

обьединенный
 ИНСТИTYT
 ЯаерНых
 исследований
 дубна

E4-86-198

Dao Tien Khoa, V.Yu.Ponomarev, A.I.Vdovin

THE ISOSCALAR SPIN-SPIN INTERACTION WITHIN THE QUASIPARTICLE-PHONON NUCLEAR MODEL

Submitted to "Изв. АН СССР, cep.Физ."

1. Introduction

The magnetic nuclear excitations have been so far an attractive field for both experimentalists and theorists (see, for example ${ }^{/ 1 / \text {). }}$ The impressive achievement in this field was the discovery of the 1^{+}- state at $E_{x}=5.846 \mathrm{MeV}$ that turned out to be of isoscalar nature. It should be noted that this state, firstly determined by nuclear resonance fluoreacence scattering of linearly polarized photons $/ 2 /$, has been investigated aince then in other reactions, namely, in the inelastic proton scattering at $\quad E_{p_{3}}=65 \mathrm{MeV} / 3 /$ and $201 \mathrm{MeV} / 4 /$, proton pick-up reaction ${ }^{209}{ }_{\mathrm{Bi}}\left(\mathrm{d},{ }^{\mathrm{p}_{3}} \mathrm{He}\right.$) ${ }^{208} \mathrm{~Pb}^{2} / 3,5 /$ and inelastic electron scattering $/ 6,7 /$. Besides the transition probability $\quad B\left(M 1,0_{\text {g. s. }}^{+} \rightarrow 1_{\text {IS }}^{+}\right)=1.6 \pm 1.5 \mu_{N_{-1}}^{2}$ the data have also shown the value of proton amplitude $\left(1 h_{9 / 2} 1 h_{11 / 2}^{-1}\right)$ in the structure of the state ($\alpha \geqslant 0.87$) and the momentum transfer dependence of the measured electron-scattering form factor ($0.4 \leqslant q_{\text {eff }} \leqslant 1.5$ fm^{-1}).

Among different theoretical calculations for 1^{+}- excitations in the nucleus ${ }^{208} \mathrm{~Pb}$, only in two cases $/ 8,9 /$ the theoretical predictions for the isoscalar $1_{\text {IS }}^{+}$- state are in satisfactory agreement with the data (the excitation energy with an accuracy to 300 KeV and the probability $B(M 1) \uparrow$ to a factor of about 2). So, the properties of this state known from experiment can be used to test the possibilities of different theoretical models and to determine some parameters of these models. In ref. $10,11 /$ the strength of the effective isoscalar spin-spin interaction in nuclei hes been estimated in the above manner and is found to be weak.

In the present work we consider how the known properties of the $\quad 1_{\text {IS }}^{+}$- atate in ${ }^{208} \mathrm{~Pb}_{\mathrm{Pb}}$ are reproduced within the quasiparticlephonon nuclear model (QPM) $12-14$ / We also use the existing data for this state to determine the isoscalar spin-spin interaction parameter in the QPM.
2. The structure of the isoscalar 1^{+}state in ${ }^{208} \mathrm{~Pb}$

The structure of 1^{+}- states in ${ }^{208} \mathrm{~Pb}$ has been calculated in both the random phase approximation (RPA) and the approximation including the interaction between one- and two- phonon configurations. The structure of $1 \pm$ one-phonon states is determined by spin-spin and spin-quadrupole components of the effective $\mathbb{N}-\mathbb{N}$ forces used in the $Q P M / 13 /$.

1

$$
\begin{aligned}
V_{\sigma}\left(\vec{r}_{1}, \overrightarrow{r_{2}}\right)= & -\frac{1}{2}\left(\mathscr{R}_{0}^{(01)}+x_{1}^{(01)} \vec{\tau}_{1} \vec{\tau}_{2}\right) R_{0}\left(r_{1}\right) R_{0}\left(r_{2}\right)\left(\vec{\sigma}_{1} Y_{0}\right)_{1 M}\left(\vec{\sigma}_{2} Y_{0}\right)_{1 M}^{+} \\
& -\frac{1}{2}\left(\mathscr{X}_{0}^{(21)}+\mathscr{R}_{1}^{(21)} \vec{\tau}_{1} \vec{\tau}_{2}\right) R_{2}\left(r_{1}\right) R_{2}\left(r_{2}\right)\left(\overrightarrow{\sigma_{1}} Y_{2 \mu}\right)_{1 M}\left(\vec{\sigma}_{2} Y_{2 \mu}\right)_{1 M}^{+}
\end{aligned}
$$

