

E4-86-321

1986

N.N.Bogolubov, Jr., A.S.Shumovsky, Tran Quang

PHOTON STATISTICS IN COLLECTIVE DOUBLE OPTICAL RESONANT PROCESS

Submitted to "Physics Letters A"

Recently there has been much interest in studies of cooperative effects in superradiance $^{1-4/}$, resonance fluorescence $^{5-9/}$, Raman scattering double optical resonance $^{13/}$, etc.

In the present paper we discuss the photon statistics of spectrum components of scattered light in a collective double optical resonant process. The correlation and anticorrelation between spectrum components are investigated.

The three-level atoms (Fig. 1), concentrated in a region small compared to the wavelength of all the relevant radiation modes, interact with two resonant driving fields and an emitted field $^{13/}$. In the boson representation of atoms $^{13,14/}$ when each atomic level is compared with a boson variable, the master equation in the rotating frame with Markovian electric dipole and rotating wave approximation is $^{15/}$

$$\frac{\partial g}{\partial t} = -i \Omega \left[(\varphi_{SA} J_{12} + sin A J_{23} + H.C.), g \right] - \delta_{21} \left(J_{21} J_{12} g - 2 J_{12} g J_{21} + g J_{21} J_{12} \right)$$
(1)
- $\delta_{32} \left(J_{32} J_{23} g - 2 J_{23} g J_{32} + g J_{32} J_{23} \right),$

where f is the atomic density matrix, $2\delta_{24}$ and $2\delta_{32}$ are radiative spontaneous transition probabilities per unit time for a single atom to change from the level $|2\rangle$ to $|1\rangle$ and from $|3\rangle$ to $|2\rangle$ respectively; $\Omega = (\Omega_4^{+} + \Omega_4^{-})^{1/2}$ and $tgd = \frac{\Omega_2}{\Omega_4}$, where Ω_4 and Ω_2 are the Rabi frequencies for the atomic transitions from the level $|2\rangle$ to $|1\rangle$ and from $|3\rangle$ to $|2\rangle$ respectively; $J_{ij} = C_i^{+}C_j$. (*i*, *j*=1, 2, 3), where C_i and C_i^{+} are the annihilation and creation boson operators for the atoms populated on the level $|i\rangle$.

Fig. 1. Three-level system of atoms interacting with the two monochromatic applied fields.

отретия исследования **BUS** MUCTERA

After performing the canonical transformation

$$C_{3} = -\frac{1}{\sqrt{2}} \operatorname{sind} Q_{1} + \cos d Q_{2} + \frac{1}{\sqrt{2}} \operatorname{sind} Q_{3}$$

$$C_{2} = \frac{1}{\sqrt{2}} Q_{1} + \frac{1}{\sqrt{2}} Q_{3} \qquad (2)$$

$$C_{1} = -\frac{1}{\sqrt{2}} \cos d Q_{1} - \sin d Q_{2} + \frac{1}{\sqrt{2}} \cos d Q_{3}$$

and using the secular approximation $^{/8,13/}$ for the case of intense external field $\mathcal{A} >> N \delta_{24}$, $N \delta_{32}$, one can find the stationary solution of the master equation (1) in the form

$$\widetilde{g} = Z^{-1} \sum_{R=0}^{N} X^{R} \sum_{M=0}^{R} |M, R\rangle \langle R, M|, \qquad (3)$$

where $\tilde{g} = U g U^+$, here U is the unitary operator representing the canonical transformation (2),

$$X = \frac{\delta_{32} \cos^2 \lambda}{\delta_{21} \sin^2 \lambda} ; \quad Z = \frac{(N+1) \chi^{N+2} - (N+2) \chi^{N+4} + 1}{(\chi - 1)^2}$$

The state $|M, R\rangle$ is an eigenstate of the operators R_{11} , $R = R_{11} + R_{33}$ and $\hat{N} = R_{11} + R_{21} + R_{33}$ here

$$R_{ij} = Q_i^{\dagger} Q_j$$
 $(i, j = 1.2, 3)$.

