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1. Introductory Remarks ; the Long-Wavelength Limit 

We a r e going to apply the perturbation methods to the 
equation describing spin waves in normal meta ls . This 
equation, in the col l is ionless l imit , can be written as 
follows / ' - г / (Cf. also A»/ ) 

-,„ PM +Q k-M =\-h<:A\ • g(p) • 0 ) 

Let us list the appearing symbols: -<•>, к demote the 
frequency and the wave vector respect ively, M is the 
deviation of the instantaneous magnetization vector from 
its local equilibrium value, M=MV < iM% and the ik- ex ter ­
nal magnetic field H is oriented along the z - a x i s , 
H[=H^ + iH| , where \\ ' denotes ;><-' magnetic field, 
g(p') denotes the quasimomentum dependent electron 
g -factor, ft the Bohr magneton and the opera tors Q k 

and P a r e defined as follows 

Q i -ft wg(^) f 11_(н ,v,r) v,- t (kv , ; ) , ( 2 ) 

PM(p) = M(p) - / - Д - у G(p,p')M (p') , h-X. (3) 
4 - •» V -> -I 1 

Here G(p*,p') denotes the exchange par t of the scat ter ing 
amplitude of quasipar t ic les 4 r ' ,dSj, the a rea element 
qf the F e r m i surface (FS) near the quasimomentum p* , 
V > the velocity of quas ipar t ic les . The p -dependence of 
g was detected experimentally for Al , Cu and Ag ft" 
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For irrelevant spin-ojbit coupling the action of the operatpr 
P on the function-M =2 gives g(p), i.e., g(p)=P-2 3 , 
If P - 1 g varies on FS then the homogeneous (k = 0) spin 
resonance has, in the collisionless limit, more than one 
line, with a possible exception of suitably directed jj / t t / . 
Let us introduce, according to-'8-', the scalar product 

( c A » = / _ i ^ 0*(рЖр), (4) 

where v denotes the density of states per unit volume. 
The operators P and Q^ are hermitean operators. The 
dynamic magnetic susceptibility \ ' + can be expressed in 
terms of (4) as 

X+= £„/9(g,PM)/H+' • (5) 
/a / "" 

Following define the system of eigenfunctions M a k as 

%tVUatm(kUat> <6> 
where the variable a numerates different eigenvalues 
ша£ X is treated as a parameter. For closed FS one can 
always assume tha t , " , 

(7) 

(8) 

(M l ^ , P M „ 1 . ) = 5 ак pk i 2/3 ' 

Similarly as i n / 8 / one then obtains 

l a 

(M -*,g)M .-* ak'° ак 
«J л - W 

ак 
and 

X+ ~)rvp*co 2 
1 a 

( M a E , , g ) ( g , P M a j r ) 
X+ ~)rvp*co 2 

1 a 
ak 

(9) 

Our formal solution (9), (10) is valid only in the 
collisionless limit. In order to introduce the damping Qj» 
have to be changed by Qf+i/r, where <—' is some her-



mitean and positive definite operator. The assumption that 
r is some constant does not lead to any important sim­
plification of the results. Now equation (1) with Qk-» rep­
laced by Qf+i/ r _ cannot be simply expressed in terms 
of the functions Mag . Assuming that \h could be treated 
as a perturbation one finds, with the linear accuracy, 
that 

M = | ^ H ; i [ " в ^ ] _ , н м а | . 8 ) ^ + ^ , U r f - ^ ] " 1 ^ 

: [ U A ) a / 8 (Mpt .gWot+d/O/Sa ( M e t , 8 ) M ^ t l l 
(10) 

where 
( i / 0 _ =(M ( i / r ) f i ) , u rt =,ot + ( i / r ) . 

« p ak / i t a t a k « « 
The matrix elements of the operator (i/r ) are к -de­
pendent. Substituting (10) into (5) we find \ + • The poles 
and residues of the response function , \ + give the 
excitation energies and intensities respectively. Hence, 
it is necessary to apply the perturbation method in both 
these quantities separately; for example, perturbational 
substitution 

( S - o i ) -» (to _, - O J ) —(i •'<•) (a> _, -o>) 
aC ak M ak 

into (10) is not a good procedure. The immediate applica­
tion of the second step of the perturbation approach 
results in the second-order poles. These poles have no 
meaningful physical interpretation. They can be eliminated 
if one introduces the second-order correction to йа£ and 
one treats the second order poles as a result of series 
development of (ш j . -<o)~l . The collision integral used 
in ' ' and / < l / ' such that the spin density is less damped 
than, e.g., the spin current, can also be treated according 
to our scheme. 