The calculations have been performed with two types of radial form factors of the effective forces $\left.\left.R_{\lambda}(r): a\right) R_{\lambda}(r)=r^{\lambda} ; b\right) R_{\lambda}(r)=d U / d r$ (U is the central part of the Woods-Saxon potential). It should be noted that a) is rather a traditional variant of spin-spin forces with the constant radial matrix element. The parameters of the aing-le-particle Woods-Saxon potential are taken Prom parametrization by Chepurnov/15/. But the single-particle energies of the main neutron and proton shells close to the Fermi level, 1.e. N=82-126; 126-184 and $Z=50-82$; 82-126 are taken from ref./16/. In that work, these energies were found by an iteretive procedure inoluding quasipartic-le-phonon interaction so as to get the best description of the lowlying excited atates in $207,209 \mathrm{~Pb},{ }^{207} \mathrm{Tl}$ and ${ }^{209} \mathrm{Bi}$. It should be emphasized that these energies are not identical with the so-called "experimental" single-particle spectrum (see, for example,/17/). The agreement with the experimental spectrum can be obtained with the inclusion of quasiparticle-phonon interaction responsible for fragmentation of single-particle states, which leads to the shift of energy levels and the decrease of their spectroscopic factors compared to the aingle-particle values. In this sense we have used a "bare" single-particle spectrum, as interpreted in ref. $18 /$. As one will see later, this procedure for finding the aingle-particle energies is very important for our calculations.

2a) Reaulte of RPA calculationg

(oi) The effective interaction (1) contains 4 free parameters: $\mathscr{X}_{0,1}^{(01)}$ and $x_{0,1}^{(21)}$. From the available experimental data, one cannot determine all four constants unambiguously. Nevertheless, aince the spin-quadrupole forces influence vexy weakly the lowest 1^{+} one-phonon states in ${ }^{208} \mathrm{~Pb}$ the constants $\mathscr{X}_{0}^{(01)}$ and $\mathscr{X}_{1}^{(01)}$ can be determined quite accurately, from the experimental energies of $1_{I_{S}}^{+}{ }^{-}$ level and isovector M1- resonance ($1_{\text {IV }}^{+}-$level). It should be noted that the $M 1$-resonance in ${ }^{208} \mathrm{~Pb}$ is not well known. The fragmentation of this state is expected to be strong and so far only a part of
its total strength has been observed $\left(\sum B(M 1) \uparrow \sim 7-8 \mu_{N}^{2}\right.$ in the interval $7.4 \leqslant E_{x} \leqslant 7.8 \mathrm{MeV} / 1 /$). We have chosen the value of $\approx_{1}^{(01)}$ in a way to reproduce $\quad E\left(1_{I V}^{+}\right)=7.8 \mathrm{MeV}$ having in mind the experimental data for the M1-reaonance in ${ }^{206} \mathrm{~Pb} / 19 /$.

Further, some estimations have been made in oxder to determine the apin-quadrupole constant. In the case of effective forces with $n_{\lambda}(r)=d U / d r$ it has been eupposed that $\left|x_{1}^{(2)}\right| \leq\left|x_{1}^{(21)}\right|<\left|x_{1}^{(01)}\right|$ (see details in $/ 20 /$). In the cese of $R_{\lambda}(r)=r^{\lambda}$ the constant $\mathscr{X}_{4}^{(21)}$ has been chosen to be the same as in ref. $/ 21 /$. In both cases the constant $\mathscr{X}_{0}^{(21)}$ is derived from $\mathscr{X}_{1}^{(21)}$ by λ - and I-independent relation $\mathscr{X}_{0}^{(\lambda,)} / \mathscr{X}_{1}^{(N)}$

