) we

have mkl—é-MK/le.(l . Under the condition (= LZ <m one can ea-
gily obtain that

16, 1= ”‘J I3/ (9,) 9 JLlem® KW{ [(2-11-x*)3.] x} R .

where 0‘~x—lTVfﬁ { . Then, the substitution x_su1¢%), where
the function ¢( ) bolomorphic at zero is determined from

4= ("/r)"“ﬁ[ﬂg@/z)] Sb , leads to
'Imiéﬁl’%“/xl)(lwlmdwm aa)KSin Py =\m sin ¢(\é+\w\AwW) <Vm .

Al
The convergence radius of the last series 1s defined by the critical
point ¢c=$/2 , nearest to qb=0 s, of the function yd)
which provides (19).

Let us construct also a nonperturbative representation of the
integral [ (¥,¢) of eq.(12) as the Fourier series. For this
purpose the following proposition is useful:

Proposition 8: Determination of the integral [w(l,@) is
reduced to the solution of the degenerate Beltrami equation

exp[éwlp(zi)]’c)f * exp[—éw(p(az)bi{: =0
(20)
into 8 cer-

on the function [(=,%) mapping the plane Q;)

tain line in (Eg) . In eq. (20) Y=yp(z&)=-¢(zZ) , where
W) is the inverse function for X(Ww) .

The proof is based on the change of variables

#=\x(p) expli(wy-2)] 5 «(p)=2Z X =wyp (2l (Erz) R

b

21)

under which the region {Lq# [DZT)XA @, ¢Q) is mapped onto the seg-
ment O‘uxag) Ko< |2 | 400 of the plane GU . The change of
variables transforms eq. (12) into explwy)dz - exMtww)¢a=O whose in-
tegral f(z,2)=const satisfies obviously eq. (20)., Due to the re-
al-valued nature of (2%)

T=[0,F|* [:FI*=0

eq.(20) leads to the zero Jacobian
of the mapping F(=2) Q’,:)ﬁ (‘F') .

Corollary: As a result of degeneracy, the real and imaginary
parts of the function F(z3) satisfy separately eq. (20),
Eg.(20) is reduced to the integral Tricomi equation12'13/

Vb z)= fﬂg-zjzexp wlip(s) w2 {655 A5 A LS /25 = - G(a,3)

As a result of degeneracy, the operator U is unitary in

E?(d“v and has no compressing properties. Therefore, by the
method described in refs.12’13/ one cannot find its eigenfunction
GGLE) that corresponds to the eigenvalue-1 and allows one to

express F,z) through
-1 r .. - = X
Fai)=[-2] ‘expliwe(s3)]6(5,5)ds A S /25¢.
We shall present another way of solving eq.(20).

Proposition 9: The integral watﬁﬂ

Fourier series

is defined by the




L,,0c,0)=(/2) Imiiom)eww«-ww ~agll} (22)

where [ ={ and for x>0 we have in a(W%°,¥°) ¢
)
g - Lwﬂ z‘z zK& i,
I:(—m)ﬁ(ﬂ é /di{{u ﬁ CL o
K. <
¢, (23)
o

with ol = (W@, ) . Series (22) converges absolutely and uniformly

in @ and ¢ at least at [m)52>€ﬂq5 ., It defines the func-
tion [w(xqw) that can be continued analytically to all the points
on @fﬁ apart from singular points 7Cﬁng of the solutions of

eq.(12).
To prove this we substitute into (20) the series

Flzz)=(1/2)20 (F/2) F (22).
K= (24)

The recurrence relations for the coefficients fi(aé)=ﬁgd)

Mb/ /d,o( Saaad E(L%‘ « 5 )] ,

give at =1 :

( o ﬂ I.L(JJLP.( 2x-L1

< 3 X2

F =—(-o<_)K_%La,<e—zmp‘o/ZK¢, (0(:.“1 [Lu,(_‘... /pta‘e.zw'o(,l dk ) )
- o Ao oo o0 oLy (251b)
where «_=¥(ay) is the same branch of the function «(a) at
all K .

It is seen from (25b) that series (24) can be truncated from
below by the choice of fy ) . For f={ we get F =0
for all KeZZ+ , and after returning to the variable ¢
from (25a) we get (23), Passing to the variables 4L,w} according
to (21) (taking into account corollary following from proposition 9),
from (24) we f£ind (22).

From (25a) we get theoﬁstimate

IE| < K'{M_K/d(cXK)N IR,
=N

(25a)

where R& are expressed through Rl=i with the help of the rela-

tions

o
'K/ot(w)Kexp(ch)R.( .

o
Hence we get the estimate maleJs(é—UkﬁﬂaleK4l that,
allowing for Q1=1 provides \RK|<.5“‘i . Consequently
]F|43K<1 - , wherefrom at [mX > @n|3 we find for series (22)
the estimate

[T, «p)|<(‘(—/6)@<p(1mk)f5+lﬂﬂ[i sexp(-2Im)][§ .

