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1. Introduction

The methods developed in the theory of superconductivity and
superfluidity as applied to the description of nuclear properties al-
lowed one to elucidate a wide range of phenomene (see, e.g., ref. 1/).
However, & felatively small number of nucleons in the nuclear system
necessitated the study of the effects of exact conservation of par-
ticle number that is conserved in the theory of superconductivity and
superfluidity only on an average.

Already in early sixties it has been pointed out/z/ that the
overlapping of the particle-number-projected BCS~function with an exact
wave function is more than 99% whereas in the typical oasos the compo-
nent of the BGS function with exact particle number is about 40%.

In subsequent years many papers have emerged in which various
methods of more exact conservation of particle number than in the BCS-
method were developed (see for example refs./1’3’10/ and refs. therein).
However, the particle-number projection before variation (FBCS) turned
out to be the mgst accurate method. In it varying of Us and T7 para-
meters is made after particle-number projecting out of the BCS-state.

In the present paper this method is used to analyse pairing in quesi-
particle sgtates.

It is known that the BC3-method covers mainly the ocase of consi-
derable pairing ( G >> (,¢) which is not always the case in real nuc-
lei. The drawbacks of the BCS method caused by nonconservation of par-
ticle number become essentisl at G close to G;c:zf, . Such situa-
tions oocour when & single-particle spectrum becomes rather rarefied
near the Fermi level or in tho rotational bands at high frequency of
rotation due to the Coriolio antipairing effect. A considerable atte-
nuation of pairing corrolations cocours also in the states containing
one or oeveral unpaired particles (tho blocking effect) 1/. In all
thooo ocapes tho nuolear systom approachos the point of phase transi-
tion from a superfluid to a norms: ato near which one cannot use the

BOS formaliam. In this case tho Dwu. ynrhod leads to values of pair
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correlation energies or gap parameter /) that turn out to be con-
giderably less than the same quantities calculated within the FBCS
/4] thet forSSHF at
the rotation moment larger than 20% , the calculations without par-
ticle-number projecting give A = 0, whereas the value of the ef-
fective gap parameter [X@Fﬁ within the FBCSmethod is only twice as
less as its value for the ground state. Another example concerns the
two-quasiparticle states. It follows from ref./5 that the blocking
of two levels near the Fermi level often leads to A = 0 in the
framework of the BCS method. The FBCS method provides in these cases
a nonzero value of the effective gap parameter and the correlation
energy of two-quasiparticle states is twice as less as in the ground
state.

method. For instance, it has been shown in ref.

In the present paper we study attenuation of the pairing with
increasing number of unpaired quasiparticles located close to the
Fermi surface in deformed nuclei of the rare-earth region. For this
purpose we calculate the energies of states containing one and more

(up to four) quasiparticles of the same type (neutron or proton) by
using the model Hamiltonian allowing for the average field and mono-
pole pairing forces. We do not take into account the residual inte-
ractions leading to splitting of quasiparticle states and their frag-
mentation over more complex states. To prevent maximally the influen-
ce of reasidual interactions, we have chosen two- and more quasipar-
ticle states with large values of K ( the angular-momentum projec-—
tion onto the nucleus-symmetry axis).

2. The Method of Calculation

The FBCS formalism used in this paper is based on the method
developed in ref./B/. We shall describe the bagic features of this
method and its modification for describving the states with several
unpaired paerticles.

In the FBCS method the BCS function
Lt )
1BCS> =[T(u,+ b 0,0z )jo> .
s

projected onto the state with a definite number of particles 1\4

is used as the ground state wave function. Before projecting, 1t is
convenient to represent the function (1) through the creation opera-
tors of particles and holes o(;' acting on the Hartree-Fock vacuum

3 . '
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JHF > that corresponds, for axially symmetric nuclei, to the com-
plete occupation R =AM./2 of twice degenerate levels (the Fermi level
is denoted by F )!