The experimental energy of $1_{\text {IS }}^{+}-l e v e l$ and the above mentioned poeition of the M1-resonance, 1. $\theta_{(\lambda)} 1_{I V}^{+}$($\mathcal{A} L$ level, are reproduced with the relation of constants $\mathscr{X}_{0}^{(\lambda L)} / \mathscr{X}_{1}^{(\lambda 4)} \simeq 0.05-0.1$. The calculated energies and transition probabilities $B\left(M 1, O_{g . s .}^{+}->1_{i}^{+}\right)$ for one-phonon $1_{I S}^{+}$and $1_{I V}^{+}$- states are shown in tab. i_{0}

Table 1. The excitation energies (E_{z}) and $\mathrm{B}\left(\mathrm{M} 1, \mathrm{O}_{\mathrm{B} . \mathrm{B},} \rightarrow 1^{+}\right)$ values for two lowest one-phonon 1^{+}atates in 208 Pb calculated with different typer of effoctive forcea. The $B(\mathrm{M} 1) \uparrow$ values are calculated with the offective $\quad g_{g}$ - factor equal to $0.8 \mathrm{~g}_{\mathrm{g}}^{\text {free }}$

$\mathrm{R}_{\lambda}(\mathrm{r})$	$x_{0}^{(\lambda L)} / x_{1}^{(L L)}$	$1 \stackrel{+}{\text { IS }}$ - state		$\begin{gathered} 1_{\text {IV }}^{+} \text {ctate }(M 1-r e s o n a n-~ \\ \hline \end{gathered}$	
		$\mathrm{E}_{\mathrm{X}}, \mathrm{MoV}$		$\mathrm{E}_{\mathbf{X}}, \mathrm{MeV}$	$B(M 1) \mu_{1}^{2}$
$\mathrm{d} \mathrm{U} / \mathrm{d} \mathrm{r}$	1/20	5.84	0.99	7.82	19.6
	1/20	6.02	1.39	7.85	19.2
r^{λ}	1/10	5.82	1.48	7.87	19.1

 for free mucleons ($\mathrm{g}_{\mathrm{g}}^{\mathrm{free}}$) overestimates the experimental value by a factor of 2.0-2.5 and the agreement within the experimental uncertainty can be obtained with standard values $\mathbb{g}_{\mathrm{g}}^{\mathrm{eff}}=\mathrm{g}_{\mathrm{g}}^{\text {free }} \mathrm{x} 0.8$. The main components of the weve function for one-phonon atate $\left|1_{\text {Is }}^{+}\right\rangle$ are nearly the same from the calculations with two types of effective
forces. The amplitude of proton component $\left(1 \mathrm{~h}_{9 / 2} \mathrm{ih}_{11 / 2}^{-1}\right)_{\pi}$ is about 0.84-0.86 and is close to the experimental vaiue extracted from reaction ${ }^{209} \mathrm{Bi}\left(\mathrm{d},{ }^{3} \mathrm{He}\right){ }^{208} \mathrm{~Pb}$. Contribution of the particlehole component with $\Delta I=2$ generated by spin-quadrupole interaction la of an order of 0.01%. In the calculations with $R_{\lambda}(r)$ mdU/dr the components with $\Delta n=1$ are of an order of 0.1%, but in calculations with $R_{\lambda}(r)=r^{\lambda}$ their contribution is as amall as the components with $\Delta 1=2$.

The correct choice of apin-orbital splitting of the $1 h_{r}$ and iiv shells plays a vital role in our calculations. Suffice it to say that with the aingle particie spectrum calculated with the parameters of Chepurnov/15/ one cannot reproduce both the onergy and transition probability to the ground state for $1_{\text {IS }}^{+}$level. The experimental values of $\Delta \varepsilon_{S .0}\left(1 h_{\pi}\right)$ and $\Delta \varepsilon_{S . O}\left(11_{V}\right)$ values used in our calculations and those calculated with the parameters of Chepurnov are shown in tab. 2. It should be noted that the aingleparticle spectra used in the calculations of other worke, where the properties of the $T_{\text {IS }}^{+}$- state are reproduced atisfactorily, always have the $\Delta \varepsilon_{S .0} .\left(1 h_{T}\right)$ and $\Delta \varepsilon_{S .0}\left(1 i_{V}\right)$ values very close to the experimental ones (see also tab.2).

