

обьвдииенны институт лаериых исследований дубна

E4-86-288

N.K.Kuzmenko ${ }^{\text { }}$, V.M.Mikhailov ${ }^{\text {² }}$,
V.O.Nesterenko

PAIRING

IN MANY-QUASIPARTICLE STATES

Submitted to the Conference on Nuclear Spectroscopy and Nuclear Structure (Kharkov, April, 1986)

[^0]
1. Introduction

The methods developed in the theory of superconductivity and superfluidity as applied to the description of nuclear properties allowed one to elucidate a wide range of phenomena (see, e.g., ref./1/), However, a relatively small number of nucleons in the nuolear aystem necessitated the study of the effects of exaot conservation of particle number that is conserved in the theory of superconductivity and superfluidity only on an average.

Already in early sixties it has been pointed out $/ 2 /$ that the overlapping of the particle-number-projected BCS-function with an exact wave function is more than 99% whereas in the typical oanoa the component of the BGS function with exact particle number is about 40%.

In subsequent years many papers have emerged in whioh various methods of more exact conservation of particle number than in the BCSmethod were developed (see for example refs. $/ 1,3,10 /$ and refs. therein). However, the particle-number projection before variation (FBCS) turned out to be the mqst accurate method. In it varying of U_{s} and q_{s} parameters is made after particle-number projecting out of the BCS-state. In the present paper this method is used to analyse pairing in quasiparticle states.

It is known that the BCS-method covers mainly the oase of considerable pairing ($G \gg G_{c 3 i t}$) which is not aiways the case in real nuclei. The drawbacks of the BCS method caused by nonconservation of particle number become essential at G close to $G c z i t$. . Such situations oocur when a single-particle spectrum becomes rather rarefied near the Fermi level or in tho rotational bands at high frequency of rotation due to the Coriolio antipairing effect. A considerable attenuation of pairing corrolation ocours also in the states containing one or aeveral unpaired partioloo (tho blocking effect)/1/. In all thooo oapes tho nuolear oyntom approaohod the point of phase transition from a superfluid to a normo: nto naar which one cannot use the BOS formalinm. In this case tho Bure "uhod leads to values of pair
correlation energies or gap parameter Δ that turn out to be considerably less than the same quantities calculated within the FBCS method. For instance, it has been shown in ref. $/ 4 /$ that for ${ }^{168} \mathrm{HF}$ at the rotation moment larger than $20 \hbar$, the calculations without par-ticle-number projecting give $\Delta=0$, whereas the value of the effective gap parameter $\Delta_{\text {eff. }}$ within the FBCS method is only twice as less as its value for the ground state. Arother example concerns the two-quasiparticle states. It follows from ref. ${ }^{/ 5 /}$ that the blocking of two levels near the Fermi level often leads to $\Delta=0$ in the framework of the BCS method. The FBCS method provides in these cases a nonzero value of the effective gap parameter and the correlation energy of two-quasiparticle states is twice as less as in the ground state.

In the present paper we study attenuation of the pairing with increasing number of unpaired quasiparticles located close to the Fermi surface in deformed nuclei of the rare-earth region. For this purpose we calculate the energies of states containing one and more (up to four) quasiparticles of the same type (neutron or proton) by using the model Hamiltonian allowing for the average field and monopole pairing forces. We do not take into account the residual interactions leading to splitting of quasiparticle states and their fragmentation over more complex states. To prevent maximally the influence of reaidual interactions, we have chosen two- and more quasiparticle states with large values of K (the angular-momentum projection onto the nucleus-symmetry exis).

2. The Method of Calculation

The FBCS formalism used in this paper is based on the method developed in ref./3/. We shall describe the basic features of this method and its modification for describing the states with several unpaired particles.

In the FBCS method the BCS function

$$
\begin{equation*}
|B C S\rangle=\prod_{s}\left(u_{s}+q_{s} a_{s}^{+} a_{s}^{+}\right)|0\rangle \tag{1}
\end{equation*}
$$

projected onto the state with a definite number of particles N_{c} is used as the ground state wave function. Before projecting, it is convenient to represent the function (1) through the creation operators of particles and holes α_{s}^{+}acting on the Hartree-Fock vacuum
$\| H F>$ that corresponds, for axially symmetric nuclei, to the complete occupation $n=N_{0} / 2$ of twice degenerate levels (the Fermi level is denoted by F):

$$
\begin{align*}
|B C S\rangle & =\left(\sum_{s \leq F} \eta_{-}\right)\left(\sum_{s>F} u_{s}\right) \exp \left\{\sum_{s \leq F} \frac{u_{s}}{v_{s}} \alpha_{s}^{+} \alpha_{s}^{+}+\right. \tag{2}\\
& \left.+\sum_{s>F} \cdot \frac{v_{s}}{u_{s}} \alpha_{s}^{+} \alpha_{s}^{+}\right\}\left|H F>, \quad \alpha_{s}\right| H F>=0
\end{align*}
$$

