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1. Introductory Remarks; the Long-Wavelength Limit

We are going to apply the perturbation methods to the
equation describing spin waves in normal metals. This
equation, in the collisionless limit, can be written as
follows 12/ (cf. also /3/)

-1 Pﬁ + Q N ﬁ =,1)— [')'m“ ’ g(ﬁ) . (1)

Let us list the appearing symbols: -,k denote the
frequency and the wave vector respectively, M is the
deviation of the instantaneous magnetization vector from
its local equilibrium value, M= M ; IM and the dc exter-
nal magnetic field H is onented'along the 7 -axis,
R =H_ +iH; , where I’ denotes ac magnetic field,
g(p) denotés the quasimomentum dependent electron
g -factor, ;3 the Bohr magneton and the operators
and P are defined as follows

Qi AHEE - SV vy RV @)
PM(p) = M(F) Sy g (3)
Mip) = P'ITTV—_ PP)M(P ), h=1.

Here G(B,p’) denotes the exchange part of the scattering
amplitude of quasiparticles 3. dSI the area element
of the Fermi surface (FS) near the quasimomentum P,
Vl’ the velocity of quasiparticles. The P -dependence of

6.7,

g was detected experimentally for Al | Cv and Ag



For irrelevant spin-orbit coupling the action of the operator
P on the function-M =2 gives g®), i.e., gg))=P-2"3‘,
If p~! g varies on FS then the homogeneous (k =0) spin
resonance has, in the collisionless limit, more than one
line, with a possible exception of suitably directed 5 8/
Let us introduce, according to- %’ the scalar product
(6,9)=f 28 __4+@) 6 (), (4)
47V »
where v denotes the density of states per unit volume.
The operators P and Qp are hermitean operators. The
dynamic magnetic susceptibility' x* can be expressed in
terms of (4) as

= -%-uﬂ(g,Pﬁ)/H; . (5)
Following 8/ define the system of cigenfunctions M, as
waE'PMai: =QiMai:’ (©

where the variable « numerates different eigenvalues
W, ,k> is treated gsaparameter. For closed FS one can
always assume that, " .

(M, o PH 5208, (M
Similarly as in‘% one then obtains
= 1 - (Ma_l:’g)Mak-’
Mg Pell o e ®
ak
and
(Map-8)X g PN p)
X" =gvBie I — . )
a wal?—m

Our formal solution (9), (10) is valid only in the
collisionless limit. In order to introduce the damping Qg
have to be changed by Q;+i/r, where r—! is some her-
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mitean and positive definite operator. The assumption that
r is some constant does not lead to any important sim-
plification of the results. Now equation (1) with Qk rep-
laced by Q;;H/r cannot be simply expressed in terms
of the functions Mg . Assumingthati/r couldbe treated
as a perturbatlon one finds, with the linear accuracy,
that

ﬁ=l[3wH' b [Z) —w]_i§(g P g)ﬁ -r(+‘" (o 2—w "]—l‘/

7 + q ak ak a B (Bla) ak~ Bk

[(i/r)p (ﬁﬁg,g)h_la]’( +(i/1) gq (ila-f‘ ,g);lﬁ‘f‘] I, 0

where

g~ - (”')Mﬁr e =t M,

The matrlx elements of the operator (i/7) are k -de-
pendent. Substituting (10) into (5) we find x*. The poles
and residues of the response function y* give the
excitation energies and intensities respectively. Hence,
it is necessary to apply the perturbation method in both
these quantiiies separately; for example, perturbational
substitution

- -1 L -2
(Eaﬂ' —w) - ((ua}_‘, ~w) -(1 'T)ua(maE, -w)

into (10) is not a good procedure. The immediate applica-
tion of the second step of the perturbation approach
results in the second-order poles. These poles have no
meaningful physical interpretation. They can be ellmmated
if one introduces the second-order correcticnto © e and
one treats the second order poles as a result of berles
development of (w -o¥l . The collision integral used
in'/ and /% suth that the spin density is less damped
than, e.g., the spin current, can also be treated according
to our scheme.