“

A possibility for the function ] (X,p) in (LZ’ to be
continued to nonsingular points of HZ;?
points of eq. (12) in (Y’

Ry, = exptowR, - (2-1/x)x

follows from singular
being isolated.

Conclusion

Proposgitions 2-9 show that the case £-=0 in the three-partic-
le problems considered has all qualitative characteristics of the
Hamiltonian systems that are completely integrable by the Liouville-
Arnold theorem6’14’16/ except for, perhaps, integrability of the
first order equations for the trajectory by using a single quadrature.
In our opinion, this gives reasons to believe that the case €£=0
is completely integrable in a generalized sense,

Some of these problems, for instance, the problems with VrLQp) ,
V= g? d(w) and V= gP Z:W sin“(p- w <) are completely integrable
by the Llouvllle-Arnold theorem. Tbeir first-order equations for the
trajectory are solved by using only one quadrature. Imposing two
conditions ﬁ;=b and EL=O on the coefficients (25) at some
NeeZ . , one can obtain the potentials 'V;Nﬁ for which the
case £=0 is solved by using a finite number of quadratures.‘In the
general case, as is seen from (18), (22) and (23), an infinite num-
ber of quadratures is needed for solving the problem at €20 .

at e=4 the problems with homogeneous potentials \f of
the general form are not obviously completely integrable even in a
generalized sense, This is favoured by unsuccessful attempt to find
an additional first integral in the classicel three-particle prob-
lem in the two-particle Newton interaction. A strict proof of such
a "nonintegrability" is related to investigation of the properties
of the solutions of eq.(4) and may provide a deoper insight into
the problem of integrability of dynamical systoms,

It follows from proposition 1 that the problems considered
ﬁossees the simplest possible nontrivial properties of integrablility.
They always have one invariant torus (at &-0 ) and the remaining
part of the phase space either has no invariant tori (if the case -

9




£=1 is not completely integrable) or it is filled by the similar
invariant tori (if the problem is completely integrable at =1 ).
This qualitative simplicity alongside with the availability of the
problems for an analytical investigation make them a convenient and
interesting object for studying.

The problems raised in the concluding part of this paper will
be discussed in more detail elsewhere.
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BRonHe MHTErpupyeMuii CNyuyan B 3a4avax Tpex 4acTuy
C OAHOPOAaHLIMK norTeHun anamMm

PaccMOTpeHb YpaBHEHWA TPaeKTOPMM KIACCHUECKUMX 334au Tpex 4acTuy Ha
MPAMOI C NOTEHUMaAnaMu, KOTOpbEe ABNAKTCA OAHOPOAHLIMA OYHKUMAMA KOOPAWMHAT.
NpegnaraeTcA paccMoTpeTb CNy4ail HYNeBOW NOMHON 3HEPTUW -KaK MOMAHOCTHO UHTEe=
rpupyemuiii B 0606yeHHOM cMbiCne, Tak KAk B HEM NOHWKMABTCA A0 NepBOro NOpPAAOK
avddepeHunanbHOro ypasHEeHUA TPaeKTOopuM, pa3genAnTCA nepeMeHHbe B ypasHeHWW
FTamunbTOHa-AKOBU, UMEITCA [ONONHUTENbHLI NEPBLIA UHTErpan U MHBAPUAHTHLN
TOp, HECMOTPA HA TG, UuTO CUCTEMA He ABNABTCA WHTETPUPYeMOW NO. Teopeme
Nuysunna-ApHonsga. locTpoeHs pewennA: 1/ 8 napameTpiuueckom supae; 2/ 8 suae
CXOQAUMXCA NepTypbaTUBHHX PAAOE HOBOro TMNA; 3/ B BuAe CXOARWMXCA PAJOS
dypere.

PaboTta ssnonHeHa 8 flaBopaTtopuu TeopeTMuecKoN du3uku OUAN.

MpenpHrT OGBLEMHHEHHOT 0 MHCTHTYTa AHepHbLX HccnedopaHui. ly6ua 1986

Fiziev P.P. EL -86-325
Completely Integrable Case in the Three-Particle Porblems
with Homogeneous Potentials

The trajectory equations are considered for classical three-particle
problems on a straight line with potentials that are homogeneous coordinate
functions. It Is proposed to conslder the case of a zero total energy as a

completely intearable one in a generalized sense since in it the order of
the differential trajectory equation is lowered to the first one, the varia-

 bles in the Hamiltonian-Jacobi equation are separated,there are additional

first integral and invariant torus in spite of the fact that the system can-
not be integrable by the Liouville-Arnold theorem.The solutions are construc-

ted:1/in a parametric form,2/in a form of converqent perturbative series of
a new type, 3/ as converdaent Fourier series.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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