.,.
|BCS> = (Z’b')(f'ukxpfz ol s+
S<F $>F S<F (2)
b gt - -
Lo ds SIHF>  dgIHF>
In this representation the particle-number operator is expregsed
through the difference of particle and hole number operators :

A
" _f. A+
= + -
WM D, - T4, .
which allows one to derive easily from (2) the function [n> projec-
ted onto N

m>=?§ expip(N-N)dPIBCE> = (/7 b )1 )

S>F

,L}i(:,)(z “‘,,z L )" (E”so/oz) JHF>

(4)

Since the amplitudes with wh_lch the pairs of hole operators' ( M_g/er)
S<F ) and the pairs of particle operators (V¥¢/y, , S>F )
enter into (4) decrease rapidly as passing from the Fermi level), the

series in (4) rapidly converge.

The projected function [|M>> may have other expressions as well,
that differ from (4). However, from the computational point of view,
it is more convenient to use the function |n > in the form of (4),
since in this case the normalization of In > end matrix elements of
different operators are easily expressed through rapidly converging
sums of (Ms/'i,-s)zywhere S <F, and(?,.s/'us)l,where S>F . Consider, for
example, the normalization condition:

<nin>= ﬂlr )(I Us) Z ’m. (5)

S>F Ko

sk{:(éi—:) ) ;'j) oy S,-4, O

Sl<52<A\..‘< SK S <F )'

2 -

T -5 (er. (lm> }i) 73<i T =4 (5v)

ufs, L (,[5‘ 5 {,{5 ) © .
$,<$2<...<Sy, S >F

and T} can readlly be calculated by using the recurren-

Tx they are analogous)

—_—

Sums %
ce relations which for SK sre (for

- :L _ﬂs_z : -_.'_.H$2l 3 'A, (6)
Seriint 20 (72)7 8,9, S 9= ()59, S0 =1,
where SK(S) are deduced by removing in sum (5&) the levels €

The model Hamiltonian used in this paper contains the average
field and the pairing interaction

H = g?, e (atacralde) GZ{, alalcza, (1)
RS

( €y is the energy of the single-particle level S ; Ks) Ke> O)_
Expression for the system energy in the ground state is

Eo = <'Lll"”n>:

<nin>
; 2, — . (8)
-225(8-0)1 [n1] - G Uk Uy Lt Ty
) s+t
The one- and two-particle density matrices have the form
l 2
v{nla:asln>'<nm>=7r& [n-4], 9)
+ .t 1-8st
<nlGLGs QpQy[n>- =250 < U, b U b, (4-8s) [n-11gy
The correcting factors
-4in- <n-din-47,
Cn’i]b '5<V1 Aln 4;_>5 , [n'djs,{— e~ * t (10)

<nin> <nin >

arise under the particle-number proj'ecting. The functions [#1-4 >$
and [n-:]_?s;t (s#t) are defined in the sume marnner a8 |n>, i.e.,
are the wave functions with N-1 pairs of particles. The lower in-
dices indicate numbers of the levels nonoccupied by particle pairs,

The coefficients /M and %; entering into (8) and (9) are
found from the energy minimum which is equivalent, as has been shown
in ref./3/
ve function. The calculation of the coefficientis e and @g as

, to the condition of stationarity of the ground state wa-

well as the calculation of average values of the Hamiltonian and
other operators is essentially simplified by using the relutions de-
rived in ref./3/ that connect the correcling Tactors (of the type
(10)) with seversl 1nd1ces,1n which the faclors have one index less.
For instance

ra . - 2 .
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The state containing P unpaired particles is described by the
function

a;; In> (11)

S‘,S}_..ASP P

+ o+
a. U,
Si 52 N

where the function rnﬁgﬁzmsp is defined similarly to those entering
into (10). Expression for the system energy in state (11) within
the FBCS has the form

Z : &

ES,SZ...S'P: &, 6, Tt E3s', *+2 (e - 7_‘)7)-: Ln-4]
S¢Sb§11":g

-Go U U T Cn-1] P

S*t, s,t%#5,52,.., Sp sfsz-usps’b 2

$,52..55 (12)

The correcting factors en-
tering into (12) due to particle-number projecting are defined simi-
larly to (10). Appearance of several unpaired particles on the Fermi
and adjacent levels prevents these levels to be populated by pairs of
nucleonsg (blocking effect). This effects the values of the paresmeters

d4s and Ty . Their values are found from the minimum of the
energy (12).