Let us treat the last term in (12) as a perturbation. The 
same method was used in (10) for isotropic systems. Ap­
plying the usual perturbation procedure to equation (6) one 
f ind's (<u rt = ш +0) +o) + . . . ) 

а к a 0 a. I a 2 

s 



a I 
( M « 0 > ( k V > M " a ( » >• ( " ) 

Since the operators P and Q 0 commute with the parity 
operator, as a result of time-reversal invariance, fla0 has 
definite parity and hence wa j =0. Note that the assumption 
about the strength of spin-orbit coupling is not important 
for this statement. The second-order correction to the 
frequency can be written as follows 

| ( M a 0 , ( W ) M a 0 ) | 2 (12) 
0) = i 

Note that the spectrum of equation (6) for к = 0 is 
unbounded and it is impossible to deduce simply the sign 
of fua2 _ for any a. The first order correction to the 
function м а к can be written as 

whereas the second order correction has the form 

(Ms, . (кУ)м у 0 ) (м у 0 , (кУ>м д 0 )^ ^ _ 
y(yta) SlfiU) ( ш а О - ш 5 о ) Ч о - ы

у о ) 

TO „ — *m 2m —•' ™ - — — • - • .. • »— — m г л 

L M i 1 ( м у й , ( к У ) м д 0 ) Г ( 1 4 ) 

~~2~°%<УА> Ч 0 - у 0 ) 2 

These functions and eigenvalues can be substituted into (8) 
*nd (9) or (10). Taking into account that for £=0 in (8-10) 
only even functions Й а 0 app^ar.and that paritiesofM a 0and 
M d 0 are the same and reciprocal to that of Що one can 
establish simple selection rules. The fact that the subspace 
of functions Mao with definite parity remains invariant 
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under the operator ?-1 has to be taken into account too. 
The formula (12) allows one to reproduce the well-known 
results for the dispersion of spin waves in the long-
wavelength limit in a very simple manner. Note that for 
isotropic systems the operators P and Q0 commute 
due to symmetry; this fact highly simplifies calculations 
in this case. 

Our further interest will be restricted to eigenvalues 
o>a0 and &>a2; for convenience we «ill omit the index 
zero near a> 0 and M a 0 ; the index 2 near <oa 2 will 
be preserved! We are going to develop other perturbation 
procedures, the perturbation order will be now denoted 
by upper indices. 

2. The Perturbation Method for Spin-Orbit 
Coupling Contributing to the Anisotropy 
of the g-Fa с tor 

In this section we are going to develop a more general 
approach to the formulated problem than that used in 
papers / 6 / and / 9 / . Let us define the operator G as 
P-E, where E is the identity operator. Let us define the 
function ф as the difference between the action of the 
operator G on the function identically equal to 1 and the 
constant (1, Gl). This fact can be written symbolically as 
£=G.1-(1,G1) and hence (1, ф )= 0. Define the kernel 
G(p,p') such that 

С$$')=С,(?,Ъ')-ф(р)- ф(р'У (15) 

The integral operator G will be determined by the kernel 
G(p,p') in such a way as Jhe operator G is determined 
by the kernel G(p\p') ; P=E-G. Ifthesystem charac­
terized by the operator p is stable then the system 
characterized by the operator P is stable too. This 
means, that if (M ,PM)>0 for every function, nonzero in 
a domain of FS of nonzero measure then also (M,PM)>0, 
(cf. 'and a l s o / , 2 / ). Let us prove this statement. 
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According to basic ideas of Landau's Fermi-liquid ap­
proach, the operator G should be determined by com­
parison with the experiment. Hence, without important 
loss of generality one can assume that G has a dege­
nerate kernel. It can be written as follows 

G(P" ,,p')=G0 0 + SG (M (p>+M,(p')) + S G M.(p)M <?'), (16) 
i>0 i.j>0 J ' 

with M0(p)=l_,_Gu =Gji and (M ; ,Mj h^-.toT i,ji.O 
The kernel G(p,p') can be written in the form of (16) 
if we put there G 0 i = 0 for i> 0. The system characte­
rized by the operator P will be stable if all principal 
minors of the matrix l|Sjj -G ц H , i,j ^ 0 will be 
positive. From the obtained form of the kernel G(p,p*') 
one finds that the system characterized by the operator 
P will be stable if all principal minors of the matrix 

• ll5ij - G i j 11 > 4 •* ° w i l 1 b e positive and l-Go,Fl-{l,Gl) > 0 . 
It is clear that these conditions are the consequence of 
the previous ones and hence we complete our proof. 