Let us treat the last term in (12) as a perturbation. The
same method was used in (10) for isotropic systems. Ap-
plying the usual pertusbation procedure to equation (6) one

finds = + + 4o
(wal? “a0 "Y1 s )



). YY)

Since the operators P and Q, commuts with the parity
operator, as a resultof ime-reversal invariance, M ¢ has
definite parity and hence «,; =0.Note that the assumpt1 an
ahout the strength of spm-orbxt coupling is not important
for this statement. The second-order correction to the
ifrequency can be written as follows

|G, GV ) az)

w = (Mﬂo ,(kV)M

al al

-

a2 yiyfa)  “ 4 40
Note that the spectrum of equation (6) for k=0 is
unbounded and it is impossible to deduce simply the sign

of w,; _for amy a. The first order correction to the
function M ,, can be written as

" =3 (¥ 30 ,(kV)Mao) R a3)
0
y(y;éa) a(" - y )
whereas the second order cofrrection has the form

(g (VM o) (g RN, ) -

M,- I 3 5o -
yiyta) 5(8fa) (wao_‘”ﬁo)("’ao —“’yo)
~ g 2
_lyg s |(M},9 ,(kV)M,o )| - (14

al 2
2 y(y.éa) (coao -cuyo )

These functions and eigenvalues can be substituted into (8)
and (9) or (10). Taking into account that for K0 in (8-10)
only even functions M o abp~ar,and that parities oiMaoand
Mse are thc same a.nd reciprocal to that of Myo one can
establish simple selection rules. The fact that the subspace
of functions Mgo  with definite parity remains invariant



under the operator r=! has to be taken into account too.
The formula (12) allows one to reproduce the well-known
results for the dispersion of spin waves in the long-
wavelength limit in a very simple manner. Note that for
isotropic systems the operators P and Q, commute
due to symmetry; this fact highly simplifies calculations
in this case.

Our further interest will be restricted to eigenvalues
w,p aNd @ o; for convenience we will omit the index
Zero near o, and M, ; the index 2 pear o , will
be preserve(f. We are going to develop other perturbation
procedures, the perturbation order will be now denoted
by upper indices.

2. The Perturbation Method for Spin-Orbit
Coupling Contributing to the Anisotropy
of the g-Factor

In this section we are going to develop a more general
approach to the formulated problem than that used in
papers 6/ and /9/, Let us define the operator ¢ as
P-E, where E is the identity operator. Let us define the
function ¢ as the difference between the action of the
operator G on the function identically equal to 1 and the
constant (1, Gl). This fact can be written symbolically as
¢=G:1-(1,G1) and hence (1,%)=0. Define the kernel
G(E.B" such that

GBB =G, D )-4(P—a (") (15)

The integral operator G will be determined by the kernel
G({,p’) in such a way as the operator G is determined
by the kernel G(B,p) ; P=E-G. Ifthesystem charac-
terized by the operator P is stable then the system
characterized by the operator P is stable too. This
means, that if (M ,PM)>0 for every function, nonzero in
a domain of FS of nonzero measure then also (M, PM)>0,

(ct. " and alse’'¥ ). Let us prove this statement.



According to basic ideas of Landau’s Fermi-liquid ap-
proach, the operator G should be determined by com-
parison with the experiment. Hence, without important
loss of generality one can assume that G has a dege-
nerate kernel. It can be written as follows

