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Investigation of the interaction between slmple nuclear
excltations (for example, one-quasiparticle or one-phonon states)
and more complex states (quasiparticle-plus—phonon or two~phonon
ones) is essential for describing quantitatively the nuclear
resonance width, explaining the guenching of the spin-isospin
transition strength and so on, The modifications in the energeti-
cal spectrum and transition strength caused by the interaction
between simple and complex states consume the maln efforts in such
calculations. It i1s oonvenient to express the integral characte-
rlstics of the strength distributions through their energy-

-welghted moments

Sisz/@/ﬁ/sﬁﬁ/g. (1)

where (Q/BIA/Q} 1s the amplitude of transition from the ground
| 0> to excited state [¥,> with excitation energy A, due to
the' action of the transition operator B » K 18 nonnegativé
integer. The sum 1s taken through all the states ?6 .

The method of ocalculation of the energy-welghted moments for
the fragmentation task to solve it in the quasiparticle~phonon
nuclear model (QPNM)[ l] 1s describeds Simple states (onme-quagi-
pacticle, one-phonon, etc.) that are the elgenstates of the
vibrational hamiltonlan describing superconducting-type quasi-
particles and separable multipole-multipole and spin-multipole-~
—-spin-multipole interactions between them are naturally selected
in this model, and more complex states (quasipartiele—plus-phonon,
two—phonon, etc.) are connected with them by the gquasiparticle—

-phonon interacticn, i.e.,
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)ch 1s the vibrational hamiltonian, //,, 1s the hemiltonian

of quasiparticle-phonon interaction. Eigenfunctions of the ];{
H¥, =£ % )
are chosen 1in the form of
— v oy
b =2t * 2., (3)
m /7

where ;%; are eigenstates of Jéé}

H, %, = “ %

and é% are more complex states, “r and ég being
mutually orthogonal .
Let us define the projection operators y2 and 62
by
v
1£)949 ==42i374;n %,
”
and -
— ~V 5
é?}é; - 22:? p 96; -
/77
1t is evident that
PR% =QPY =0
and .
(P+Q)¥, = %, .
Using those relations (2) may be rewritten as
(PHuP+ PHy Q)Y = £,P% "
2

" (QHP+ QHQ) % = £,04

Gt

In&estigation of the interacotion between simple nuclear
excitations (for example, one-quasipafticle or one-phonon states)
and more complex states (quasiparticle-plus-phonon or two-phonon
ones) is essential for describiﬁé quantitatively the nuclear
resonance width, explaining the quenching of the spin-isospin
transition strength and so on, The modifications in the energeti-
cal spectrum and transition strength caused by the interaction
between simple and complex states consume the main .efforts in such
calculations. It is oconvenlient to express the integral characte-
ristics of the strength distributions through their energy-

-weighted moments

S )7 B ol 4y 2. (4)

where (O/B /%,)
[ 0> to excited state /%> with excitation energy £y

1s the amplitude of transition from the ground
due to
the action of the transition operator B , K 1is nonnegative
integer. The sum is taken through all the states V& .

The method of calculation of the energy-weighted moments for
the fragmentation task to solve it in the quasiparticle-phonon
nuclear model (OPNM)[ 1] i1s desc¢ribed. Simple states (one-quasi—
particle, one~phonon, etc.) that are the elgenstates of the
vibrational -hamiltonian describing supérconducting-type quasi=
particles and separable multipole-multipocle and spin-multipole-
-spin-multipole interactions between them are naturally selected
in this model, and more complex states (quasiparticle-plus—pﬁbnon,

two-phonon, etc.) are connected with them by the quasiparticle-

~phonon interaction, i.e.,

/;7=’/9£; +J4Z;c9 .

1 .



JZJ% 1s the vibrational hamiltonian, Hy is the hamiltonian

of quasiparticle-phonon interaction. Eigenfunctions of the z‘[

H¥ =£4% (2)

are chosen 1in the form of
o =L * 2. (3)
m /7
where % are ‘eigenstates of _Z/Z}

H, % = Sy

s ~r

and % are more com.plex states, L and %  being
mutually orthogonal .