Now let us pass to the perturbation procedure if the 
anisotropy of the g -factor is small, analogously as the 
ф - terms in comparison to G~. Let us determine the 
operator Q ^ in the form (2) for k*= 0 but with g(p), 
instead of g(p), where the bar over g denotes some 
linear functional. Define the operator Л as Q-Q (the 
lower index zero near Q will be omitted for simplicity) 
and -fi as P—P • Now the functions. M° will obey the 
orthogonality relations (7), but with P instead of P . 
One can verify that the function Mg=[l-(1,G1)]-'2 is the 
eigenfunction of the zeroth order equation (6) for C=0 , 
i.e., ы° РМ° = Q M° and the eigenvalue 

У У У 

ш ° =2/ЗН1[1-(1,С1)Г' . (17) 

Applying the first order perturbation procedure, slightly 
more general that the quantum-mechanical ,one finds 

J - O i ^ . A M " ) - и - ( М « , О М » ) . (18) 

For u=0 the second term vanished and it is convenient 
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to choose the linear functional g(p) so that for a= 0 the 
first term vanishes too. Hence 

g(p)- ( l .g), (19) 

and formula (17) becomes identical with that u s e d i n / 6 , 9 / . 
Note that uj +<u,} does not depend on the particular choice 
of the functional g(p). If the spin-orbit coupling is not 
important then formula (17) gives the well-known free 
electron result, i.e., we obtain a proper result in the first 
(or even zeroth) order of the perturbation method (cf. 
and also 1 4 / ). The first order correction to eigenfunctions 
has the form 

M '= 2 M° — - 1 L | Г , П М ' ) М ° , (20) 
YfiiWP *>°у-"°р 2 y y Y 

with the last term vanishing for }<=0. Let us write also the 
secon 
form 
second order correction to the eigenvalue «J^ • It has the 

2 | (М£, [Д-<»81ПМЗ) | 2 

"o-fio ^ • < 2 1 > 
In proving this formula the relations (M° ,АМ£) = (М̂  ,ПМ̂ )=0 
were taken into account. For the operator G used in 
papers /(,,9/f 0 = 0, but even in this case a$t 0 . Using 
formulae (18) and (20) one can find the first order correc­
tion to the spectrum of spin waves (SW). 

3. SW for Nearly Spherical, Cubically Distorted FS 

Here we are going to obtain the first order correction 
with respect to the cubic distortion of FS to the main SW 
frequency. It will also be assumed that the cubic forms 
of the effective quasiparticle interaction, as well as the 
forward scattering amplitude, are of the same order of 
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magnitude as the distortion. The alkali metals, with the 
exception of lithium, have to be well described by such 
a model. The nearly spherical isoenergetic surface can 
be described by the equation Р = НэП + и(в ,ф)) t where 
p, 0,ф denote spherical coordinates in the momentum 
space, p 0 is the parameter of the surface and|U(0,<£)|«l 
The function U (0,ф) can be p 0 -dependent; without any 
loss of generality one can assume that the integral of 
this function over spherical angles vanishes. Hereafter 
only such functions LI will be used. Since p 0 is the 
parameter of the isoenergetic surface thus, expressing 
f fp) by 0,ф and p=p 0 t l А)(в,ф)] one obtains the 
function which is only p -dependent. Note that the 
functions U were determined for FS of all alkalis by 
applying the de Haas-van Alphen effect (see the review 
article by Shoenberg l 5 ' containing all references to 
this subject. 

Simple application of the differential geometry shows 
that the element of area of the isoenegetic surface has the 
lorm 

dS = p 2 (l+2 U)dfi, dn=sinOd«d^, (22) 
0 

if one restricts oneself to the linear terms in U. In the 
same approximation, the unit vector normal to the isoener­
getic surface, is given by 

i.[s - JUS --±-ЭцЦ.]. (23) 
p дв ° sinO дф "Р ' 

In the above formula it , n Q , n ̂  , denote unit vectors 
normal to the surface of constant p , в ,Ф, respectively. 
In order to express the orientation oMhe.se vector let us 
write n =p/p , 3 .=[ -sin0,cos0,O]andft =n .x ri* .Let us 
assume that V^= ' v t l + q ^ ,<£)], where q is of the same 
order of magnitude as U and the integral of q over 
dn vanishes. We have with our accuracy 
¥ , - v i . V ( U q ) ? - V [ i l L „ e