G(p,p)=Gyy +3 Gy, (M, P+M P N+S =G, M@M, B, (6)
i
with MyP)=1, G;; and (M ; M;)§;for i,j >0 .
The kernel G(p i{ ) 'can be written in the form of (16)
if we put there Gg,=0 for i>0. The system characte-
rized by the operator P will be stable if all principal
minors of the matrix ||8;; -G Hy1,)>0 will be
positive. From the obtained form of the kernel G(p.f ")
qne finds that the system characterized by the operator
P will be stable if all principal minors of the matrix
1185 Il,ij>0 will be positive and 1-G,1-1,GD) >
It is clear that these conditions are the consequence of
the previous ones and hence we complete our proof.
Now let us pass to the perturbation procedure if the
anisotropy of the g-factor is small, analogously as the
¢ -terms in comparison to G. Let us determine the
operator ,in the form (2) for k=0 but with g(pi,
instead of gp). where the bar over g denotes some
linear functional. Define the operator A as Q-Q (the
lower index zero near Q will be omitted for simplicity)
and  as P-P. Now the functions_M; will obey the
orthogonality relations (7), but with P 1nstead of P
One can verify that the function M3=(1-(l, G =" is the
eigenfunction of the zeroth order equatlon (6) for K=0 s
ie. w° PM° =Q M ° and the eigenvalue

w3 =23Hg[1-(1,cl)1". an

Applying the first order perturbation procedure, slightly
more general that the quantura-mechanical ,one finds

Lo(M2 AMZ )~ w2 (M2, M), (18)

For a=0 the second term vanished and it is convenient



to choose the linear functional g(p‘; s0 that for a=0 the
first term vanishes too. Hence

g(P)= (1,9, (19)

and formula (17) becomes identical with that usedin %69/
Note that wg +w,} does not depend on the particular choice
cf the functional g(P)- If the spin-orbit coupling is not
important then formula (17) gives the well-known free
electron result, i.e., we obtain a proper resultin the }ir/st
(or even zeroth) order of the perturbation method (cf.

and also 14/ ). The first order correction to eigenfunctions
has the form

Wl i M%,(A - w3 Q) M3,)
. M73 ~ —-——(M° QM°)M°,,
} 3(34) : my—ng 4

with the last term vanishing for y=0. Letus write also the
second order correction to the rigenvalue mg . It has the
form

(20)

2 _o I(ﬁg,[&-monlwn

W, = - N
0 gfo mo—m @n

B

In proving this formula the relations (ﬁ(‘; ﬁ") (~ m?o)—o
were taken into account. For the operator G used in
papers ‘% Q= 0, but even in this case 2#0. Using
formulae (18) and (20) one can find thie first order correc-
tion to the spectrum of spin waves (SW).

3. SW for Nearly Spherical, Cubically Distorted FS

Here we are going to obtain the first ovder correction
with respect to the cubic distortion of FS 10 the main SW
frequency. It will also be assumed that the cubic terms
of the cffective quasiparticle interaction, as well as the
forward scattering amplitude, are of the same order of



magnitude as the distortion. The alkali metals, with the
exception of lithium, have to be well described by such
a model. The nearly spherical isoenergetic surface can
be described by iie equation P=p{1+U(8,¢)) , where
p, 0,9 denote spherical coordinates in the momentum
space, P, is the parameter of the surface and|U(6,¢)|<l
The function U(9,¢) can be p,-dependent; without any
loss of generality one can assume that the integral of
this function over spherical angles vanishes. Hereafter
only such functions U will be used. Since p, is the
parameter of the isoenergetic surface thus, expressing
e(p) by, and p=p,[1+0(0,4)] one obtains the
function which is only = p, -dependent. Note that the
functions U were determined for FS of all alkalis by
applying the de Haas-van Alphen effect (see the review
article by Shoenberg /!5/ containing all references to
this subject.

Simple application of the differential geometry shows
that the element of area of the isoenegetic surface has the
form

ds=p2 (142 U)0, dQ=sinddods, (22)
0

if one restricts oneself to the linear terms in U. In the
same approximation, the unit vector normal to the isoener-
getic surface, is given by

T 15 _ dus 1 _aus
=[d - - —=n, ]
T 36 "07 Sne ae ¢ 239
In the above formula i ig , r?¢, » denote unit vectors

normal to the suriace of constant p, 6 , &, respectively.
In order to exprecs the orientation of these vector let us
write n —p/p, =[ -sin¢ ,cos¢,0landfl =it ,x i, .Letus
assume that V ‘1‘/[1+q(0 )], where oq is of the same
order of magmtude as U and the integral of q over
dQ vanishes. We have with our accuracy