In this representation the particle-number operator is expressed through the difference of particle and hole number operators:

$$
\begin{equation*}
\hat{N}=N_{0}+\sum_{S>F} \alpha_{S}^{+} \alpha_{S}-\sum_{S S F} \alpha_{S}^{+} \alpha_{S} \tag{3}
\end{equation*}
$$

which allows one to derive easily from (2) the function $\mid n>$ projected onto N_{0} :

$$
\begin{align*}
& \left|n>=\frac{1}{2 \pi} \int_{0}^{2 \pi} \exp \left(i \varphi\left(\hat{N}-N_{0}\right)\right) d \varphi\right| B C S>=\left(\prod_{s \leqslant F} \eta_{s}\right)\left(\prod U_{s}\right) \times F \\
& \times \sum_{k=0}^{n}\left(\frac{1}{k!}\right)^{2}\left(\sum_{s \leqslant F} \frac{u_{s}}{v_{s}} \alpha_{s}^{+} \alpha_{5}^{+}\right)^{k}\left(\sum_{s>F} \frac{\eta_{s}}{u_{s}} \alpha_{s}^{+} \alpha_{s}^{+}\right)^{k}|H F\rangle \tag{4}
\end{align*}
$$

Since the amplitudes with which the pairs of hole operators $\left(U_{S} / \mathcal{G}_{S}\right)$
$S \leqslant F$) and the pairs of particle operatore ($v_{s} / U_{s}, S>F$) enter into (4) decrease rapidly as passing from the Fermi level; the series in (4) rapidly converge.

The projected function $|n\rangle$ may have other expressions as well, that differ from (4). However, from the computational point of view, it is more convenient to use the function $|n\rangle$ in the form of (4), since in this case the normalization of $|n\rangle$ and matrix elements of different operators are easily expressed through rapidly converging sums of $\left(U_{s} / q_{s}\right)^{2}$, where $s \leq F$, and $\left(q_{s} / U_{s}\right)^{2}$, where $s>F$. Consider, for example, the normalization condition:

$$
\begin{align*}
& \langle n \mid n\rangle=\left(\prod_{s \leqslant F}{v_{s}}_{s}^{2}\right)\left(\prod_{s>F} u_{s}^{2}\right) \sum_{k=0}^{n} S_{k}^{\prime} T_{k}, \\
& S_{k}=\sum_{s_{1}<S_{2}<\ldots<S_{k}, s_{1} \leqslant F}\left(\frac{u_{s_{1}}}{z_{-}}\right)^{2}\left(\frac{u_{s_{2}}}{z_{s_{2}}}\right)^{2} \ldots\left(\frac{u_{s_{k}}}{v_{s_{k}}}\right)^{2}, \frac{u_{s}}{v_{s}}<1, S_{0}=1 \tag{5a}
\end{align*}
$$

$T_{k}=\sum_{s_{1}<s_{2}<\ldots<s_{k}, s_{i}>F}\left(\frac{q_{s_{1}}}{L_{s_{1}}}\right)^{2}\left(\frac{b_{s_{2}}}{L_{s_{2}}}\right)^{2} \ldots\left(\frac{q_{s_{k}}}{l_{s_{k}}}\right)^{2}, \frac{\eta_{-s}}{U_{s}}<1, T_{0}=1$.
Sums S_{k}^{\prime} and T_{k}^{\prime} can readily be calculated by using the recurrence relations which for S_{k} are (for T_{k} they are analogous)
$\vec{n}_{k+1}=\frac{1}{k+1} \sum_{s}\left(\frac{u_{s}}{v_{s}}\right)^{2} S_{k}(s), S_{k}(s)=S_{k}^{1}-\left(\frac{u_{s}}{v_{s}}\right)^{2} S_{k-1}^{\prime}(s), S_{0}^{\prime}(s)=1$,
where $S_{k}(s)$ are deduced by removing in sum (5a) the levels S
The model Hamiltonian used in this paper contains the average field and the pairing interaction

$$
\begin{equation*}
H=\sum_{s} e_{s}\left(a_{s}^{+} a_{s}+a_{s}^{+} a_{s}\right)-G \sum_{s t} a_{s}^{+} a_{s}^{+} a_{t} a_{t} \tag{7}
\end{equation*}
$$

(e_{S} is the energy of the single-particle level $S \quad ; K_{S}, K_{t}>0$). Expression for the system energy in the ground state is

$$
\begin{align*}
E_{0} & =\frac{\langle n| H|n\rangle}{\langle n \mid n\rangle}= \\
& =2 \sum_{s}\left(e_{s}-\frac{G}{2}\right) \eta_{s}^{2}[n-1]_{s}-G \sum_{s \neq t} u_{s} q_{s} u_{t} b_{t}[n-1]_{s t} \tag{8}
\end{align*}
$$