Table 2. The spin-orbital splitting values $\Delta \varepsilon_{\text {s.o. }}(\mathrm{MeV})$ of the ih π and i_{v}-shelle in ${ }^{208} \mathrm{~Pb}$ for different single-particle spectra.

$\Delta \varepsilon_{\text {S.0. }} \quad \text { exper. } / 17 /$	$\begin{aligned} & \text { Present } / 16\} \\ & \text { work (see } \end{aligned}$	Woods-Saxon pot. from /15/	Rei. $/ 8 /$	Ref. $/ 9 /$
$\left(1 h_{9 / 2} 1 h_{11 / 2}^{-1}\right)_{\pi} 5.61$	5.31	5.81	5.60	5.57
$\left(1 i_{11 / 2}{ }^{1 i_{13 / 2}^{-1}}\right)_{v} 5.88$	6.05	6.0	5.86	5.85

A detailed description of the QPM Pormaliem with the incluaion of interaction between one- and two-phonon states can be found in reviews /14/ whereas the fragmentation of magnetic dipole resonanroviews whereas the Pragmentation of magnetic dipole rea one
ce has been investigated in the work $/ 22 /$. In contrast with these

Works instead of using the method of atrength functions we have calculated the structure for each 1^{+}-atate. Since the interaction with two phonon etstes decreases the energy of $1 \pm$ - level by about 150 KeV the calculations have been performed with the renormalized constant $\mathscr{W}_{0}^{(01)}$ which gives the energy of one-phonon isoacalar $1^{ \pm}$atate equal to 6.02 MeV (seo tabl.1). The inclusion of interaction with twophonon states into celculations reduces the calculated energy of
${ }^{1}+$-level to the experimental value $E_{x}\left(1_{\text {IS }}^{+}\right)$.
We have taker into account the interaction between $1_{I S}^{+}$and $1_{\text {IV }}^{+}$- one-phonon states and 325 two-phonon ones with the energy not greater than 15 MeV . The denaity diatribution of two-phonon statea is shown in the upper part of fig. 1.

Pig.1. The M1 resonance in ${ }^{208}{ }_{\text {pb }}$. The bistogram of the number of twomphonon atates in the energy, intexval of 1 MeV (the positions of the $1 \mathrm{p}-1 \mathrm{~h}$ हtates
 are indicated by arrowa) is ghom in the upper part of the figure. The results of oflculations in the RPA and with the in oluaion of interaotion between ono- and two-phonon atatea are mhows in the middle and lower parts of the figure respeotively.

Pig. 1 also shows the distributions of the tranaition probabilities $B\left(M 1,0_{\mathrm{g} . \mathrm{g} .}^{+} \rightarrow 1_{i}^{+}\right)$calculated in the RPA (the middle part of Fig. 1)
and Fith the inclusion of interaction with two-phonon configurations (the lower part).

The interaction with two-phonon states influences very weakly the $1_{\text {IS }}^{+}$-state. The two-phonon part of the wave function for this state does not exceed some percent and the one-phonon component $Q^{+}\left(1_{\text {IS }}^{+}\right) \Psi_{\text {。 }}$ is around 97%. It should also be noted that the fragmentation of the $M 1$ - resonance 18 , by the results of our calculations rather weak (see Fig.1). This can be explained, firstly, by the small density of two-phonon states in the energy region of $7-8 \mathrm{MeV}$, and secondly, by the weak interaction between one-phonon states and two-phonon ones. The maximum matrix elemente of this interaction are about 0.3 MeV (note that these matrix elements are calculated in the QPM microscopically $/ 12,14 / 2$. The results of other theoretical models have shown that this fragmentation of the M1-resonance is quite stronger $123 /$. The experimental data (with large uncertainty Bo far) have shown also that this fragmentation is strong $/ 1,4 /$.

