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1. In the study of the structure of states of intermediate 
and high excitation energy in atomic nuclei of much importance 
is the single-particle fragmentation, that is the distribution 
of the Bingle-particle strength over many nuclear levels, In 
the independent-particle and quasiparticle models' ' the eingle-
particle strength is concentrated on a single level. In the ex
treme statistical model it is chaotically distributed over all 
nuclear levels. In the earlier period of the study of resonance 
nuclear reactions and the construction of neutron strength func-

/2/ 
tions Lane, Thomas and Wigner' ' introduced a model of interme
diate coupling for describing fragmentaion. Since that time one 
represented the fragmentation in the form of the Brelt-'Aigner 
curve^ 3 , 4^. 

To describe fragmentation, in refe. ' it was suggested 
tc employ the mechanism of interaction of quasi-particles with 
phonons which is very important in the calculation of the energy 
and the structure of low-lying non-rotational Btates of atomic 
nuclei (see refs.' * ' • ' ) . The idea of the model based on the 
account of the quasiparticle-phonon interaction was f-irmulated 
in ref.'" , and in ref.' ' an approximate method of solving 
its equations was developed. In ref.'' the model was genera
lized to the case of introduction of spin-multipole forces, in 
ref.' ' it was applied to doubly even deformed nuclei, while in 
ref. to spherical nuclei. The first reeults of our investi
gations on single-particle fragmentation are presented in ref.' ' 
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In the present paper we study the fragmentation of several 
•*<*)/ '°9h.r single-particle states in U. and t r . We investigate the 

single-particle fragmentation as a function of the position of 
the single-particle level with respect to the' Fermi level and the 
particular features of the particle and hole state fragmentation. 
We also suggest a new method of calculation of neutron strength 
functions and calculate the $- and p- wave strength functions. 

2. We consider a model for describing fragmentation in the 
c&ue corresponding to an odd-mass deformed nucleus. The mode] Ha-
mil onian is taken to comprise an average field described by the 
nonapherical Saxon-Woods potential, interactions leading to su -
perconducting pairing correlations, and multipole-multipole in
teractions. We should remember that in the case of the nonspheri-
r.al Sajcon-Woods potential the strea>7'.:> of each eubehell of the 
spherical basis is distributed over several single-particle 
states. This fragmentaion is illustrated, e.g., in ref. . 

We give numerical results for the nuclei U and t I . 

The Saxon-Woods potential parameters and the interaction cons
tants are taken from refs. ' . In ref. ' the same parameters 
are used to calculate the level density. It should be noted that 
in our calculations there is not a single free parameter since ail 
the parameters were fixed earlier in studying the low-lying states 
of deformed nuilei. 

The wave function of an odd-A deformed nucleus state is writ
ten in the form 

x м - <;»%* *£ £°W- $J?<4%\ v., „, 
where x * s * n e "eve function of the ground state of a doubly 
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even nucleus, с is the number of the leveled and Qo the 
quasiparticle and phonon creation operators, (рт) and (VoVthe 
characteristics of single-particle states, <У - + 1, ?-^A' , 
A/* the multlpolnrity and its projection, j is the number 

of the root of the secular equation for a phonon. Tbe normaliza
tion condition for the wave function (1) reads 

Tne quantity ((-„) defines the contribution of the eingle-
quasi-particle component to the wave function normalization. 

/Q in/ By means of the variational principle in refs. ' ' one 
obtained a system of equations for determining the energies n-

and the functions <y, , J^pj and /„,, In the real cases, 
when a large number of Bingle-particle states and phonons is 
taken into account, in order to solve the system of equations it 
is necessary to diagonalize matrices of the order of 10 and higher. 
In ref. an tpproximate method of solving thie system of equa
tions is suggested which takes into account all coherent terms 
and pole noncoherent terms. We call it here the two-phonon appro
ximation. Its accuracy ia investigated by the example of a re
stricted basis.The comparison of the components of the wave fun: 
tions for the exact and approximate solutions shows that their 
large components are close to each other while their very small 
components may differ strongly. 

In studing fragmentation we also use the one-phonon approxi-
. , ru

ination, when in the wave function (1) it is put •>'"" =0.In this 

.. , >- W .)-' 
approximation ^ j _ \l + ̂  tvJ + Uj-fi } » 
that ia, ( С J,) is expreased in terms corresponding to all the poles 
quasiparticle plus phonon.Here £(>>! and uj, are the 
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quaeiparticle and phonon energies, ' (̂ "'/contains single-par
ticle matrix elements and the phonon characteristics, it is given 
in r e f / 1 0 / . 