 + J L _ %Lfi,]. (24) 
P P P дв в sin0 дф Ф 
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Taking into account (22) one finds that the electron density 
P= p 3 /3n-̂ (1» = 1), where p is the parameter of FS. With 

F F 
the same accuracy, using (22) one can find that the 
density of states per unit volume, v , is given by р?У Vi?2 . 
The function q can be determined by и and the 
p 0 -derivatives of U and V. This expression i s given 

in the Appendix, as well as the expression for the cyc­
lotron mass , complementary to that obtained in ">> . 
Taking into account formula (24) one can write 

J^_(HxV p*) v ; - - _ l ! L ( i + q - U ) ( H L ) • 
c v v cPo (25) 

i e H V r . , a ,s n , , dV д HV <) , 
L sin a cosifi-ф) + ctg 0 cos« J l — c p Q дф <)0 HO it<!> 

where u,ft are spherical angles determining the direction 
of H, with /3 being the azimuthal angle and L---i(p \ p . 
It is convenient to apply (25) if «, ft are spherical angles 
in the frame of reference of 4 - fold axes of a cube. 
Another simplifying choice u = 0 , when,;, becomes the 
azimuthal angle about the fl -axis , leads to a very 
complicated form of cubic invariants appearing in the 
functions U and q. The term -eV(HL)/cp ( ) in (25) should 
be treated as the unperturbed term, the remaining ones 
as the perturbation terms. Let us pass^to the operator 
P. According to '"• . let us write g(p',p') iG(p,p'') , 

in the following form 

„. «nA(ftm(C) д , 
g(jf,pb = i i i i i [ Ч ^ Л ь + д е ? г ) " 

Л lUi P-n —I k-l " l» "Ь П 
А Ы) feO a=l b=l 

(26) 

x i A ^ ^ A ^ j T ) ] r. gtppS+AgOJ.p' )• 

Here A jl. (p) is the function constructed out of Yj'm (p) , 
~f<; m <F and transfroming as the к-th row of the 
A -th irreducible representation of the group Oh , the 
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variables a,b describe the degeneration of the cubic 
harmonics (cf. / 1 9 / ). The function A are chosen so that 

/ ifi-A; f c(5)^\. (h -8^amh8„. S k k . . (27) 
If all Ag=0 „then (26) reduces to„ the sum over P of 
(2? +l)g£Pp(pp ' ) / , 7 / denoted by g(p*p') -. Hence, without 
any loss of generality, one can assume that the sum of 
Ag A f t a over a and Л venishes. Taking into account 
that 

dS„/4 w

3 V^, . = ( l+2U-q)dO. '4 ,7 (28) 
ь Р 

one can rewrite the operator P(3), with the accuracy up 
to linear terms with respect to distortion, as follows 

PM(p)-MCp) _ / * ° l g ( p p ' ) M ( p ' ) _ 
A" (29) 

Ad' 
/ [g(pp~')(?U(p') -q(p')) + . \ g ( p , p ' ) l M ( p ' ) . 

4л-
In order to preserve an analogy with the previous section, 
let us denote the first two terms of operator (29) by P , 
whereas the small third term byO. An analogous notation 
will be used for the operator Q , too.If one assumes that 
the spin-orbit coupling is irrelevant for our system then, 
substituting M(j5)=2 into (29), one has to obtain the elec-
ron g -factor,. Denoting the expansion coefficients of the 
function 2ji(p*)-q(f) over the invariants of the.cubic 
group, aq (p ) , by С p one finds from(29)for M(p) = 2 

8(?) = 2 [ 1 - е о - ( ; Г а 1 1 ( 8 ( ,с а Р + л 8 ; ; ' )а;ф]. т 
In proving formula (30), the addition theorem for crystal 
harmonics , formulae (26), (27) and the information 
about invariants with lowest (' were used. According to 
formula (30) g is anisotropic unless g„C , +Ag° a '=0 for 
all £ and a . F a ( P o 

Let us turn now to the perturbation method for equation 
(6) for k"*=0. The perturbation terms will be i) just defined 
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operator Q and, ii) the operator Л being the sum of the 
perturbation terms of operator (25) and operator 
/3H(g(t>)-2+2g0) (30). One can see easily that formula (18) 
for the first order correction to и° still remains valid, 

a 
but with the scalar product defined as in the spherically 
symmetric case, i.e., 