In the previous paragraph we have considered the structure of $1_{\text {Is }}^{+}$- state oalculated in difforent approximations within the QPM. Now, we will show how the croas-sections of inelastic electron and proton scattering from ${ }^{208}{ }_{\mathrm{pb}}$ with excitation of the $1_{\text {Is }}^{+}$- state oun be described with the model wave functions for this state caloulated in the QPM. Since the interaction with two-phonon states influencea weakly the $1_{\text {IS }}^{+}$state, all the calculations have been performed with one-phonon wave functions. However, the interaction constants $X_{0,1}^{(A L)}$ have also been chosen the same as in the "anharmonic" case, i.e. when the energy of one-phonon $1_{\text {IS }}^{+}$- state is equal to 6.02 MeV (sea tab.1).

The form factor for inelastic electron soattering from ${ }^{208} \mathrm{~Pb}$ with excitation of the $1_{\text {IS }}^{+}$- state $\left|F_{T}\right|^{2}$, calculated in the DWBA and the corrosponding experimental data from $/ 7 /$ are shown in Fig. 2. The calculations have been performed with two types of effective interaction. As one can see from Pig. 2, the resulta of calculation with $\quad R_{\lambda}(r)=\mathrm{dU} / \mathrm{dr}$ describe the data quita, well in the interval $q_{\text {eff }}<1 \mathrm{fm}^{-1}$. The larger value of $q_{\text {eff }}$, the poorer agreement between theory and expariment,
but it should be emphasized that the experimental uncertainty in this region is also larger.

Fig.2. The form Pactor $\left|P_{T}\right|^{2}$ of inelastic electron scattering with exoitation of the $1_{\text {IS }}^{+}$-state in ${ }^{208} \mathrm{~Pb}_{\text {. }}$ The experimental data are taken from 7 / The solid line is the calculations with the forces dU/dr; the dashed line, with the forcea $R_{\lambda}(r)=r^{\lambda}$,
$\mathrm{g}_{\mathrm{g}}^{\mathrm{eff}}=0.8 \mathrm{~g}_{\mathrm{g}}^{\mathrm{free}}$ 。

The results of calculation with $\quad R(r)=r^{\boldsymbol{\lambda}}$ describe the data poorer. This difference oomes from the emall components with $A n=1$. in the one-phonon part of the wave function, which influence strongly the behaviour of the ourrent transition densities $\rho_{11}(r)$, especially, in the interior of the nucleus. One can learn about the character of such differences from Fig. 3. Where the densities $\rho_{11}(r)$ of one-phonon $1_{I S}^{+}-$and $1_{I V}^{+}$-states are ehown. The current transition density of the Mi-resonance is changing atronger than that of the $1_{\text {IS }}^{+}-8 t a t e$ and the calculationa with $R_{\lambda}(r) a d U / d r$ give a stronger convectional component of $\rho_{11}(r)$

Note the amblguity in the oxtraction of $B\left(M_{1}\right)$-values from the (e, e')-data. The calculations with $R_{\lambda}(r) a r^{\lambda}$ give the $B\left(\mathbf{M 1}^{\prime}\right)$-value greater than that from calculations with $R_{\lambda}(r)=d U / d r$ when the situation for the form factor $\left|F_{T}\right|^{2}$ is opposite. If one renormalizes $\mathcal{E}_{\mathrm{g}}^{\text {eff }}$ by the experimental data for $\left|F_{T}\right|^{2}$ the $B(\underline{4} 1)$-value is increased substantially, and for the case $R_{\lambda}(r)=r^{\lambda}$ it will go beyond the limits of the experimental uncertainty reported in $\%$. So, not surpriaingly, value of
$\mid \mathrm{B}\left(\mathrm{M} 1, \mathrm{O}_{\mathrm{gs}}^{+} \rightarrow 1_{\mathrm{IS}}^{+}\right.$) extracted from the (e, el)-data/7/ turns out to be equal to $1.01 \pm 0.08 \mu_{N}^{2}$.