V. =V,f=V(lsgn -viF L _U 7T,

n, 4 ——— 24
PP ] 96 0 ' sing 3¢ 9 (24)

]
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Takmg into account (22) one finds that the electron density
p=p /3::2(15 =1), where P is the parameter of FS. With

the same accuracy, usmg (22) one can find that the
density of states per unit volume, v , isgiven by p2/Vn#2
The function q can be determined by U and the
p, -derivatives of U and V. This expression is given
in the Appendix, as well as the expression for the cyc-
lotron mass, complementary to that obtained in .6, .
Taking into account formula (24) one can write

H d -> > V -~
= (Hx V)V = - ——(l+q -U) (HL) +
cPo (25)
+ LA cHV [ sina cos(B-¢p) + ctg 0 cosa | [Q -d— —ﬂL
cpg dod d0 a0 0d

where «.f8 are spherical angles determining the dirgction
of H, with 8 being the azimuthal angle and L-—i(p-\ ).
It is convenient to apply (25) if «,f3 are spherical angles
in the frame of reference of 4 — fold axes of a cube.
Another simplifying choice «=0, when becomes the
azimuthal angle about the H -axis, leads to a very
complicated form of cubic 1nvarlants appearing in the
functions U and q. The term —eV(HL)/Cp in (25) should
be treated as the unperturbed term, the remaining ones
as the perturbatlon terms. Let us pass_to the operator
P. According to- ' let us write g(p,p) +G(B,P)
in the following form

. P BN (] Aal
EFr -3 T 58 L gt 5 agtthy.
gif;‘i A =0 =0 a=1 b=I &% "+g‘p
(26)

d
x ).A “(p)A{. k(p’ Y1 = g(pp )+\g(p p ).
k=1
Here A ¢ (p) is the function constructed outof Yy (3) ,
~f< m <}7 and transfroming as the k -th row of the
A -th irreducible representation of the group On , the



variables a,b describe the degeneration of the cubic
harmonics (cf. /18/ ). The function A are chosen so that

do 8 % b 2
J Z—g-'\fk(ﬁ)#?'k' (B) =8, 84400 Pr (@7

If all Ag=0 _then (26) reducss to,the sum over f of
(2€ +1)g,P (pp ) {17/ denoted by g($ p )'. Hence, without
any loss og generality, one can assume that the sum of
Agh £° over a and A venishes. Taking into account
that

dsF/4n3v*V = (1+2U~q) dQ. 47 (28)
P

one can rewrite the operator P(3), with the accuracy up
to linear terms with respect to distortion, as follows

da”

gPPIMGB’) -
7 (29)
[g(FF) QU —q(p)) +Ag(P.p ) IM(F").

PM(P) =M(P) - [

do’
I 4

[

In order to preserve an analogy with the previous section,
let us denote the first two terms of operator (29) by P ,
whereas the small third term by{). Ananalogous notation
will be used for the operator Q, too.If one assumes that
the spin-orbit eoupling is irrelevant for our system then,
substituting M($)=2 into (29), one has to obtain the elec-
ron g -factog. Denoting the expansion coefficients of the
function 2y (B) — q(P) over the invariants of the, cubic
group, a; () , by C Fp one finds from (29) for M{p) = 2

~ oo g . :
83)=201-g,-3 ¥ (g,Cpp +agfy’ dap(B)1.  (30)
In proving /f%r/nula (30), the addition theorem for crystal
harmonics , formulae (26), (27) and the infcrmation
about invariants with lowest ¢ were used. According to
formula (30) g is anisotropic unless g‘,C ¢ +Agl;z al_0 for
all ¢/ and a. a 0

Let us turn now to the perturbation method for equation
(6) for K=0. The perturbation terms will be i) just defined

2



operator (! and, ii) the operator A being the sum of the
perturhation terms of operator (25) and operator
BH(g(D)~2+2g¢) (30). One can see easily that formula (18)
for the first order correction to w‘; still remains valid,
but with the scalar product defined as in the spherically
symmetric case, i.e.,
dQ
g =
(¥, 0)=7 o
Here a» fm  and, in the reference frame such that ¢ is
the azimuthal angle about the H -axis, M° - Y, and
hence