By using solution (3) the characteristic function can be defined similarly to Louisell $^{/16/}$

$$\mathcal{X}_{R}(5) = \langle e^{i S R} \rangle_{S} = Z \frac{-1}{(N+A)} \frac{(N+A) \gamma^{N+2} (N+2) \gamma^{N+4} + 1}{(\gamma - 1)^{2}}, (4)$$

$$\gamma = X \cdot e^{i S}.$$

where

Here $\langle B \rangle_{S}$ indicates the expectation value of an operator B in the steady state (3).

Once the characteristic function is known, it is easy to calculate the statistical moments

$$\langle R^n \rangle_s = \frac{\partial^n}{\partial (is)^n} \chi_R(s) \Big|_{is=0}$$
 (5)

Now we investigate the statistical properties of scattered light corresponding to the atomic transition |2> to |1>.

It is easy to find from the canonical transformation (2) that

$$J_{24}(t) = \frac{4}{2} \cos a \left(R_{33}(t) - R_{11}(t) \right) + \frac{1}{\sqrt{2}} \sin a \left(R_{32}(t) + \frac{1}{\sqrt{2}} \left(R_{13}(t) - R_{34}(t) \right) \right) + \frac{1}{\sqrt{2}} \left(R_{13}(t) - R_{34}(t) \right)$$
(6)
$$J_{19}(t) = \frac{\cos a}{\sqrt{2}} \left(R_{23}(t) - R_{11}(t) \right) + \frac{1}{2} \sin a \left(R_{23}(t) + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(R_{23}(t) - R_{24}(t) \right) + \frac{1}{\sqrt{2}} \left(R_{24}(t) - R_{24}(t) \right) + \frac{1}{\sqrt{2}}$$

$$+ R_{21}(t) + \frac{\cos d}{2} (R_{31}(t) - R_{11}(t)) + \frac{\cos d}{2} (R_{31}(t) - R_{13}(t)), \qquad (7)$$

By using the results of our previous paper $^{13/}$, the operators $R_{33}(t) - R_{14}(t)$, $R_{32}(t)$, $R_{12}(t)$, $R_{34}(t)$ and $R_{13}(t)$ can be considered as the sources of spectrum components at frequencies ω_{24} , $\omega_{24} + \Omega$, $\omega_{24} - \Omega$, $\omega_{24} + 2\Omega$ and $\omega_{34} - 2\Omega$ respectively. For simplicity we call the spectrum component at frequency $\omega_{24} + m \Omega$ ($m = 0, \pm 1, \pm 2$) by Sm.

By using the solution (3) the steady-state normalized intensity correlation functions of the spectrum components can be defined

$$G_{0,0}^{(2)} = \langle (R_{33} - R_{11})^{4} \rangle_{S} / \langle (R_{33} - R_{11})^{2} \rangle_{S}^{2} =$$

$$= \frac{3}{5} \frac{3 \langle R^{4} \rangle_{S} + 12 \langle R^{3} \rangle_{S} + 8 \langle R^{2} \rangle_{S} - 8 \langle R \rangle_{S}}{(\langle R^{2} \rangle_{S} + 2 \langle R \rangle_{S})^{2}}$$
(8)

$$\begin{aligned}
g_{-4,-4}^{(2)} &= \langle R_{12} R_{12} R_{24} R_{24} R_{24} \rangle_{s}^{2} / \langle R_{12} R_{24} \rangle^{2} = g_{4,4}^{(2)} = \\
&= \frac{4}{3} \frac{\langle R^{4} \rangle_{s} - 2 (N+2) \langle R^{3} \rangle_{s}^{2} + (N^{2} + 5N + 5) \langle R^{2} \rangle_{s}^{2} - (N^{2} + 3N + 2) \langle R \rangle_{s}^{3}}{((N+4) \langle R \rangle_{s}^{2} - \langle R^{2} \rangle_{s}^{2})^{2}} \tag{9}
\\
g_{-2}^{(2)} &= \langle R_{34} R_{34} R_{48} R_{48} R_{48} \rangle_{s}^{2} / \langle R_{3} R_{48} \rangle_{s}^{2} = g_{-2}^{(2)}
\end{aligned}$$