We shall further use the notation: BCS is the BCS method with
blocking effect, IQM is the independent quasiparticle model (the
BCS method without blocking effect), IPMis theindependent particle
model., ;t is convenient to represent the energy W, of the excited
state ¢ with p unpaired quasiparticles within the PBCS in the
form

L, (FBCS)= E (FBCS) £, (FBCS) = L (TPM)~ AEL (FBES) (13)

where

i

AE; (FBeS) = £2(FBcs) - £L (FBCS),
E@(£8eS) = By (TPM) ~ Epy (FBES)
¢ (o) (9) :
Here uji(IPﬁ?) is the energy of the excited state ¢ within
the IPM,  E/®(FBCS) and E;()(FBCS)  are the correlation and
system énergies of the excited (ground) state within the FBCS (for
the latter see expressions (8) and (12)). Within the BCS expression
an&logous to (13)isused (the correcting factors arisingdue to particle-
-number projecting are eliminated from (8) and (12)). Within the IQM

we have
E=Ver ar,

)

‘w‘_ (rem) = gsﬂ “+ ES,_*- L+ Esf

As the calculations have shown both for even and odd systems with
any number of unpaired nucleons the FBCS provides a gain in the cor-
relation energy, as compared to the BCS, that is always larger for
the ground state than for the excited one

EJ(FBCS) ~EQ(Bes) > £ (Faes) -FL(808) (14)

hence
LO, (FBCS) > (U, (BC8), (15)

For the one-quasiparticle states A E/<0 ( E?/AE: gince in the
ground state the Permi level is blocked), and from (14) and (15) we
get the inequality (see also ref./7/)

W, (TPM) > (W), (FBCS) >w), (BCS), (16)
For the states with more than one unpaired nucleons the calculations

give AES>O (£2>EL)

3. The Results of Calculations

In the calculations we used the Saxon-Woods single-particle
scheme with the parameters from ref. /. We took into account 30 ne-
utron and 30 proton levels in the energy intervel of about +10 MeV
from the Fermi level. The pairing interaction constants Gy and

GE were chosen by pairing energies within the BCS and FBCSin the
dependence ona version of calculation. However, the values of pairing
constants in these cases differed very glightly (< 2%).

The results of calculations are listed in tables 1-6. By F +1,
F +2, ... we denote the first, second, etc. particle levels, by
F -1, F -2, ... the first, second, etc. hole levels.

3.1. Quasiparticle States with the Number of Particles of the Same
Type k = 1 and 2

It is known that the BCS method overestimates the density of
low=lying one-quasiparticle states as compaered with the experimental
data. It follows from (15) that the use of the FBCS leads to less
density of one-quasiparticle states than in the case of the BCS.




The results of calculations for one-quasiparticle states are ' near the Fermi level leads to that in some cases the BCS does not
shown in table 1. The third column of the table presents the contri- provide & "superfluid" solution ( .Eé~ - 0 and A = 0).
butions of one-quasiparticle components to normalization of the sta-