*(P)a (P) @D

-l
“’p°.,, =[2BH(1-gy)—eHVm/cpll-g,) ,-fg m st (32)

4/
(cf. . ). In order to express these functicns in the
reference frame of 4-fold axes of a cube cne has to apply
the transformation given by the matricesd! .Denoting the
mm
spherical harmonics in this last reference frame byf‘{;

( N!, N[, =1, one finds from the proper orthonor-
n

mality relations, (M° ,ﬁﬁ%) =8, that .ﬁ;m @) -

=(1-‘g[y )-1/2 Ngm (ﬁ’) .

According to the results of papers '3/ and /*o ' o 28H
for M, =const, i.e., for ! =0 , m=0,and hence «j, =0.
Applying the recurrence properties of spherical harmo-
nics and taking into account that the first nontrivial cubic
invariant appears for f =4 one can show that all contri-
butions to (,,: vanish with the possible exception of the
last term appéaring in (25), being the part of the operator
A . Denoting the last term of (25) by R, one can write
wlm_ (1-g, ! (N, 1m B .Puttinghere o= 0, integrating
by parts, so that the functxon U will be free of derivatives
after the integration, one can show by means of the men-
tioned methods that o, ~=0.Letusinvestigate ofy ,i.e.,
the first order correction to the spectrum of long- wave-
length spin waves based on the usual spin resonance. After
rather simple calculations, using the above results, one
obtains



] 3
whyg “2KVRe S {[(2BH -3, )(1-g,) (i-g )T Nj (k)

<[(kVy, Nyp) +(1-g ) ¥ (B} (kV Ny, ) +(1-g ) 4 (k¥ M{ 11
(33)

Here Vg (p’)-vP, vl (p*) V(p) v (p) and the functions N, ®)
can be written, in the invarmnt form, as follows: N B

36 k), with 4=l and b =2" %G im(xd) ] for my 0
where (Hﬁ) 0. The function M! denotes the first
order correction, with respect to the distortion of FS, to
the function M7 . It can be obtained easily that Moo=0.
On the other hand M' can be written in a form very
similar to (20) where "in the last term, the operator (
should be replaced by Q+ CP with C bemg the operator
of multiplication by the function 2U("f>) -q(p). Onecan
simply deduce, using considerations identical with previous
ones, that the analog of the last term in (20) vanishes
for { =1. Moreover, only the terms of M | proportional
M° 1< m ‘<1, m" A m can contribute to the scalar
'Jroduct (T(V m) appearing in (33). One can simply show

that (Ml° QM° .)=0 and (M° '\ﬁl",ﬁ—(ﬁb JRM® ),where
m im Im

R denotes the last term of the operator (25). Hence, one
can write

1

oL, 1 Ny, ()N, RN
(1-g,) T (k¥ M, )= —Pok 5 - : if

cH

m ‘=-—| m ~m

(m£Am) (34)

Applying to nondiagonal elements. of the R -operator the
same procedure as previously to its diagonal elements
(i.e., for mfm ) one can show that all elements of the
operator R vanish in the subspace with { =1 and that
(34) vanishes too. Hence, the single term contributing
to wlps is connected with (KV; N,,) i.e., with the

14
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deviation of the velocity vector from the spherical sym-
metry. The result that the anisotropic part of the effec-
tive quasiparticle interaction does not contribute to
w‘ooz in our approximation is not surprising (cf. with
the estimation in the paper /19/ ). Using the formula
(24), by means of the integration by parts and some
application of the angular momentum methods, one can
wiite

3 v 42 1 T
(kv ,N; ) =kV [ - EE[N' siny sin (-¢) 1+

(35)
+ Ny, ctg d[siny cosd cos(8-p) ~cosy sind] 1,

where y,8 denote spherical angles of the k -vector in
the reference frame of 4-fold aces of.a cube with &
being the aximuthal angle. Note that Ni,{B) in(35) should
be expressed in the following form