The numerical calculations have been performed on the JINR 
computor CDC-6200. A total of 15 multipolatities ) , / / , which 
for и are given in a table,and 10-70 roots for the phonon 
secular equations have been used. It is seen from the table that 
the wave function (1) has a large number of different components 
and, therefore, can describe the complex structure of states. 
The solution of the secular equations in the two-phonon approxi
mation requires much computor time, therefore, up to now one has 
obtained only somewhat more than 100 solutions and the appropri
ate wave functions. 

Our investigations have shown that the wave functions cal
culated in the two-phonon approximation contain a large number 
of non-zero components. Hewever, in some cases we have obtained 
an overestimated value for the main component which is a short
coming of the approximation used. The energies and the wave func
tions calculated in the one- and two-phonon approximations differ 
strongly from each other. In the one-phonon approximation the 
fragmentation of the states quasiparticle plue phonon is badly 
described and for many solutions the main component exceeds 99%. 
However, the distribution of the strength of the single-quasi-
particle state is almost the same for both the approximations. 
For example, in U for the 6311 state on the first level 90.1% 
of the strength is concentrated in the one-phonon approximation 
and 85.6% in the two-phonon one. The total 631t strength related 
to all the levels of 1.9 HeV energy is 93% in the one-phonon 



approximation and 92.5% in the two-phonon one. For the 620* 
state (without the solution corresponding to the one-quasiparticle 
fundamental pole) the total strength on the levels up to 1.9 MeV 
is 16% in the one-phonon and 14% in the two-phonon approximations. 
Therefore, when we need obtain several hundreds of solutions we 
shall use the one-phonon approximation. 

3. We consider the fragmentation of the single-particle 
1)3 ,, '"г., 

states in u and L% .We stud;' the strength distribution 
as a function of the position of the single-particle level with 
respect to the Fermi level and the shape of this distribution. 

Part of the results on fragmentation is given in fige.1-3. 
The quantities (С*) are calculated in the one-phonon approxima
tion from expression (3), are represented as a sum over the states 
lying in the energy interval д£- с 0.4 MeV, are denoted as 
(C„/ = / „ (C„ I and are given in percent. On the abscissa 
axis common for both the states are the excitation energies icc-
koned from the ground state energy which for U is ̂ tf^t=0.4HeV 

« j -and for tit П = 0.68 MeV, The figuree give the quasiparticle 
energies £(f>) and the total contribution of the (C^j values up 
to the maximum energy of the appropriate histogram* 

ИЗ-,, The first results on single-particle fragmentation in LI 

are given in refs. ' '. In ref.' 'one gives the fragmentation 
of the ground 622* state while in ref. the fragmentation of 
the four 631* , 620» , 600* and 640* states with Kr = 1/2 +. It 
is shown that if a single-particle ' tate is located near the Fermi 
surface then more than 9036 of the strength is concentrated on the 
lowest level with a given К ' and the remaining 10S are spreaded 
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over a wide energy interval. As the single-particle level moves 
away from the Fermi surface! the strength concentrated on the lo
west level decreases, and the distribution itself expands in fa
vour of higher excitation energies. Figs.1 and 2 give the fragaen-
tation of the four К =1/2 states in U , According to the level 
scheme,the hole 501* and 510* states lie lower the Perm surface 
energy by 2.5 and 4 MeV.The particle 761^ and 750* states lie 
above the Permi surface energy by 5-2 and 5.7 MeV,Fig.2 shows that 
the fragmentation of the 76W and 750* states having close single-
particle energies strongly differ from each other, that is,the 
shape of the distribution function depends on single-particle wave 
functions.Fig.3 shows histograms for the two hole 400f and 530t 
states in tt lying lower the Fermi surface energy by 3.17 and 
3.19 MeV. 

The histogram for the 501 i state clearly exhibits two maxima, 
one near the quasiparticle energy f('p) ,the other at higher excita
tion energy.Two maxima are also seen in the histograms for the 
620» and 640* states in"'M given in r e f / 1 4 ^ and for the 530* 

its c Btate in tt .In a more or lees explicit form the second maximum 
exhibits in almost all the calculated states. The appearance of the 
second maximum in the distribution functions is a new and somewhat 
surprising result. 

The distribution functions have long tails in favour of high 
excitation energies.Even for the 521> state,which is a Fermi level 
in ,up to the neutron binding energy B„ - 6 MeV only 94.75» of 
the strength of this state is exhausted. Figs.1 and 3 show that up 
to 6 HeV, 60-85% of the strength of the hole states is exhausted. 
For the particle 600f state in U lying above the Fermi surface 
by 4.3 MeV only 60SC of its strength is exhausted up to a neutron 
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binding energy Д? = 4.6 MeV. It is seen from fig.2 that the 
strength of the 761У and 7*30t states, the single-particle ener

gies of which lie aomewhat above $n, only 60$ is exhausted up to 
an excitation energy of 6 MeV. 