te wave functions in the case of inclusion of the quasiparticle-pho-

non interaction /6/; they indicate that these states are single par- Table 2. Excitation energies W, , correlation energies
ticle to a great extent. A EJ‘D) and ratios G/bzzd:for low-lying two-quasi-
| particle states.
Table . 1. Excitation energles (U; and correlation energies-Ec \
> - - . . .
of low-lying one-quasiparticle states x‘ ol -KF gﬁ?gﬁ' Wi, e Ec‘([f:), . 6/t
oo us tion
Nuc- Configu- quasipar- Ly, keV E., Mev Exp.|IQM | BCS | FBCS| BCS FBCS (C./cht)g
leus ration ticletcom- ExpJ TQM [Bcs |FBCS |/6/ |Bes FBCS 6 F T+
ponen Dy |67 h523L+n633f| 1.68/2.01)1.59]1.67|0.01(0.6){ 0.8(1.6)| 1.0(1.4)
p523¢ F 98% 0 0 0 0 0 [0.07 |[1.30
16540 | pat14 F-1| 94% 360 | 20| 310! 400 230|0.28 |1.42 168y [yt | F] F42 ’
p411y F+1| 88% 429 470 | 460 650| 370]0.52 | 1.57 . p5213+n5128 1.65|1.90|1.67|1.75{0.08(1.1)| 0.9(2.0)|1.2(7.6)
i#2 - P-1 F+1
p404y F 99% o] o] [0] [¢] 0[0.15 |1.36 1o F 6331 +n512% 1.55(1.75(1.32[1.40[0 (0.8) 0.7(1.6){1.0(2.2)
51 | pS144 F+1| 99% 396 |150 | 160 210 100l0.26 [1.45 o Le |7 Pt
P41l F-1| 97% 627 |-50 | 370 | 560 310/0.78 |1.81 wf k5128 +n5144) 1.53(1.70(1.2711.37|0(0.6) | 0.7(1.4)|1.0(1.5)
n5144 T | 98% 0 o| o ol 0{0.13 |0.93 Béyy g~ [T P+l
177Hf n6424 F+1 99% 324 130 | 110 220 110 0.49 |1.18 nS14 +n624t) 1.0411.46[0.9311.12(0(0.4) 0.6(1.2){1.0(2.2)
n5124P-1 X 97% 504 60 | 200 260 | 150,0.26 [1.00 |
) 176 ue| - F F+2
512+ +n6244| 1,86 (1.8211.53 1,63 (0,1(0.9) |0.8(1.7)[1.3(6.0)
It is seen from table 1 that for one-quasiparticle states the FBCS 174 | P F+2
improves the agreement with (C9*P only insignificantly. This is due Yo!5 La11)+p5144] 1.88(2.52 [1.9812.14[0(0.7) | 1.0(1.9) |1.0(1.3)
to the fact that we used in the calculetions the single-particle
schemes/6/ whose paremeters were on the average chosen for large 76 _ F F+2
groups of nuclei and did not take into account the interaction of Hf| 8 PLO4L+p514t {1.48 .64 [1.08 [1.25 |0(1.2) 0.9(2.2) |1.0(110)
quasiparticles with phonons,the Coriolis interaction and other ef-
fects that provide almost the same changes in the state energy as '
the uge of the FBCS. However, the FBCS provides a better description
of the density of low-lying one-quasiparticle states than the BCS. In these cases the excitation energy was calculated by
}('k)s.ssaMz:;Z‘Le, in the calculations 'EC(FBCS) >. 1 MeV whereas E. (BC3)~ | OU"(IS[S) = E (TPM) - 'Ea (B('Sj-
. Within the FBCS there always exists a "superfluid" solution,and
Table 2 exemplifies the excitetion energies (U, , correlation % the correlation energy amounts to Ei(FBCS) T 1 MeV = 0.5 E?'(FBCS).
energiea [/ and ratios G/GEHT'for two-quasiparticle states. The As u%(FBCS)‘> tU.(BCS) and for most of the low-lying two-quasipar-
samqquantniesfor the ground states are given in parenthesis. It is ticle states in the rare-earth nuclei u)t(BCS)< u)f*P s then
seen from table 2 that the blocking of two single-particle levels o CO}FBCS) is on the average in better agreement with LUJHF « However,

e

i it should be noted that a more correct definition of the single-par-

4 9



ticle scheme and the inclusion of residual interactions may give cor-
rections to the excitation energy W, of two-quagiparticle states

(and three-quasiparticle gtates to be considered below) of the same
order as the use of the PBCS.

Let us consider three- and four-quasiparticle states of the type
(Ps2n ), (n,2P ) and (2n, 2p ) in which the number of quasipar-
ticles of the same kind does not exceed two ( K< 2). It is seen from
tables 3 and 4 that the PBCS provides a better agreement with experi-
ment than the BCS, especially for four-guasiparticle states.

Table 3. Excitation energies ), of low-lying three-quasipar-
ticle states of the type (p,2n) and (n,2p).
uc- s Configu- L), MNeV
leus | £ ration Exp. | IQM BCS FBCS
F Pyq F )
21/27] p514t+n514}+n5121 1.36 1.71 1.23 1.28
F Fy2 F ,
177 +
Ta|23/27| p514%+n6244 +n512¢ 1.70 1.82 1453 1.63
F F+2 F+1
25/2%| p51444n62444+ n5144 | 1.84 | 1.78 1.61 | 1.78
F ) F+1
25/27 | n624t+p 404 +p514% 1.11 1.86 1.09 1.32
P S W
Hf +
23/27 | n5V4{+p4044+p5144 1.32 1.64 1.08 1.25
F By P
M7 23/27 | n404}+P624%+p5144 0.97 1.46 0.93 1.12
F+1 » F+1
11/2* | p514t4n514)+n6244 | 1.23 | 1.60 1.07 | 1.27

This is due to the ®gct that uncertainties in the positions of the
single-particle levelg may be compensated when the number of quasi-
particles increases whereas the second term in (13) is in a much wee-
ker dependence on & Jetailed notion of the positions of levels of an
average field and is mainly determined by the density of single-par-
ticle levels near the Fermi surface. A further consideration of the
excitation energy o¥ many-quasiparticle states (with the number of

quasiparticles of the game type Kk > 3) confirms the above conclu-
sion.