$$\begin{aligned} \mathcal{J}_{2,2} &= \begin{pmatrix} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

where $g_{m,m}^{(2)}$ ($m = 0, \pm 1 \pm 2$) is the normalized intensity correlation function for the spectrum component S_m . Here the values $\langle R^n \rangle_3$ can be found in (5). The behaviour of the functions $g_{m,m}^{(2)}$ against the parameter χ is shown in figs. 2. For the cases of one and several atoms the correlation functions $g_{14,14}^{(2)}$ and $g_{12,12}^{(2)}$ are less than unity for a suitable region of the parameter χ ; thug, the sidebands of the spectrum $S_{\pm 4}$, $S_{\pm 2}$ have subpointsonian photon statistics. The central component of the spectrum S_5 has the superpoissonian photon statistics for any value of

Fig. 3a-f. Cross correlation function $C_{m_j,n}^{(2)}$ graphed against the parameter X. The dotted curves indicate the behaviour as $N \rightarrow \infty$.

the number of atoms N and finite value of the parameter X. In the cooperative limit $N \rightarrow \infty$ the normalized intensity correlation function $Q_{m,m}^{(L)}$ has a discontinuous transition, reminiscent of a typical nonequilibrium first-order phase transition at the critical point X = 1.

Now we discuss the cross correlation between the spectrum components. The magnitude of the cross correlation between the spectrum components S_m and S_n (m, $n = 0, \pm 1, \pm 2$) can be characterized by the steady-state cross-correlation functions $C_{m,n}^{(z)}$ using the stationary solution (3), one can find the cross-correlation functions between components of steady-state spectrum.

$$C_{4-1}^{(z)} = \langle R_{32} R_{42} R_{24} R_{23} \rangle_{S} / \langle R_{32} R_{23} \rangle_{S} \langle R_{12} R_{24} \rangle_{S} = (11)$$

$$C_{-4,4}^{(z)} = \frac{4}{2} q_{4,4}^{(z)} (11)$$

$$C_{0,2}^{(z)} = \langle \Delta_{3} R_{34} R_{43} \Delta_{3} \rangle_{S} / \langle \Delta_{3}^{2} \rangle_{S} \langle R_{34} R_{43} \rangle_{S} = C_{2,0}^{(z)} = C_{0,-2}^{(z)} = C_{2,0}^{(z)} (12)$$

$$C_{2,-k}^{(z)} = \langle R_{34} R_{32} R_{34} R_{43} \rangle_{S} / \langle R_{34} R_{43} \rangle_{S}^{2} = C_{-2,2}^{(z)} = 2 C_{0,2}^{(z)} (13)$$

$$C_{2,-k}^{(z)} = \langle R_{34} R_{32} R_{23} R_{43} \rangle_{S} / \langle R_{34} R_{43} \rangle_{S} \langle R_{32} R_{23} \rangle_{S} = C_{4,2}^{(z)} = 2 C_{0,2}^{(z)} (13)$$

$$C_{2,4}^{(z)} = \langle R_{34} R_{32} R_{23} R_{43} \rangle_{S} / \langle A_{3}^{2} \rangle_{S} \langle R_{32} R_{23} \rangle_{S} = C_{4,2}^{(z)} (14)$$

$$C_{0,4}^{(z)} = \langle A_{3} R_{32} R_{23} \Delta_{3} \rangle_{S} / \langle \Delta_{3}^{2} \rangle_{S} \langle R_{32} R_{23} \rangle_{S} = C_{0,-4}^{(z)} (15)$$

$$C_{4,0}^{(z)} = \langle R_{32} \Delta_{3}^{2} R_{23} \rangle_{S} / \langle \Delta_{3}^{2} \rangle_{S} \langle R_{32} R_{23} \rangle_{S} = C_{4,0}^{(z)} (16)$$

$$C_{2,-1}^{(2)} = \langle R_{31} R_{12} R_{21} R_{13} \rangle_{S} / \langle R_{31} R_{13} \rangle_{S} \langle R_{12} R_{21} \rangle_{S} = C_{2,1}^{(2)}$$
(17)

$$C_{-1,2}^{(2)} = \langle R_{12} R_{31} R_{13} R_{21} \rangle_{S} / \langle R_{31} R_{13} \rangle_{S} \langle R_{12} R_{21} \rangle_{S} = C_{1,-2}^{(2)}$$
(18)

where $\Delta_3 = R_{33} - R_{11}$.