The calculatione of the (p, p^{\prime}) cross-section at $E_{p}=201 \mathrm{MeV}$ have been performed in the diatorted wave dinpulse approximation (DWIA) with the computer code writton by F.A.Gexoev and S. N. Erehov /24/. The $t_{\text {NI }}$ - interaction matrix of free nucleons has been taken as a aum of Xukawa terme es described in $/ 25 /$. Along with the central components, the tensor components of the $t_{\text {NN }}$-matrix have been included into calculations. The knock-on exchange effects have beon taken into account exactly by a nonlocal form factor calculated with onemphonon tranaition densities. The mase and energy dependent optical potential parameters are obtained from the experimental data of elastic cross-sections and analyzing-power measurem ments $/ 26 /$

The results of calculations with two types of effective forces and the experimental data $/ 4 /$ are shown in Pig. 4 . The absolute values of celculated crossmections overestimate the data by factors of 1.4 (for $R_{\lambda}(r)=r^{\lambda}$) and 1.1 (for $R_{\lambda}(r)=d U / d r$).

Pig. 4. The crose-seotion of inelastio proton scattering from ${ }^{208} \mathrm{~Pb}$ with excitation of the $1_{\mathrm{IS}}{ }^{+}$ state ($\mathrm{E}_{\mathrm{p}}=201 \mathrm{MeV}$). The experimental data are taken from $/ 4 /$. The solid line is the oalculation with $R_{\lambda}(r)=d U / d r$, the dashed line with $R_{\lambda}(r) \neq r^{\lambda}$. The absolute values of the caloulated orosgmsections are normalized to the data.

But the calculation with $R_{\lambda}(r)=r^{\lambda}$ gives a much better fit to the (p, p^{\prime})-angular diatribution than the calculation with $R_{\lambda}(r)=d U / d r \quad$ and it romains nonunderstandeble from our point of view. Note, that in the previous QPM-calculations for the (p, p^{\prime}) cross section with the excitation of M1-resonance in Zr isotopes 27/ the angular distributions of outgoing protons have been reproduced quite well. It should also be noted that in the calculstions porformed within the theory of finite Fermi-systems $/ 28 /$ the theoretical (p, p^{\prime}) cross section of excitation of the $1_{\text {IS }}^{+}-$atate in ${ }^{208} \mathrm{~Pb}$ falls with acattoring angle θ steoper than the experimental one and underestimates it by a factor of two at $\theta=0^{\circ}$.

4. Conclusions

In conclusion would like to emphasize the main results of the proment work

Firstly, the isoacalar spin-spin interaction turns out to be very weak within the QPM. So, the schematic separable intoraction used in the QPM also has this important property as the more realistio effective RN-interactions $/ 8,11 /$

Secondly, the intersction with more complex configurations influences very weakly the $1_{\text {IS }}^{+}-s t a t e$ and the contribution of the 1p-1h configurations are dominating in the $1_{\text {Is }}^{+}-$state wave function.

This conclusion, to a certain degree, may be a model dependent one. Nevertheleas, the ame result hes been obtained in ref. $/ 29 /$

Thirdly, the ampirical values of effective g_{s}-factors that reproduce the experimental data for inelastic electron scattering form factor and the quenching factor Q for (p, p ') crose eoction with excitation of the $1+$ IS - state are consistent with each other within the accuracy of the QPMo It seems that the quenching of tie isovector $M \lambda-s t r e n g t h ~(s e e, / 20,27,30 /$) is somewhat atronger than the isoscalar one. But in our calculationg the difference is not so strong and obvious. The value of Q depends on the offective $N \mathrm{~N}$-forcss to some extent and the calculations with more realistic forces are highly desirable.

The authora are grateful to F.A.Gareev and S.N. Ershov for providing the DWLA computer code and help.

Referencos:

1. Bromn G. E., Ramen S. Commente Nucl. Part. Phys. 1980, 2, p. 79 ; Ponomarey V.Yu., Vdovin A.I. JINR, E4-81-769, Dubna, 1981; Richter A. Invited talk given at the Int.Conf.on Nucl. Phya. Flozonce, Italy, 1983; Preprint Institut für Kernphysik, Mechnische Hochschule Darmatadt, IKDA-83/16, 1983.
2. Weinhard K. et al. Phys.Rev.Lett., 1982, 49, p.18.
3. Hayakawa S.I. et al. Phys. Rev.Lett., 1982, 49, p. 1624.
4. Djalali C. et al. Phyb. Rev. C, 1985, 31, p. 758.
5. Mairle Geot al. Phys. Latt., 1983, 121B, p. 307.
6. Mưller S. et al. Phyo.Lett. 1983, 120B, p. 305.
7. Müller S. et al. Phys.Rev.Latt., 1985, 54, p. 293.
8. Vergadoa J.D. Phye.Lett., 1971, 36B, p.12.
9. Speth J. et al. Nucl. Phys., 1980 A343, p. 382 ; Wambech J. et al. Nucl. Phys. 1980, A348, p. 221.
10. Toki H. et al. Phys. Rev. C, 1983, 28, p. 1398.
II. Borsov I.N. ot al. Yad. Fiz. 1984, 40. p. 1151.
11. Soloviev V.G. Particlos and Nuclei, 1978, 2, p. 810.
12. Vdovin A.I. and Soloviov V.G. Ibid., 1983, 14, p. 237.
13. Voronov V.V. and Soloviev V.G. Ibid., 1983, 14, p. 1380; Vdovin A.I. ot al. Ibid., 1985, 16, p. 245.
14. Chepurnov V.A. Yad. Fiz., 1967, 16, p. 955.
15. Voronor V.V. and Dao Tien Khoa Izv. AN SSSR, ser. Piz., 1984. 48. p. 2008.
16. Isakov V.I. ot el. Preprint IINP, No. 627 Leningrad, 1980.
17. Kamerdziev S.P. Yad. Fiz. 1983, 38, p. 316.
18. Laszewski R.M. et al. Phys. Rev. Lett. 1985, 54, p. 530.
19. Vdovin A.I. et al. Izv. AN SSSR, ser fiz., 1985, 49, p. 2173.
20. Ponomarev V. Yu. et al. Z. Pbys. A - Atoms and Nucled, 1982, 308, p. 157.
21. Vdovin A.I. et al. Yad. Fiz., 1979, 30, p. 923.
22. Dehesa J.S. et al. Phys. Rev. Lett., 1977, 38, p. 208; Kamerdziev S.P., Tkachev V.I. Izv. AN SSSR, Ber.fiz., 2984, 4日, p. 97; Yad. Fiz., 1985. 42, p. 832;
Laszewrki R.M. and Wambach J. Comments Nucl. Part. Phys., 1985, 24, p. 321.
23. Gareev F.A. et al. JINR, E4-84-456, 1984, Dubna; Gareev F.A. et al. Yad. Fiz., 1985, 42, p. 20.
24. Love W. G., Franey M.A. Phys.Rev. C, 1981, 24, p. 1073.
25. Schwandt P. et al. Phys. Rev. C., 1982, 26, p. 55.
26. Ponomarev V. Yu. et al. JINR, E4-83-497, 1983, Dubna; Vdovin A.I. et al. JINR, E4-86-30, 1986, Dubna.
27. Borzov I.N. et al. Yad. Fiz., 1985, 42, p. 625.
28. Lee T.-S., Pittel S. Phys. Rev. C., 1975, 11, p. 607.
29. Ponomarev V.Yu. et al. Nucl. Phys., 1979, A323, p 446 ; Phys. Lett., 1980, 97B, p. 4; J. Phys. G: Nucl. Phye. 1982, 8, p. L77.

Reoelved by Publiehing Department on April 3, 1986.

WILL YOU fill blank spaces in your library?
You can receive by post the books listed below. Prices - in US 8. including the packing and registered postage

D1,2-82-27 Proceedings of the International Symposium on Polarization Phenomena in High Energy

Physics. Dubna, 1981.
D2-82-568 Proceedings of the Meeting on Investigations fin the Field of Relativistic Nuciear Physics. Dubna, 1982

D3,4-82-704 Proceedings of the IV International School on Neutron Physics. Dubna, 1982

D11-83-511	Proceedings of the Conference on Systems and Techniques of Analitical Computing and Their
	Applications in Theoretical Physics. Dubna, 1982.

D7-83-644 Proceedings of the International School-Seminar on Heavy Ion Physics. Alushta, 1983.
D7-83-644 Proceedings of the International School-Seminar
D2:13-83-689 Proceedings of the Workshop on Radiation Problems and Gravitational Wave Detection. Dubna, 1983.
D13-84-63 Proceedings of the XI International Symposium on Nuclear Electronics. Bratislava, .Czechoslovakia, 1983.