Let us define the projection operators 24 and Q
by

i
3
.
3
N

and
0%=;¥¥%.

It is evident that

PR&L=QPY =0

(P+Q) % = 5%) ‘
Using those relations (2) may be rewritten as

(PH,P+ Pl Q)Y = £,2% |

(2YH
(QHyP + QHQ) % = £, 04

- — T

because

PHPY, = PP ¥
PHyQ%,:ﬂ i

Therefore, the problem 13 reduced to the eigenvalue problem for
A .

the real symmetrical matrix H

. P, }m4p PH,Q| |P% Pk
H gy, “lawe ana | ok Sk

or in detail )
» o
44,6, + é:(%///,,//%»gjgg;%»
mZ (%/}/,,f/%o , +Z(%/]J[gan.>5; =£,¢&".
”l

. ~y
For each » the unknowns C‘mv and C‘”

A
set the matrix }{

eigenvector corresponding to the eigenvalue Ep « The norm of
this vector 1is defined by

<[> =Z—7€ Z’C? =

7 Ve
The amplitude of transition from the ground /ﬂ) to the excited
state (3) is equal to

<0/B[¢y> =EC/:(0/8/%> +Z’€’”‘f/a/8/§'l;>
m 7

In many tasks the direot transition to the state ¢,
can be neglected, 1i.e.,it may be assumed that <¢o0/B/¥>=0-

‘In this case

(0/3/}@‘J >—“Z (a/B/,w,,, Z’c}:f@ '
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where é’ :(0/5 /4,> end
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=448, 5.
ﬁpﬁﬂ, m’ Y mom
Based on the properties of the eigenvectors and eigenvalues

of the real symmetrical matrix or more exactly on the spectral
decompositlon of the real symmetrical matrix ([2] and eq. (2)
from the appendix), it can be shown that

ZZ:?‘é—l( V .9 (/l/ tZ??AU ? ‘

K
where /§7 is the k~th degree of the matrix L. Hence,

it Z/!f)m
17,
By using this formula and the rules of multiplication of the

= <o/BPHPB lo>. (k)
block matrices, it 1is easy to get
S'= <o/BPB*/0> =%f/fm/2
S'=c0/apPH, PEo> =2 ol
f;if(QAB}i/}yzg* €y5k9Z47uzﬁ¥3fQD =
*
/ 4;-’/%2‘;/\/7,/”’ ?(%/%a/%)fg/%f/%dj-

It 1s seen from those expressions that in the fragmentation tasks,

if one does not take into account a possibility of a direct
transition from the ground to complex states é% sy the quasi-
particle-phonon interaction alters neither the total transitiom
strength nor ‘the ensrgy centroid (independence of 8’ ana 5;1
of /Q;? ) but increases the second moment, i.e.,leads to the
growth of the strength distribution width.
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Of special interest i1s the case when among ;% there are

states that are not direotly coupled with simple ones, 1l.e.

described

‘%%/%@yé%>=ﬁ or
Q% =(4+8)%

QHyPH= P % -

In this case matrix Aé[ appears as

PH,P PH.0, 0
H= QH.P QHQ QHG |-
0~ QHQ QHE

Evidently,

3%~ <o|BP{Y; +Hay Q, QLHZ,.;JKPB*/M
g% <olBP J1; + HogQ,Q.H,PPH, +

e84

spaces QJ ¢

f HWQQ‘HQ QLJ?* +4 PPHU(;Q Q H%}PB }0>,

2
and E; do not depend on the interactlon between sub-

and (% . It follows that the total width of

strength distribution is defined by those complex states that are

directly coupled with simple omnes,

LIimiting ourselves to one simple state ¢4 end assuming

ﬁnr 3:77’0 s we can recelve the result of paper [3] which has been

obtalned in the second perturbation order.