By using the solution (3) and boson's commutation relation for operator Q_i (i = 1,2,3), the cross-correlation functions $C_{m,n}^{(2)}$ in equations (11-18) can be expressed via the statistical moments $\langle R^n \rangle_S$ as done for the normalized

5

intensity correlation functions $g_{m,m}^{(2)}$ in (8-10). We speak about anticorrelation (or correlation) between the spectrum components S_m and S_n when the cross-correlation function $C_{m,n}^{(2)}$ is less (or more) than unity 17,20/. Behaviour of the function $C_{m,n}^{(2)}$ (m, $n = 0, \pm 1, \pm 2$) against the parameter X is shown in figs. 3a-f and in fig. 2c. From these figures one can see that:

(i) for all values of the parameter X and number of atoms N the correlation between the extreme side bands S_{+2} and S_{-2} occurs, i.e., the photons of the extreme side band have a tendency to be emitted in pairs (fig. 3a).

(ii) The anticorrelation between all the spectrum components (beside between extreme side bands) occurs for suitable values of the parameter X and number of atoms N. Moreover, the anticorrelation between the central spectrum component $S_{\mathcal{O}}$ and the extreme sidebands $S_{\pm 2}$, between S_2 and S_{-4} and between S_4 and S_2 , occurs only in the collective case $N \neq 1$. Thus, the measurable cross-correlation functions $C_{\mathcal{O}}^{(1)}, \pm \mathcal{D}, C_{2,-1}^{(1)}$ and $C_{1,2}^{(2)}$ provide a new toole for the study of cooperative effects.

(iii) In cooperative limit $N \rightarrow \infty$, the cross correlation functions $C_{m,n}^{(2)}$ have a discontinuous transition reminiscent of a typical nonequilibrium first-order phase transition at the critical point X = 1.

In conclusion, we have shown that in the case of one two-level atom, i.e., N = 1, $X \rightarrow \infty$ our results reduce to those of the works/17-19/.

References

- 1. Dicke R.H. Phys.Rev., 1954, 93, p.99.
- Polder D., Shuurmans M.F.H., Vrehen Q.H.F. Phys. Rev. 1979, A19, p. 1192.
- 3. Haake F., King H., Schröder G., Han S.J. and Glauber R., Phys. Rev., 1979, A20, p. 2047.
- 4. Gross M., Haroche S. Phys.Reports, 1982, 93, p. 301.
- 5. Compagno G., Persico F. Phys.Rev., 1982, A25, p. 3138.
- 6. Purri R.R., Lawande S.V. Phys.Lett., 1979, A72, p.200.
- 7. Narducci L.M., Feng A.H., Gilmore R., Agarwal G.S. Phys. Rev. 1978, A18, p. 1571.