10

Table 4. Excitation energies ﬂt%‘of low-1lying four-quasipar-
ticle states of the type (2m, 2p ).

Nuc- KW‘ Configuration O, Mev
leus Exp. | I
xp.| IQM | BCS FBCS
147 F+1 F P+1 F :
p514%+ p404l+ n514)+ n5124 | 2.87| 3.64) 2,37 2,65
o P F F+2 F
76 1571 p5144+ p4o4i+n6244+ n5124 3,08 3.77| 2.69 3.01
HE F+1 F F+2 P4
161 p5144+p4044+ n624% +n514} 3.27| 3.71} 2.76 3.16
- P P+1 F F+1 ; .
16%| p404d+ pS14%+ n5144+ n6244 | 2.45! 3,50 2.16 | 2.57
178y, !
T P+1 F F-1 i
1471 p404s+ p5144+ n514}+ n5124 | 2.57 LE.BO 2.95 3.27

3.2. Quasiparticle States with the Number of Quasiparticles of the
Bame Type k23

Now we consider a five-quasiparticle state of the type (2p ,3n )
with K7 = 37/27 in ’;7Hf and three six-quasiparticle states of
the type (2p, 4n ) with KT= 197, 20" and 217 in'®Hf. The state
with K7= 37/2” has been found in the reaction '? ¥b( « ,3n )
'quf/B/ and the six-quasiparticle states in the reaction '76Yb( ,4n)-
495Hf/9/. All these states have a large lifetime. The configurations
were attributed to these states (see table 5) on the basgis of esti-
mations of the state excitation energies and the analysis of the
scheme of their de-excitation/8*9/, '

First, we consider the states with K" = 37/27 and KT = 197
and 20°. It 1s seen fvom table 5 that the BCS provides for these states
far too low values of the excitation energies ({7; and the IQM high-
ly overestimated ones whereas the FBCS method allows one to get a
very good agreement with (U f*P (in particular, the agreement is much
better then for the case of empirical estimates of the excitation
energies in ref./e'gé. Thus, éur calculations, first, confirm the in-

terpretation of these states proposed in refs./a’g/ (quantum numbers

11



of a five-quasiparticle state

Ec
e 1f

interpretation

and correlation energies

Excitation energies (U,

5.

Table

exp

)

(%)

25/ ana 2

(for state with

in "7 Hf and three sixz-quasiparticle state in '

K':T

1)

4.86 MeV there are two versions of state

as is proposed in the present paper)
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K7™ and configuration) and second, show the nece;sity of par-
ticle-number projecting in considering many-quasiparticle states.
Note that we managed to achleve a good agreement with UJf’P for
these states within the FBCS without taking into account any residu-
al interactions.

It is easy to explaln why for the states with a large number of
qu?siparticles the FBCS method improves considerably the agreement
with u)flf compared to the BCS and IQM. On the one hand, this is due
to the fact that inaccuracies of the BCS and IQM in calculating (4);
and E: are the stronger the larger the number of single-particle
levels is blocked in close proximity to the Fermi surface, i.e., for
the low-lying many-quasiparticle states. On the other hand, as has
been mentioned above, with increasing number of quasiparticles in-
accuracies in the position of single-particle levels compensated
each other,

I is seen from tadble 5 that our calculations do not coﬁfirm in-
terpretation/9/ of level 4.86 MeV as the state with K™ = 227 and
configuration p404y+ p5144+ n6334+ n512¢+ n5144+ n6244 . The state
with such a oconfiguration should be lower in energy than the state
with K"= 197 and 20~ since it consists of quasiparticles lying
closer to the Fermi surface. The FBCS method provides wW); =4.11 MeV
for the state KTa 227, i.e.sthe value lower than the experimental
one by 0.7 MeV. In our opinion level 4.86 MeV should be interpreted
as the state with KT= 217 and configuration p404{+ P5144+ n642%+

+n512¢+ n5144+n624% . In this case the calculated excitation energy

W; = 4.78 MeV is in better agreement with experiment, and assign-
ment of quantum numbers KT = 217 to this level does not contradict
the way of 1ts de-excitation (E2 transition to the state with KT =
207). According to our calculations the level with K™ = 227 should
be searched for at an energy of 4.1 MeV. Its de-excitation should
greatly be hindered since, according to experiment, below there are
levels with K™= 16 only.