E1,2-84-160 Proceedings of the 1983 JINR-CERN School of Physics. Tabor. Czechoslovakia, 1983.

D2-84-366 Proceedings of the VII International Conference on the Problems of Quantum Field Theory. On the Problem
Alushta, 1984.

D1,2-84-599 Proceedings of the VII International Seminar on High Energy Physics Problens. Dubna. 1984.

D17-84-850 Proceedings of the 111 International Symposium Proceedings of the III International Sympos
on Selected Topics in Statistical Mechanics. On Selected Topics in Sta
Dubna, 1984. $/ 2$ volumes/.

D10,11-84-818 Proceedings of the v International Meeting on Problems of Mathematical Simulation, Programming and Mathematical Methods for Solving the Physical Problems, Dubna, 1983
Proceedings of the IX All-Union Conference on Charged Particle Accelerators.

D4-85-851 Proceedings on the International School on Nuclear Structure. Alushta, 1985.

Orders for the above-mentioned books can be sent at the address: Publishing Department. JINR-
Head Post office, P.O.Box 79101000 Noscow, USSR

Дао Тиен Кхоа, Пономарев В.Ю., Вдовин А.И.
E4-86-198
Изоскалярное спин-спиновое взаимодействие
в көазичастично-фононной модели
По экспериментальным данным об изоскаларном $1+$-состоянии $/ E_{x}=$ $=5,846 \mathrm{M3B} /$ ядра 208 pb определена константа изоскалярного. спин-сп̆инового взаимодействия квазичастично-фононной модели ядра /КФМ/.ИзоскалярРое спин-спиновое взаимодействие оказалось на порядок слабее изовекторного. Рассчитаны сечения /е, е'/- н/p, ${ }^{\prime} /$-рассеения с возбуждением изоскалярного 1^{+}-состояния. В целом КФМ удовлетворительно описывает поведение /е, е'/-сечения при $q_{e f f} \leq 1,0$ ф $^{-1}$ и воспроизводит_его абсолотнуо величину при зффектив ных спиновых гиромагнитных факторах на 20% меныше, чем у свободных нуклонов. Поведение сечения /p,p/-рассеяния при $E_{p}=201$ МзВ как функции угла рассеяния описывается хуже. Его ао̆солютная величина в ~ 1,4 раза превосходит зкспериментальную, что согласуется с фактором подавления /е, е'/-сечения. Взаимодействие с двухфононными состояниями очень слабо влияет на изоскалярный 1^{+} уровень.

Работа вылолнена а Лаборатории теоретической физики ОИЯи.

Препринт Объединенного ннстнтута пдерных нсследовандй. Дубна 1986

> Dao Tien Khoa, Ponomarev V.Yu., Vdovin A.I.

E4-86-198 The Isoscalar 5pin-5pin Interaction within the Quasiparticle-Phonon Nuclear Model

The isoscalar spin-spin interaction constant in the quasiparticle-phonon nuclear model (QPM) has been determined from the ayailable: experimental data for the isoscalar 1^{+}state ($E_{x}=5.846 \mathrm{MeV}$) in ${ }^{208} \mathrm{pb}$. The isoscalar spinspin interaction turns out to be weaker than the isovector one by an order of magnitude. The cross-sectlons of (e, e^{i}) and (p, p^{\prime}) reactlons with the excitation of this 1^{+}- state have been calculated. The QPM glves a good de cription of the behaviour of (e, e^{1}) - cross section at $q_{\text {eff }}<1.0 \mathrm{fm}^{-1}$ and reproduces absolute value of this cross-section with the effective g_{s}-fac tors weaker than the g_{s}-factors for free nucleon by 20\%. The description of the (p, p^{\prime})- angular distribution of 201 MeV photon Inelastic scattering is poorer. The absolute value of the calculated (p, p^{\prime}) cross sectlon overestimates the experimental data by a factor of about 1.4. This is consistent with the quenching factor for (e,e) cross section. The interaction with two-phonon configurations influences very weakly the isoscalar 1^{+}level.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