The one- and two-particle density matrices have the form

$$
\begin{align*}
& \left.\therefore n\left|a_{s}^{+} a_{s}\right| n\right\rangle \cdot \frac{1}{\langle n \mid n\rangle}=z_{s}^{2}[n-1]_{s} \tag{9}\\
& \langle n| a_{s}^{+} a_{s}^{+} a_{t} a_{t}|n\rangle \cdot \frac{1-\delta_{s, t}}{\langle n \mid n\rangle}=U_{s} z_{s} u_{t} z_{t}\left(1-\delta_{s, t}\right)[n-1]_{s t}
\end{align*}
$$

The correcting factors

$$
\begin{equation*}
[n-1]_{s}=\frac{s\langle n-1 \mid n-1\rangle_{s}}{\langle n \mid n\rangle},[n-1]_{s t}=\frac{s_{t}\langle n-1 \mid n-1\rangle_{s} t}{\langle n \mid n\rangle} \tag{10}
\end{equation*}
$$

arise under the particle-number projecting. The functions $|n-1\rangle_{s}$ and $|n-1\rangle_{\text {st }}(s \neq t)$ are defined in the sume manmer as $|n\rangle, i . e$. are the wave functions with $n-1$ pairs of particles. The lower indices indicate numbers of the levels nonoccupied by particle pairs.

The coefficients U_{s} and \mathcal{F}_{s} entering into (8) and (9) are found from the energy minimum which is equivalent, as has been show in ref. ${ }^{13 /}$, to the condition of stationarity of the ground state wave function. The calculation of the coefficient? H_{s} and i_{s} as well as the calculation of average values of the Hamiltonian and other operators is essentially simplified by using the relations derived in ref. ${ }^{3 /}$ that connect the correcting factors (of the type (10)) with several indices,in which the factors have one index less.

$$
\begin{aligned}
& \text { For instance } \\
& \qquad[n-1]_{s t}=\frac{v_{s}^{2}[n-1]_{s}-v_{t}^{2}[n-1]_{t}}{v_{s}^{2}-v_{t}^{2}},[n-2]_{s t}=\frac{U_{s}^{2}[n-1]_{s}-u_{t}^{2}[n-1]_{t}}{u_{s}^{2}-u_{t}^{2}},
\end{aligned}
$$

The state containing P unpaired particles is described by the function

$$
\begin{equation*}
a_{s_{1}}^{+} a_{s_{2}}^{+} \ldots a_{s_{p}}^{+}|n\rangle_{s_{1} s_{2} \ldots s_{p}} \tag{11}
\end{equation*}
$$

where the function $|n\rangle_{s, s_{2}} \ldots s_{p}$ is defined similarly to those entering into (10). Expression for the system energy in state (11) within the FBCS has the form

$$
\begin{aligned}
& E_{s, s_{2} \ldots s_{p}}=e_{s_{1}}+e_{s_{2}}+\ldots+e_{s_{p}}+2 \sum_{s \neq s_{1}, s_{2}, \ldots, s_{p}}\left(e_{s}-\frac{G}{2}\right) v_{s}^{2}[n-1]_{s_{1} s_{2} \ldots s_{p} s(12)} \\
& -\underset{s \neq t, s, t \neq s_{1}, s_{2}, \ldots, s_{p}}{\operatorname{Cr} \sum_{s_{1}, s_{2} \ldots s_{p} s t}} u_{s} v_{s} u_{t} v_{t}[n-1]_{\substack{ \\
s}}
\end{aligned}
$$

The correcting factors entering into (12) due to particle-number projecting are defined similarly to (10). Appearance of several unpaired particles on the Fermi and adjacent levels prevents these levels to be populated by pairs of nucleons (blocking effect). This effects the values of the parameters I_{s} and v_{s}. Their values are found from the minimum of the energy (12).

We shall further use the notation: BCS is the BCS method with blocking effect, IQM is the independent quasiparticle model (the BCS method without blocking effect), IPMis theindependent particle model. It is convenient to represent the energy ω_{i} of the excited state i with p unpaired quasiparticles within the FBCS in the form

$$
\omega_{i}(F B C S)=E_{i}(F B C S)-E_{0}(F B C S)=\omega_{i}(I P M)-\Delta E_{c}^{i}(F B C S)
$$ where

$$
\begin{aligned}
& \Delta E_{c}^{i}(F B C S)=E_{c}^{0}(F B C S)-E_{c}^{i}(F B C S) \\
& E_{c}^{i(0)}(F B C S)=E_{i(0)}(I P M)-E_{i(0)}(F B C S)
\end{aligned}
$$