While calculating fragmentation one has strongly to 1imit

due to technical reasons a number of complex states 9% taken

into

acpount. The influence of neglected configurations may be

estimated by using the snergy-weighted moments; their definition
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by formula (4) does not need diagonalizing of the Ia.rgge—order 5
matrix. The table shows the energy-weighted moments g and_ g

of the Gamov -~ Teller states strength distribution on 9%y [ 4]
defined for different number of two-phonon states. In all, more
than 11000 two—phonon states were used. The states were chosen
from them for which the matrix element of the interaction
hamiltonian with one-phonon states exceed & certain threshold given
in the first column of the table.The table shows that the main
contribution to Sz and S“}comes from less than 30% of two--
~phonon states, 1.e., two-phonon basis may strongly be truncated

without great loss.

2. 3
Table., Dependence of S and S for the Gamov-Teller

states on 9OZr on the number of two-phonon states taken.into account
. a 3 !
Threshold va- Number of two- 82 p) aQ /)
lue of matrix phonon state 1in % in %
% in of the maximal
element 1mal »
in % of the of the maximal of the maxima value
maximal one one value ,
o 100 100 100
0,001 94 100 100
0,01 70 99.9 . 99.8
‘0.1 29 98,5 96.3
1.0 4 93.6 84.7
10 0,27 86.6 69.0
50 0,036 83.3 61.3
‘ 2 b bn 2 to 82%,
a) Contribution of%:% " Crr to S ° amounts .
3 b 3 -
b) Contribution of ), & &nbm . to S amounts to 52%.

L 4
1f the amplitudes (0/5/;0,,} cannot be neglected in the
calculation of < /B /#yy amplitude, the expression .

8" co/BB U BB 0>
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should be used instead of (4). Here va is the projection
operator onto those states (Pm and Cﬁq y the amplitude .of
transition to.which from the ground state is not equal to zero.
Therefore, based on the speotral decemposition of symmetrical
real matrix, one can construct an economical (from the computing
point of view) method to determine the energy-welghted moments
which can be used to study the integral characteristics of
strength distributions to control the errors caused by truncation

of the complex states basis.,

In conclusion I should like to express my deep gratitude to

" Prof. V.G,Soloviev and Drs. N, Yu,Shirikova, A.1.Vdovin, V.V,Voro-

nov and L.AMalov for reading this paper and making critical
remarks.,

Appendix

A
It 1s xnown{2] that the real symmetrical matrix A with

dimension /VX,/V has N linearly~independent elgenvectors which
can be orthonormaliged, i.e.,

A . - .

Ag—c-"zﬁ['x" (=4, N

and

—\{'—.

(XLLID=8Y,

X

woro (46)-7_ 4.4

1s the scalar product of the
vectors 2 amd 4 , Since an arbltrary N-dimensioned vector

> .
can be decomposed in A/ linearly Independent vectors X ¢

A P4 . ' ) il s

AG=AL (E5HaEe= 270 29
t'a_lﬁ led

and the matrix A can be expressed as

v 4 2 2 (1)
A =ZZ('[ ’
2y




~ ' .
l = P ;
where (,_{‘—4)4/ = X, Qf[, . Defined in such a manner
matrices £ ¢ satisfy

£ sYES

and
Vs

A, A
Z:Et"],
o =1 /f/
where _/ is the unit matrix. Matrix # ° 1s called the projec—
tion matrix [2] and (1) is calIled the spectral decomposition‘Pf
{

the real symmetrical matrix[2j. Based. on the properties of E
matrices, it is ‘easy to show that

AK/ ‘_A_/_ /("A['

L=/

here # 1s a non-negative integer.
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should be used instead of (4). Here 'I)ﬁv is the projection
operator onto those states q%n and q% y the amplitude of
transition to which from the ground state is not equal to zero.

Therefore, based on the spectral decomposition of symmetrical
real matrix, one can construct an economical (from the computing
point of view) method to determine the energy-weighted moments
which can be used to study the integral characteristics of
strength distributions to control the errors caused by truncation
of the complex states ﬁasis.