It 18 seen from table 5 that contrary to the BCS predictions on
the complete disappearance of pairing in the states considered, the
FBCS method shows that pairing in them does not disappear and the
correlation energy E &= 0.5 MeV diffexs poticeably from zero. Tab~
le 6 ghows that with increasing quasiparticle number k in the
neutron system of 136 H{ the value Ez(FBdS) decreases much
slower than Eé.(BCS) end differs from zero even at k‘= 6 (the ca-
se k = 6 corresponds to the hypothetical state of six unpaired neu-
tron quasiparticles lying on the Fermi level and on the adjacent le-

13



vels). However, it should be noted that to make a final conclus&ion
on the nondisappearance of pairing in many-quasiparticle states one
needs additional theoretical investigations(taking into account re-
gidual forces and effects of reconstruction of the average field)
and experimental tests.

Table 6. Dependence of correlation energy E. on quesipartic-

le number k in the neutron system ot '€ Hf .

Y

k 0 2 4 6
E_(BC5), MeV 0.9 0.1 0 0
[E(FBCS), MeV 1.7 0.8 0.4 0.3
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CnapuBaHHe B MHOTOKBAasHYaCTHYHBIX COCTOSHHUIX

E4-86-288

B paMkax MeToza NMpeKTUPOBAHUS IO UYMUCIY YACTHI, OO Bapbu—
poBanun /TIB/ c yueToM sbbeKxTa GIOKHPOBKH PACCMOTDEHH SHEDPIHH
BO306yxXOeHHUs1 M KOppeANHOHHble 3HEepTHH KBa3WYAaCTHYHLIX COCTOSHHUH
nebopMHPOBAHHBIX sep C YHCIOM KBasuuacTHl onHoro copra 1 < k 4
< 4. IlpoBopguTcst cpaBHeHHe C pacueTaMH B pamkax BKIl. s OATH- |
KBd3WYaCTHYHOT'o cocTosuus Tuna (lp, 4n) B 177 Hf u mecTuxBasu-
yacTHuHBX cocTosuuit tuma (2p, 4n) B 178 Hf nomyueno xopomee
corjlacHe ¢ 3KCHNEepHMEeHTOM, MpPOIEeMOHCTPUPOBAHA BAXHOCTH NpOeK-—
THPOBAHUA MO YHCIY YacTHI NpH PaCcCMOTPEHHH MHOTOKBA3HYaCTHYHbIY
cocTontHu#t. B ormuunme or EKU Meropn II/IB nperickasbiBaeT COXpaHeHid
CrapuBaHKHA B MHOTOKBA3WUYACTHUHBIX COCTOSHHAX.

PaBora BumomHeHa B JlaBopaTopum TeopeTuuyeckoit dusuxku OUAU.

Npenpuire OGbeAUHEHHOTO MHCTHTYTa AMIEPHBIX HccnefoBaHuit. Jly6Ha 1986

Kuzmenko N.K., Mikhailov V.M., Nesterenko V.O.
Pairing in Many-Quasiparticle States
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Excitation and correlation energies of quasiparticle sta-
tes of deformed nuclei with the number of quasiparticles of
the same type 1 < k < 4 are considered allowing for the bloc-
king effect within the method of particle—number projecting
beforo variation (FBCS). Our results are compared with the
calculations within the BCS. A good agreement with experiment
is obtained for a five-quasiparticle state of the type (lp,4n)
in !77THf and six—quasiparticle states of the type (2p, 4n) in
1784f; the necessity of particle-number projecting while con—
sidering many-quasiparticle states is demonstrated. In con-—
trast with the BCS, the FBCS method predics that the pairing
in many-quasiparticle states does not disappear.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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