Here $W_{i}^{\prime}(I P M)$ is the energy of the excited state i within the IPM, $E_{c}^{i(0)}($ FBCS $)$ and $\quad E_{i(0)}($ FBCS $)$ are the correlation and system energies of the excited (ground) state within the FBCS (for the latter see expressions (8) and (12)). Within the BCS expression andlogous to (13)isused (the correcting factors arising due to particle-- number projecting are eliminated from (8) and (12)). Within the IQM we have

$$
\dot{w}_{i}(I Q M)=\varepsilon_{s_{1}}+\varepsilon_{s_{2}}+\ldots+\varepsilon_{s_{p}}, \quad \varepsilon_{s}=\sqrt{e_{s}^{2}+\Delta^{2}}
$$

As the calculations have shown both for even and odd systems with any number of unpaired nucleons the FBCS provides a gain in the correlation energy, as compared to the BCS, that is always larger for the ground state than for the excited one

$$
\begin{equation*}
E_{c}^{i}(F B C S)-E_{c}^{0}(B C S)>E_{C}^{i}(F B C S)-E_{C}^{i}(B C S) \tag{14}
\end{equation*}
$$

hence

$$
\begin{equation*}
U_{i}(F B C S)>\left(l_{i}(B C S) .\right. \tag{15}
\end{equation*}
$$

For the one-quasiparticle states $\triangle E_{c}^{i}<0\left(E_{c}^{0}<E_{c}^{i}\right.$ since in the ground state the Fermi level is blocked), and from (14) and (15) we get the inequality (see also ref. ${ }^{1 / / \text {) }}$

$$
\begin{equation*}
\omega_{i}(I P M)>W_{i}(F B C S)>W_{i}(B C S) \tag{16}
\end{equation*}
$$

For the states with more than one unpaired nucleons the calculations give $\Delta E_{c}^{i}>0\left(E_{c}^{0}>E_{c}^{i}\right)$.
3. The Results of Calculations

In the calculations we used the Saxon-Woods single-particle scheme with the parameters from ref. $/ 6 /$. We took into account 30 neutron and 30 proton levels in the energy interval of about $\pm 10 \mathrm{MeV}$ from the Fermi level. The pairing interaction constants G_{N} and
G_{z} were chosen by pairing energies within the BCS and FBCS in the dependence on a version of calculation. However, the values of pairing constants in these cases differed very slightly ($<2 \%$).

The results of calculations are listed in tables $1-6$. By $F+1$, $F+q, \ldots$ we denote the first, second, etc. particle levels, by F-1, F-2, ... the first, second, etc. hole levels.
3.1. Quasiparticle States with the Number of Particles of the Same Type $k=1$ and 2

It is known that the BCS method overestimates the density of low-lying one-quasiparticle states as compared with the experimental data. It follows from (15) that the use of the FBCS leads to less density of one-quasiparticle states than in the case of the BCS.

The results of calculations for one-quasiparticle states are shown in table 1. The third column of the table presents the contributions of one-quasiparticle components to normalization of the state wave functions in the case of inclusion of the quasiparticle-phonon interaction $/ 6 /$; they indicate that these states are single particle to a great extent.
Table. 1. Excitation energies ω_{i} and correlation energies E_{c} of low-lying one-quasiparticle states.

Nuc-	Configuration	One-quasiparticle component	$\mathrm{Cl}_{i}, \mathrm{keV}$					Ec, MeV	
leus			Exp.	IQM	BCS	FBCS	/6/	BCS	FBCS
${ }^{165}$ Ho	p5234 F	98\%	0	0	0	0	0	0.07	1.30
	p411ヶ P-1	94\%	360	20	310	400	230	0.28	1.42
	p411 $\downarrow \mathrm{F}+1$	88\%	429	470	460	650	370	0.52	1.57
${ }^{175} \mathrm{Lu}$	p404」 F	99\%	0	0	0	0	0	0.15	1.36
	p514 \uparrow F+1	99\%	396	150	160	210	100	0.26	1.45
	p411 $\downarrow \mathrm{P}-1$	97\%	627	-50	370	560	310	0.78	1.81
${ }^{177} \mathrm{Hf}$	n514 $\downarrow \mathrm{F}$	98\%	0	0	0	0	0	0.13	0.93
	$\mathrm{n} 642 \uparrow \mathrm{~F}+1$	99\%	324	130	110	220	110	0.49	1.18
	$\mathrm{n} 5124 \mathrm{~F}-1$	97\%	504	60	200	260	150	0.26	1.00

It is seen from table 1 that for one-quasiparticle states the FBCS improves the agreement with wexp only insignificantly. This is due to the fact that we used in the calculations the single-particle schemes $/ 6 /$ whose parameters were on the average chosen for large groups of nuclei and did not take into account the interaction of quasiparticles with phonons, the Coriolis interaction and other effects that provide almost the same changes in the state energy as the use of the FBCS. However, the FBCS provides a better description of the density of low-lying one-quasiparticle states than the BCS. As a rule, in the calculations $E_{c}(F B C S) \geqslant 1 \mathrm{MeV}$ whereas E_{c} (BCS) ${ }^{\prime}$ 0.5 MeV .