Nw(f;) =V 3 [ sina sinf cos(¢-B) +cosa cosf] , (36)

Ni 1 (;) =y g—[coSa sin@ cos (¢ -f)-sina cosPtisind sin(p-G)1,

whereas for N|,.,(I?) appearing in (33), the angles ¢, ¢
should be replaced by v .8 .If one expresses the func-
tion U in its usual form, i.e., as the finite sum of cubic
invariants, then integral (35) can be calcrlated without
any lmportant difficulty for a few first . The integra-
tion result will be an elementary function which cannot
be written in a compact form and this is a reason why we
do not write down these integrals. It is interesting that
in formula (35) the function q disappears. This means
that de Haas-van Alphen measurements are sufficient for
determination of the correction term woloz Moreover,
only the transversal deviation of the vector '\'13 appearing
in the combination (k 3 ) in formula (12) is effective
for “’(}0,2-
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Appendix

Let us start with the proof of the mentioned above
identity for the function q. Applying the rotation taken
in the spherical variables to vector (24) one gets

J ) JU U
__9’_ - (1,3 00V 3 sy (37
duy d fa py i avr dapy
where ¢ denotes the variable ? or ¢ and pgy-pp. 37>

is the density of electrons occupying a domain in the
momentum space with the parameter of isoenergetic sur-
face smaller than pg - If the functions U and q, integ-
rated over dQ give zero, then from (37) one gets

q=-u(l 380V 5 5 JU (38)
din ro dinpg

and we have our identity.

Let us pass the formula for cyclotron mass m' for
nearly spherical isoenergetic surfaces. In contrast to the
formula obtained in /16/ we will express m - only by local
quanntms ie.,, by U and q for given p, . Weo have

(cf. 27 )

me o L 4P (39)
20 TV

where the integral is taken over the length element dp
of the curve [¢() =c,Hp ~pjr-const] and V() VE-(Vv.f 72 .
Simple application of the differential geoi’hetry sho&s that

dpl=p0 (1+U)sin6de . (40)
Integral (39) is taken for Py =const .If 0 is the

angle beiween the vectors H and B t.hen this condition
is equivalent to 0 < const only the zeroth approximation

16



with respect to U. Taking into account that p,(1+U)cos 0=p;;
and putting ¢ - O+ 6, we find that

cosﬂoxpn/po, 01=~.U cgdy “4n

where in U the variable is put equal to ¢o . Substituting
@ of the above form into (40) we get

dpl=posin00[l+U/sin200]dd1- (42)

Note that this approximation is valid unless sinfp<<1.
Using formula (24) we can find

1 1 2 JU
Vi) = - [1-q-U et 0 AT
1P g, 1~V g Gprerg 0 o 1 (3)

Substituting (42) and (43) into (39) we find
2 27
*-_Pg 1 2L --L fqdsl,(4
m v [1 +(l+ctgd 35 ) 5 (I)U de¢ 5. qu 51,(44)

where the subscript zero near ¢ was omitted. The in-
tegration in (44) goes over the azimuthal angle about
A -axis. The cyclotron mass depends on ¢ and on the
direction cosines of the axis H. Formula (44) is valid
unless sin@ << 1. 1If sin 6= 0 (i.e., at the lunetary point)
then, according to /2/ | one can express m* by the Gauss
curvature of FS, K, and V3. We have

m* =K“/2v§-‘= PO r14U -q1. (45)

Substituting U and q expanded in series of cubic in-
variants into (44)and appiying our results for the azimuthal
angle integrals of cubic invariance /12/ we get

221

n
* _ Po a
m v {1 + kfz 3 &y (a,B) x

(46)
X [U;kCtgop;k (cos9) +(U2ak —--»q;k )P2k(cos¢9)] b,

where U3, and q3, denote the expansion coefficients of '

17



the functions U and q ove~ a3 and «,f denote the
spherical angles determining the orientation of the vector

[i with respect to 4-fold axesof a cube. As one can verify,
for 8 = 0 or = (46) turns into (45).
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