C P , a ) - / ^ S . 4 ' * ( p : ) a ( f ) . (31) 

Here a-» Cm and, in the reference frame such that Ф is 
the azimuthal angle about the H -axis, Й° - Ye and 
hence 

ш°т = [ 2 j 8 H ( l - g 0 ) - e H V m / c p r t ] ( l - g J , ) " , - ? < m < С (32) 

(cf. ). In order to express these functions in the 
reference frame of 4-fold axes of a cube cue has to apply 
the transformation given by the matricesD1 .Denoting the 
spherical harmonics in this last reference frame bytym 

(Nn .No )= 1 , one finds from the proper orthonor-

mality relations, (M° ,PM£) = Saj3 that М°(т (?) = 

According to the results of papers I 3 and 1 4 ш a=2/SH 
forfl a=const, i.e., for f =0 , m = 0,and hence ц{0 =0. 
Applying the recurrence properties of spherical harmo­
nics and taking into account that the first nontrivial cubic 
invariant appears for ! = 4 one can show that all contri­
butions to OJ J vanish with the possible exception of the 
last term appearing in (25), being the part of the operator 
Д . Denoting the last term of (25) by R, one can write 
^ ] = ( l - g 1 ) ~ 1 ( N l i t f R N 1 J .Putting here a = 0, integrating 
by parts, so that the function U will be free of derivatives 
after the integration, one can show by means of the men­
tioned methods that w,1 =0. Let us investigate u 0' 0 ? i . e . , 
the first order correction to the spectrum of long-wave­
length spin waves based on the usual spin resonance. After 
rather simple calculations, using the above results, one 
obtains 
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1 
« » , = 2 W f c £ J K - 2 0 H - « ? » Н 1 - в в ) ( 1 - в 1 ) Г N*n(k) х 

X [ ( k V , . N I e ) + ( l - g , ) > « ( f i ^ ( i r v ; ) N l B ) + ( U e I ) « ( W e . M I

,

I 1 1 ) ] i . 

(33) 

Here V0(jh3Vj5, Vj (i)sV(p)-f 0(p) and the functions N, (it) 
can be written, in the invariant form, as follows:N. (Ю = 

=V3(b m y.with b„=H and Ь =2~/2[iMir.(Hxa) 1 form^O , 
where (Ш ) = 0. The function M| denotes the first 
order correction, with respect to The distortion of FS, to 
the function Щ . It can be obtained easily that Sj 0 0=0 . 
On the other hand, U' can be written in a form very 
similar to (20) where, "in the last term, the operator a 
should be replaced by Q+ CP with „С being the operator 
of multiplication by the function 2U(p) - q(p?). One can 
simply deduce, using considerations identical with previous 
ones, that the analog of the last term in (20) vanishes 
for_f =1. Moreover, only the terms of й , ' т proportional 
to M? . , - 1 < т ' < 1 , n\'L m can contribute to the scalar 
product (kV 0,Mj n ]) appearing in (33). One can simply show 

that (M,° , 0 M ° ) = 0 and (M,° ,ЛМ° ,)=(M? , RM° ^where 

R denotes the last term of the operator (25). Hence, one 
can write 

(1-g ) T ( k V o J i l B ) - - ^ l 2 - H - . - • 
C 4 ,„ '=-1 m _ m 

(m7m) (34) 

Applying to nondiagonal elements of the R -operator the 
same procedure as previously to its diagonal elements 
(i.e., for a> \ m ) one can show that all elements of the 
operator R vanish in the subspace with f = 1 and that 
(34) vanishes too. Hence, the single term contributing 
to Ш002 i s connected with (tVi ,N|m), i.e., with the 
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deviation of the velocity vector from die spherical sym­
metry. The result that die anisotropic part of the effec­
tive quasiparticle interaction does not contribute to 
'-" 00,2 m o u r approximation is not surprising (cf. with 
the estimation in the paper /l 9/ ). Using the formula 
(24), by means of the integration by parts and some 
application of the angular momentum methods, one can 
wxite 

( Ц .N lm)=k'V / - i ^ U i — L [ N , siny sin(«-«j6)] + 
Aw sin0 дф 

(35) 

+ N| ctg0[siny cos0 cos(S-<£) -cosy sin0] ! , 

where v,<5 denote spherical angles of the к -vector in 
the reference frame of 4-fold aces of „a cube with <5 
being the aximuthal angle. Note that N | J.&) in (35) should 
be expressed in the following form 

N (p) =V3 [sbia sin0 cos(0-/3)+cosacos0] , . 