Table 2 exemplifies the excitation energies ω_{1}, correlation energies E_{c}^{ι} and ratios $G / G_{c r i t}$ for two-quasiparticle states. The same quantities for the ground states are given in parenthesis. It is seen from table 2 that the blocking of two single-particle levels
near the Fermi level leads to that in some cases the BCS does not provide a "superfluid" solution ($E_{i}^{2}=0$ and $\Delta=0$).

Table 2. Excitation energies ω_{i}, correlation energies
$E_{c}^{i(\nu)}$ and ratios $G / G_{c i,}$ for low-lying two-quasiparticle states.

$\begin{aligned} & \text { Nucle } \\ & \text { us } \end{aligned}$	$k^{\text {jiT }}$	Confi-guration	u_{i},				$E_{C}^{i}\left(E_{c}^{0}\right)$, MeV		$\left.\begin{array}{l} \mathrm{G} / \mathrm{G}_{\mathrm{c} i} t \\ \left(\mathrm{G} / \mathrm{G}_{\mathrm{c} 2 i},\right. \end{array}\right)_{0} .$
			Exp.	IQM	BCS	FBCS	BCS	FBCS	
${ }^{164}$ Dy	6	$\begin{array}{cc} F & F+1 \\ 523 \downarrow+n 633 \uparrow \end{array}$	1.68	2.01	1.59	1.67	0.01(0.6)	0.8(1.6)	1.0(1.4)
${ }^{168} \mathrm{Er}$	3^{+}	$\left\|\begin{array}{cc} F+1 & F+2 \\ n 21 t+n 512 f \end{array}\right\|$	1.65	1.90	1.67	1.75	0.08(1.1)	0.9(2.0)	1.2(7.6)
${ }^{172} \mathrm{Yb}$	6^{-}	$\left\|\begin{array}{cc} F-1 & F+1 \\ n 633 \uparrow+n 512 \uparrow \end{array}\right\|$	1.55	1.75	1.32	1.40	O (0.8)	$0.7(1.6)$	1.0(2.2)
${ }^{1.74} \mathrm{Yb}$	6^{+}	$\left\|\begin{array}{cc} F & F+1 \\ n 5124+n 514 \downarrow \end{array}\right\|$	1.53	1.70	1.27	1.37	0(0.6)	0.7(1.4)	1.0(1.5)
${ }^{176} \mathrm{Yb}$		$F \quad F+1$ $n 514 \downarrow+n 624 \uparrow$	1.04	1.46	0.93	1.12	O(0.4)	$0.6(1.2)$	1.0(2.2)
1.76 Hf	7^{-}	$\left\|\begin{array}{lc} F & F+2 \\ 512 \uparrow+n 624 \uparrow \end{array}\right\|$	1.86	1.82	1.53	1.63	0.1(0.9)	0.8(1.7)	1.3(6.0)
$174 \mathrm{Yb}$	5^{-}	$\left\lvert\, \begin{array}{cc} F & F+2 \\ p 411 \downarrow+p 5144 \end{array}\right.$	1.88	2.52	1.98	2.14	0(0.7)	1.0(1.9)	1.0(1.3)
${ }^{176} \mathrm{Hf}$	8^{-}	$\begin{aligned} & F \quad F+2 \\ & 404 \downarrow+P 514 \uparrow \end{aligned}$	1.48	1.64	1.08	1.25	O(1.2)	0.9(2.2)	1.0(110)

In these cases the excitation energy was calculated by

$$
W_{i}\left(B(S)=E_{i}(I P M)-E_{0}(B C S)\right.
$$

W1thin the FBCS there always exists a "superfluid" solution, and the correlation energy amounts to $E_{c}^{i}(F B C S) \approx 1 \mathrm{MeV} \approx 0.5 E_{c}^{0}$ (FBCS). As $\quad W_{i}(F B C S)>W_{i}(B C S)$ and for most of the low-lying two-quasiparticle states in the rare-earth nucle1 $\omega_{i}(B C S)<\omega_{i}^{e x p}$, then ω_{i} (FBCS) is on the average in better agreement with $\omega_{l}^{\text {exp . However, }}$ it should be noted that a more correct definition of the single-par-
ticle scheme and the inclusion of residual interactions may give corrections to the excitation energy ω_{i} of two-quasiparticle states (and three-quasiparticle states to be considered below) of the same order as the use of the PBCS.

Let us consider three- and four-quasiparticle states of the type ($p, 2 n$), ($n, 2 p$) and ($2 n, 2 p$) in which the number of quasiparticles of the same kind does not exceed two ($k \leqslant 2$). It is seen from tables 3 and 4 that the FBCS provides a better agreement with experiment than the BCS, especially for four-quasiparticle states.