In conclusion I should like to express my deep gratitude to
Prof.V.G,So0loviev and Drs, N.Yu.Shirikova, A.I.Vdovin, V,V,Voro—
nov and L.A.Malov for reading this paper and making critical

remarks.

Appendix
A
It 1s known[2] that the real symmetrical matrix A with
dimension.jvafvf has N linearly-independent eigenvectors which
can bae orthonormaliged, l.e.y
A R .
AFiep 2 (o4

and

is the 8scalar product of the

(%
&
oo (509-7_ 04

vectors @ and + Bince an arbitrary N-dimensioned vector

.
can bo deocmposod in A/ linearly independent vectors X ¢
A.‘ A & -, d A 3 =y
-> ’ —> ¢ -7
A=A L EIDE= L 7 EE DD
‘l.(A g
and the matrix A oan be oxpressed as

P il A .
. A=272.59 | @
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where (f /J/!, = I/ Df[i « Defined in such a manner
A T2

matrices £7¢ satisfy

LOFT L gUEe

and '
A oa . 4
2:15?6”-71
/=1
A A,
where _[ 1s the unit matrix. Matrix Z ¢ 1s called the projec—

tion matrix [2] and (1) is called the spectral decomposition of
) A .
the real symmetrical matrix[zj. Based on the properties of E-‘
matrices, it is easy to show that
A A
I'd S & g
A =g, ALY

here & 1is a non-negative integer.
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Kysemug B,A, E4-86—179
3HepreTHYeCKHU-B3BEUIeHHbe MOMEHTH B 3amauvax dbparMeHTaluH

3apgaua dparMeHTAIllMd HPOCTHIX SAOepHbIX COCTOAHHU 1o 6Golee
CJIOXHBIM CBOOHUTCS K HAXOXIEHHI0 COOCTBEHHBIX BEKTOPOB H COGCT-
BEHHBIX 3HaueHW BelleCTBEHHOH CHMMETDHYHOH MaTpulisl, Ha ocHOBe
CIIEKTPAlIbHOI'O pasJIOXKeHHUsI S5TOM. MATPHUBl MOJIYYEeH NPOCTOH H 3KOHO-
MHYHBIA C BBIUHCJIMTEJIBHOH TOYKH 3DEeHHA AaJICOPHTM oOlpelelleHHs
SHepreTHYeCKH—B3BemeHHhX MOMEHTOE CH/IOBOM (QyHKUHH, 3TO IO3BO—
JIMJIO HCCIIeJOBATh 4YYBCTBHUTEJIBHOCTH pemeHHss 3agauHd dparMeHTanuH
K Oor'paHHuUeHH® OasHca CJIOKHbIX cocTofaHu#, [lokazaHo, 4YTO mnoJHas
WHPHHA CHJIIOBOH GYHKIHH OlpenelifeTCs TOJIBKO TeMH CJIOKHBIMH CO-
CTOAHHSMH, KOTODhE HENOCpeSCTBEHHO CBsI3aHbl C INIPOCTLIMH .

PaGoTa BuimosiHeHa B JlaGopaTopHH TeopeTHuyeckod ¢usuxku OUAU,

Tponpuut O6benNHEHHOrO MHCTHTYTa ANEpHBIX MCClefoBaHuit. [lyGHa 1986

Kuzmin V.A, E4-86-179
Energy~Woighted Moments in the Problems

of Fragmentation

Tho problem of fragmentation of simple nuclear states
on tha complex onos is reduced to real symmetrical matrix
eigenvaluo problom, Based on spectral decomposition of this
matrix the simpla and economical from computing point of view
algorithm 'to calculate energetically-weighted strength func-
tion moments is obtained. This permitted one to investigate
tha pensitivity of solving the fragmentation problem to re-
ducing tha busis of complex states. It is shown that the full
width of strength function is determined only by the complex
states connacted directly with the simple -ones.

Tha invastigution has been performed at the Laboratory
of Theoratical Physics, JINR,
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