- Agarwal G.S., Narducci L.M., Da Hsuan Feng, Gilmore R., Phys. Rev.Lett., 1976, 42, p. 1266.
- 9. Senitzky I.R. Phys.Rev.Lett. 1978, 40, p.1334.
- 10. Walmsley I.A., Raymer M.G. Phys.Rev. 1986, A33, p.382.
- 11. Raymer M.G., Mostowski J., Rzarewski, opt. lett. 1982, 7, p.71.
- 12. Bogolubov N.N.(jr), Shumovsky A.S., Tran Quang. J. of Phys. B, 1986 (to be published).
- Bogolubov N.N.(jr), Shumovsky A.S., Tran Quang. Phys.Lett. 1985, 112A, p. 323.
- Schwinger J. In: "Quantum Theory of Angular Momentum" (ed. by L.C. Biedeharm and H. Van Pam), Academic Press, New York, 1965.
- 15. Agarwal G.S. In: Quantum optics. springer Verlag, Berlin, 1974.
- Lowisell W.H. 1964, Radiation and Noise in Quantum Electronics (Mc Grow-Hill book Company-New York).
- 17. Apanasevich P.A., Kilin J.Ja, J.Phys. B: Atom.Mol.Phys. 1979, 12, 182.
- Cohen-Tannoudji C., Reynaud S. 1979, Philos.Trans. R.Soc. London, ser. A293, 223.
- 19. Aspect A., Roger G., Reynaud S., Dalibard J. and Cohen-Tannoudji C. 1980, Phys.Rev.Lett. 45, 617.
- 20. Paul H. 1982, Rev. of Mod. Phys. 54, 1061.

Received by Publishing Department on May 21, 1986.

WILL	YOU FILL BLANK SPACES IN YOUR LIBRARY?	
You can r	eccive by post the books listed below. Prices - in	US 8.
including the packing and registered postage		
D1,2-82-27	Proceedings of the International Symposium on Polarization Phenomena in High Energy Physics. Dubna, 1981.	9.00
D2-82-568	Proceedings of the Meeting on Investiga- tions in the Field of Relativistic Nuc- lear Physics. Dubna, 1982	7.50
D3,4-82-704	Proceedings of the IV International School on Neutron Physics. Dubna, 1982	12.00
D1T-83-511	Proceedings of the Conference on Systems and Techniques of Analitical Computing and Their Applications in Theoretical Physics. Dubna,1982.	9. 50
D7-83-644	Proceedings of the International School-Seminar on Heavy Ion Physics. Alushta, 1983.	11.30
D2;13-83-689	Proceedings of the Workshop on Radiation Problems and Gravitational Wave Detection. Dubna, 1983.	5 6.00
D13-84-63	Proceedings of the XI International Symposium on Nuclear Electronics.	
	Bratislava, Czechoslovakia, 1983.	12.00
E1,2-84-160	D Proceedings of the 1983 JINR-CERN School of Physics. Tabor, Czechoslovakia, 1965.	0. 50
D2-84-366	Proceedings of the VII International Cónference on the Problems of Quantum Field Theory. Alushta, 1984.	11.00
D1,2-84-599	Proceedings of the VII International Seminar on High Energy Physics Problems. Dubna, 1984.	12.00
D17-84-850	Proceedings of the III International Symposium on Selected Topics in Statistical Mechanics. Dubna, 1984. /2 volumes/.	22.50
D10,11-84-818	Proceedings of the V International Meeting on Problems of Mathematical Simulation, Programming and Mathematical Methods for Solving the Physical Problems,	7 50
	Proceedings of the IX All-Union Conference On Charged Particle Accelerators.	25.00
D4-85-851	Proceedings on the International School on Nuclear Structure. Alushta, 1985. 1	1.00
Orders for	the above-mentioned books can be sent at the add Publishing Department, JINR	ress:
nead Post Uffice, P.O.Box /9 101000 Moscow, USSR		

Боголюбов Н.Н. /мл./, Шумовский А.С., E4-86-321 Чан Куанг Статистика фотонов в процессе коллективного двойного оптического резонанса В статье рассмотрена статистика фотонов спектральных компонент рассеянного света в процессе коллективного двойного оптического резонанса. Обнаружены корреляция и антикорреляция между спектральными компонентами. Работа выполнена в Лаборатории теоретической физики ОИЯИ. Препринт Объединенного института ядерных исследований. Дубна 1986 Bogolubov N.N., Jr, Shumovsky A.S., Tran Quang E4-86-321 Photon Statistics in Collective Double Optical **Resonant** Process The photon statistics of spectrum components of scattered light in a collective double optical resonant process/13/ is discussed. The correlation and anticorrelation between spectrum components are observed. The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

J

Preprint of the Joint Institute for Nuclear Research. Dubna 1986