T a ble 3. Excitation energies $W_{\text {e }}$ of low-lying three-quasiparticle states of the type $(p, 2 n)$ and ($n, 2 p$).

Nucleus	K^{π}	Configuration	$\mathrm{W}_{i}, \mathrm{MeV}$			
			Exp.	IQM	BCS	FBCS
177 Ta	$\begin{gathered} 21 / 2^{-} \\ 23 / 2^{+} \\ 25 / 2^{+} \end{gathered}$	$\begin{array}{lcc} \hline F & F+1 & F \\ p 514 \uparrow+n 514 \downarrow+n 512 \uparrow \\ F & F+2 & F \\ p 514 \uparrow+n 624 \uparrow+n 512 \uparrow \\ F & F+2 & F+1 \\ p 514 \uparrow+n 624 \uparrow+ & n 514 \downarrow \end{array}$	1.36 1.70 1.84	1.71 1.82 1.78	$\begin{aligned} & 1.23 \\ & 1.53 \\ & 1.61 \end{aligned}$	$\begin{aligned} & 1.28 \\ & 1.63 \\ & 1.78 \end{aligned}$
$179^{\text {Hf }}$	25/2 ${ }^{-}$	$\begin{array}{lc} F & F \\ n 624 \uparrow+p & F 04 \downarrow+p 514 \uparrow \end{array}$	1.11	1.86	1.09	1.32
177 Hf	$23 / 2^{+}$	$\begin{array}{cc} F & F \\ \text { n5 } & F+1 \\ 4 \downarrow+p 404 \downarrow+p 514 \uparrow \end{array}$	1.32	1.64	1.08	1.25
${ }^{177}$ Lu	$\begin{aligned} & 23 / 2^{-} \\ & 11 / 2^{+} \end{aligned}$	F $\mathrm{F}+1 \mathrm{~F}$ $\mathrm{n} 404 \downarrow+\mathrm{p}$ $624 \uparrow+\mathrm{p} 514 \downarrow$ $\mathrm{~F}+1 \quad \mathrm{~F}$ $\mathrm{~F} \quad \mathrm{~F}+1$ $\mathrm{p} 514 \uparrow+\mathrm{n}$ $514 \downarrow+n 624 \uparrow$	$\begin{aligned} & 0.97 \\ & 1.23 \end{aligned}$	$\begin{aligned} & 1.46 \\ & 1.60 \end{aligned}$	0.93 1.07	$\begin{aligned} & 1.12 \\ & 1.27 \end{aligned}$

This is due to the Pact that uncertainties in the positions of the single-particle levels may be compensated when the number of quasiparticles increases whereas the second term in (13) is in a much weaker dependence on a detailed notion of the positions of levels of an average field and is mainly determined by the density of single-particle levels near the Fermi surface. A further consideration of the excitation energy of many-quasiparticle states (with the number of quasiparticles of the same type $k \geqslant 3$) confirms the above conclugion.

Table 4. Excitation energies \mathcal{U}_{i} of low-lying four-quasiparticle states of the type ($2 n, 2 p$).

Nucleus	k^{Π}	Configuration	ω_{i}, MeV			
			Exp.	IQM	BCS	FBCS
$176{ }_{\text {Hf }}$	$\begin{gathered} 14^{-} \\ 15^{+} \\ 16^{+} \end{gathered}$	$F+1$ F $F+1$ F p $514 \uparrow+$ $p 404 \downarrow+$ $n 514 \downarrow+n 512 \uparrow$ $F+1$ F $F+2$ F p $5144+$ $p 404 \downarrow+n 624 \uparrow+n 512 \uparrow$ $F+1$ F $F+2$ $F+1$ $p 514 \uparrow+p 404 \downarrow+$ $n 624 \uparrow+n 514 \downarrow$	$\begin{aligned} & 2.87 \\ & 3.08 \\ & 3.27 \end{aligned}$	3.64 3.77 3.71	$\begin{aligned} & 2.37 \\ & 2.69 \\ & 2.76 \end{aligned}$	$\begin{aligned} & 2.65 \\ & 3.01 \\ & 3.16 \end{aligned}$
$178{ }_{\text {He }}$	$\left\lvert\, \begin{gathered} 16^{+} \\ 14^{-} \end{gathered}\right.$	F $\mathrm{F}+1$ F $\mathrm{~F}+1$ $\mathrm{p} 404 \downarrow+\mathrm{p} 514 \uparrow+\mathrm{n} 514 \downarrow+\mathrm{n} 624 \uparrow$ F $\mathrm{~F}+1$ F $\mathrm{~F}-1$ $\mathrm{p} 404 \downarrow+\mathrm{p} 514 \uparrow+\mathrm{n} 514 \downarrow+\mathrm{n} 512 \uparrow$	$\begin{aligned} & 2.45 \\ & 2.57 \end{aligned}$	$\begin{aligned} & 3.50 \\ & 3.80 \end{aligned}$	$\begin{aligned} & 2.16 \\ & 2.95 \end{aligned}$	$\begin{aligned} & 2.57 \\ & 3.27 \end{aligned}$