N[ +i (p) = V у [ cosa sin# cos(0-/3)-sinacos0±i9in0sin(0-je)], 

whereas for N| m (k) appearing in (33), the angles 0, ф 
should be replaced by У . ?> If one expresses the func­
tion у in its usual form, i.e., as the finite sum of cubic 
invariants, then integral (35) can be calculated without 
any important difficulty for a few first t • The integra­
tion result will be an elementary function which cannot 
be written in a compact form and mis is a reason why we 
do not write down these integrals. It is interesting that 
in formula (35) the function q disappears. This means 
that de Haas-van Alphen measurements are sufficient for 
determination of the correction term w 0' 0 i 2 • Moreover, 
only the transversal deviation of the vector' vp, appearing 
in the combination (k*v"j ) in formula (12) is effective 
for О а д . 
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Appendix 

Let us s t a r t with the proof of the mentioned above 
identity for the function q. Applying the rotation taken 
in the spherical var iables to vector (24) one gets 

_ £ £ L _ = _ ( i + 3 - ^ _ ) _ ^ _ 3 _ ^ j _ _ ) (37) 
д ф д fn />o ih'j it О t) In po 

where Ф denotes the variable " or A and г<>= P'o 'З.т 2 

is the density of e lec t rons occupying a domain in the 
momentum space with the pa rame te r of isoenerget ic s u r ­
face smal le r than Po • If the functions I1 and q , integ­
rated over do give zero , then from (37) one gets 

q =-u(l t 3 ^ 1 n - * L ) - 3 - - i - , i - , (38) 
д In p о i> In /) {| 

and we have our identity. 
Let us pass the formula for cyclotron mass IT • for 

nearly spher ica l isoenergetic sur faces . In contras t to the 
formula obtained in /lfi/ we will express m • only by local 
quanti t ies, i .e . , by и and q for given p ( , . Wo have 
(Cf. / 2 / ) 

1 , d P l 
m* = 2 ir ' VL(jJ) 

(39) 

where the integral is taken over the length element dpi 
of the curve [f({5) =< ,Hp p,r_const I and vf(jft. v 2

: - (V, 'H ) 2 • 
Simple application of the differential georhetry 'shows that 

d P i = P() (1 +U) sin 0 6ф . ( 4 0 ) 

Integral (39) is taken for p ( j = const .If 0 is the 
angle between the vec tors H and p then this condition 
is equivalent to o= const only the zeroth approximation 
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with respect to U , Taking into account that p0(l+u)eos&*p,j 
and putting 0 = $ + $ we find that 

c o S 0 o = P f | / p o , 0r-V ctg0 0 , (41) 

where in U the variable is put equal to во . Substituting 
0 of the above form into (40) we get 

d PX = p o s i n V l + u / s i " Z во ] Л ф • <4 2> 

Note that this approximation is valid unless sin во« 1 • 
Using formula (24) we can find 

V I ' ( P ) " v 4 - 0

[ 1 - 4 - u c* 0»^e IbV 1 • ( 4 3 ) 

Substituting (42) and (43) into (39) we find 

m*=-£»- [1 + ( l + c t g e ^ - ) - i f U dtf-J-/q«fc],<44) 
V aO LIT Q /17 Q 

where the subscript zero near 0 was omitted. The in­
tegration in (44) goes over the azimuthal angle about 
fl -axis. The cyclotron mass depends on в and on the 
direction cosines of the axis H . Formula (44) is valid 
unless sin в « 1. If sin 0= 0 (i.e., at the lunetary point) 
then, according to !%l, one can express m * by the Gauss 
curvature of FS, К, and VJ . We have 

m* = K""l/2V;* = - |0 - [ 1 +U -q ] . (45) 

Substituting U and q expanded in series of cubic in­
variants into (44) and applying our results for the azimuthal 
angle integrals of cubic invariance / ' 2 / we get 

n a(2k) 
m * = -Xit 11 + £ S a" ( a , f i ) x 

V k=2 . -1 2k ' P

 ( 4 6 ) 

x [ U ^ c t g f l P2[ ( c o s 0 ) + ( U 2 \ - q 2 \ ) P 2 k ( c o s 0 ) 1 i , 

where Uik and q 2k denote the expansion coefficients of 
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the functions U and q ove~ a ^ and «, ft denote the 
spher ical angles determining the orientation of the vector 
H with respec t to 4-fold axes of a cube. As one can verify, 

for в = 0 or n (46) turns into (45). 
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