3.2. Quasiparticle States with the Number of Quasiparticles of the Same Type $k \geqslant 3$

Now we consider a five-quasiparticle state of the type ($2 p, 3 n$) with $K^{\pi}=37 / 2^{-}$in ${ }^{177} \mathrm{Hf}$ and three six-quasiparticle states of the type ($2 p, 4 n$) with $K^{\pi}=19^{-}, 20^{-}$and 21^{-}in ${ }^{176}$ Hf. The state with $K^{\pi}=37 / 2^{-}$has been found in the reaction ${ }^{176} \mathrm{Yb}(\alpha, 3 n)$ $177 \mathrm{Hf} / 8 /$ and the six-quasiparticle states in the reaction ${ }^{176} \mathrm{Yb}(\alpha, 4 n)$ $176_{\mathrm{Hf}} / 9 /$. All these states have a large lifetime. The configurations were attributed to these states (see table 5) on the basis of estimations of the state excitation energies and the analysis of the scheme of their de-excitation/8,9/.

First, we consider the states with $K^{\pi}=37 / 2^{-}$and $K^{\pi}=19^{-}$ and 20. It is seen from table 5 that the BCS provides for these states far too low values of the excitation energies U_{i} and the IQM highly ovecestimated ones whereas the FBCS method allows one to get a very good agreement with $\omega_{i}^{2 \times p}$ (in particular, the agreement is much better than for the case of empirical estimates of the excitation energies in ref. $/ 8,9 \%$. Thus, our calculations, first, confirm the interpretation of these states proposed in refs. $/ 8,9 /$ (quantum numbers

$K^{i T}$ and configuration) and second, show the necessity of par-ticle-number projacting in considering many-quasiparticle states. Note that we managed to achieve a good agreement with $W_{i}^{e x p}$ for these states within the FBCS without taking into account any residual interactions.

It is easy to explain why for the states with a large number of quasiparticles the FBCS method improves considerably the agreement with L $\mathcal{W}_{i} \times P$ compared to the BCS and IQM. On the one hand, this is due to the fact that inaccuracies of the BCS and IQM in calculating W_{i} and E_{c}^{i} are the stronger the larger the number of single-particle levels is blocked in close proximity to the Fermi surface, i.e., for the low-lying many-quasiparticle states. On the other hand, as has been mentioned above, with increasing number of quasiparticles inaccuracies in the position of single-particle levels. compensated each other.

It is seen from table 5 that our calculations do not confirm interpretation $/ 9 /$ of level 4.86 MeV as the state with $K^{\top}=22^{-}$and configuration p404 $\downarrow+\mathrm{p} 514 \uparrow+\mathrm{n} 633 \uparrow+\mathrm{n} 5124+\mathrm{n} 514 \downarrow+\mathrm{n} 624 \uparrow$. The state with such a configuration should be lowef in energy than the state with $K^{\pi}=19^{-}$and 20^{-}since it consists of quasiparticles lying closer to the Fermi surface. The FBCS method provides $w_{i}=4.11 \mathrm{MeV}$ for the state $K^{\pi}=22^{-}$, i.e., the value lower than the experimental one by 0.7 MeV . In our opinion level 4.86 MeV should be interpreted as the state with $K^{\pi}=21^{-}$and configuration p404 $\downarrow+\mathrm{p} 514 \uparrow+\mathrm{n} 642 \uparrow+$ $+\mathrm{n} 512 \uparrow+\mathrm{n} 514 \downarrow+\mathrm{n} 624 \uparrow$. In this case the calculated excitation energy
$\omega_{i}=4.78 . \mathrm{MoV}$ is in better agreement with experiment, and assignment of quantum numbers $K^{\top T}=21^{-}$to this level does not contradict the way of 1 ts de-excitation ($E 2$ transition to the state with $K^{\pi}=$ 20^{-}). According to our calculations the level with $K^{\pi}=22^{-}$should be searched for at an energy of 4.1 MeV . Its de-excitation should greatly be hindered since, according to experiment, below there are levels with $K^{\top T}=16^{-}$only.

It is seen from table 5 that contrary to the BCS predictions on the complete disappearance of pairing in the states considered, the FBCS method shows that pairing in them does not disappear and the correlation energy $E \dot{c}=0.5 \mathrm{MeV}$ differs noticeably from zero. Table 6 shows that with increasing quasiparticle number k in the neutron aystem: of 176 Hf the value $E_{c}^{c}(F B C S)$ decreases much slower than $E_{c}^{i}(B C S)$ and differs from zero even at $k=6$ (the case $k=6$ corresponds to the hypothetical state of siz unpaired neutron quasiparticles lying on the Fermi level and on the adjacent le-
vels). However, it should be noted that to make a final conclusion on the nondisappearance of pairing in many-quasiparticle states one needs additional theoretical investigations (taking into account residual forces and effects of reconstruction of the average field) and experimental tests.

Table 6. Dependence of correlation energy E_{c} on quasiparticle number \dot{k} in the neutron system of ${ }^{176} \mathrm{Hf}$

	0	2	4	6
$E_{c}(\mathrm{BCS}), \mathrm{MeV}$	0.9	0.1	0	0
$E_{c}(\mathrm{FBCS}), \mathrm{MeV}$	1.7	0.8	0.4	0.3

References

1. Soloviev V.G. Theory of complex nuclei (Nauka, Moscow, 1971, transl. Pergamon Press, Oxford, 1976).
2. Kerman A. K., Lawson R.D., Macfarlane M.H., Phys.Rev., 1961, v.124, p. 162.
3. Kusmenko H. K., Mikhailov V.M., Izv. Akad. Nauk SSSR, ser.Fiz., 1973, 37, p. 1911.
4. Mutz U., Ring P. J.Phys.G: Nucl.Phys., 1984, v.10, p.L39, Çanto L.F., Ring P., Rasmussen J.0., Phys.Lett., 1985, v. B161, .p. 21.
5. Kusmenko H.K., Mikhailov V.M. Proc. XXXV Nucl.Spectr. and Nucl. Struct. Conf., Moscow, Nauka, 1985, p. 221.
6. Gareev F.A. et al. Part. Nucl. 1973, 4, p. 357.
7. Kuzmenko N. K., Mikhailov V.M. Izv. Akad. Nauk SSSR, ser. Fiz., 1980, 44, p. 942.
8. Ward T.E. and Haustein P.E., Phys.Rev.Lett., 1971, v. 27, p. 685. Chu Y. Y., Haustein P.E., Ward T.E., Phys.Rev., 1972, v.C6, p. 2259.
9. Khoo T.L., Berntal F.M., Robertson R.G.H. et al., Phys. Rev. Lett., 1976, v. 37, p. 823.
10. Schmid K.W. et al., Nucl.Phys., 1985, A436, p. 417; , Zeng J.I. et al., Nucl. Phys., 1984, A421, p. 125c.

Received by Publishing Department
on May 5, 1986.

Кузьменко Н.К., Михайлов В.М., Нестеренко В.О. E4-86-288 Спаривание в многоквазичастичных состояниях

В рамках метода пректирования по числу частиц до варьирования /ПДВ/ с учетом эффекта блокировки рассмотрены энергии возбуждения и корреляционные энергии квазичастичньгх состояний деформированных ядер с числом квазичастиц одного сорта $1 \leq k \leq$ <4. Проводится сравнение с расчетами в рамках БКШ. Для пятиквазичастичного состояния типа (1p, 4n) в 177 Нf и шестиквазичастичных состояний типа ($2 \mathrm{p}, 4 \mathrm{n}$) в ${ }^{176} \mathrm{Hf}$ получено хорошее согласие с экспериментом, продемонстрирована важность проектирования по числу частиц при рассмотрении многоквазичастичных состоянин. В отличие от ГКШ метод ПДВ предсказывает сохранениє спаривания в многоквазичастичных состояниях.

Работа выполнена в Лаборатории теоретической физики ОИЯи.

Прспритт Объединенного института ядерных исследований. Дубна 1986

Kuzmenko N.K., Mikhailov V.M., Nesterenko V.O. E4-86-288

 Pairing in Many-Quasiparticle StatesExcitation and correlation energies of quasiparticle states of deformed nuclei with the number of quasiparticles of the same type $1 \leq k \leq 4$ are considered allowing for the blocking offect within the method of particle-number projecting beforo variation (FBCS). Our results are compared with the calculations within the BCS. A good agreement with experiment is obtained for a five-quasiparticle state of the type ($1 \mathrm{p}, 4 \mathrm{n}$) in ${ }^{177} \mathrm{Hf}$ and six-quasiparticle states of the type ($2 \mathrm{p}, 4 \mathrm{n}$) in ${ }^{176} \mathrm{Hf}$; the necessity of particle-number projecting while considering many-quasiparticle states is demonstrated. In contrast with the BCS, the FBCS method predics that the pairing in many-quasiparticle states does not disappear.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Proprint of the Joint Institute for Nuclear Research. Dubna 1986

[^0]: ${ }_{2}^{1}$ Radium Institute, Leningrad
 ${ }^{2}$ Leningrad State University