Thus, the strength distribution for the single-particle 
states in deformed nuclei displays the following particular fea
tures : 

i) at high excitation energies, in addition to the first 
maximum 1 there appears a second one, ii) the distribution func
tion is nonsymmetric with respect to its largest value due to 
its slower fall in favour of high energies, iii} t.ie shape of 
the distribution function in mainly defined by the position of 
the single-particle level with respect t̂ . the Permi surface, 

but it depends on the wave function of the single-particle etato, 
lv) the strength distribution has a long tail which ,even for 
the single-particle states lying near the Permi surface,expands 

eesentially father behind the neutron binding energy. 
It should be noted that in our calculations of fragmentation 

there is a strong fluctuation from one energy interval to another 
and, especially, from level to level. Strong fluctuations are, 
to a large extent, iue)firstly, to the use of the one-phonon ap
proximation and, secondly, to the roughrees of the model in the 
present formulation which disregards some collective branches 
such as spin-multipole, Qammov-Teller and giant resonances. In 
ret.' 'it is indicated that it is interesting to clarify how 
the giant resonances affect fragmentation. 

4. We use the obtained results on single-particle fragmentation 
for the calculation of neutron strength functions.The neutron 
strength function is defined aa 
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f й = ТЫ • <«> 
where 'я is the reduced neutron width, -i> the spacing bet
ween the levels with given J- . Using the wave functions of 
neutron resonances (1) we get the following expression for the 

S -wave strength function 

where A E is the energy interval inside which a summation of 
(C'j over the excited Btates is performed; U is the 

Bogolubov canonical transformation coefficient calculated with 
the correlation function and the chemical potential for the 

/8/ 
ground state of the target-nucleus. According to' , the single-
particle wave function y> is represented as an expansion in 
the spherical basis 

The expression for the P -wave strength function consiats 
of three terms 

St= SJV*- %.) + SJ% У,! * SJ%- %), <? > 

where the first term is relative to the I K ' 1/2" 1/2 
states, the second one describee the contribution from the ap
propriate rotational components for which I K = 3/2" 1/2, 
and the third term gives the contribution from the К - 3/2 
states. They look like 
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where 0 is relative to the K" » 1/2" states, Д to the 
КГ - 3/2" states. 

According to our calculations for Z/ 

я"'= iW\ (11) 

which is in satisfactory agreement with the experime >tal value 
Д. = 1 x 10 . The main contribution in O, comes from 

the fragmentation of the 600т 880* and, partially, $ Ш states. 
The situation of the *-v calculations in c~ is more 

complicated and interesting. In the single-particle wave func-
tionu, in rcf. , there is no contribution from the it'^ 

subshell which is in the continuous spectrum. Therefore, the 
related calculations yield 

Sc"'= O.CU/P'1\ (12) 
which ic in disagreement with the experiment-l value 
The main contribution comes from the fragmentation of the 400' 
state which is weakened due to the multiplier It = 0.02, Note 
that the &<. effect on <S'C was first noticed in гегУ '. 
Employing the single-particle wave functions calculated by uareev 

/19/ and Jamalejevxu the framework of the method from ref. , in 
which the tS^ stjshell is taken into account, we get 

S,"^ i*/0'\ (12-) 
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the main contribution being due to the 640f state fragmentation. 
The /bc reeulte depend on the averaging interval л£ , in 
the ct case an essential expansion of At results in an 
increase of the value (12') by a factor of 1.5-2.0. Inclueion of 
the ASy eubshell leads to a good agreement between the cal
culated and experimental strength function. 

The Sp calculations with two sets of the single-particle 
wave functions are of great interest since the transition from 
the (12) value to the {12*7 value seems to be a transition from 
the minimum to the maximum of the strength function. Inclusion 
of the ^S'/i. subshell results in a 20 times increase of <5,. , 
In spherical nuclei such an increase may be still larger. 

The calculation of the p -wave strength function in U 

has been performed for two sets of the single-particle wave 
/a/ 

function. These are just the wave functions from ref. which 
do not include the ^/'•/i and ^ / ° % subshell contribution and 
the wave functions calculated by Gareev and Jamale jer in which 
these subahellaare taken into account. The calculations with 

/a/ the wave functions ' yield 
$"*• о.гьчо'\ 

(13) 
The calculations with the wave functions containing the sub-
ahelle /̂°'4 and ^/3}/i give the following value 

£ =№0\ (13., 
up , 

which Is In agreement with the experimental yalues S =2.2x10 . 
Inclusion of the subshells ip-/^ and ^ j . leads to an incre-
aee of &L by a factor of 12. Such a relatively email increase 
is due to the contribution in (13) from the single-particle 50'f 
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state fragmentation which remains rather large in spite of its 
weakening due to . V= 0.02. 

,69 -
The calculation of the p -wave function in tit with the 

/8/ 
single-particle wave functions from ref.' yield the following 
value 

S[at ~- iZ-40'\ (14) 
wr.ich somewhat exceeds the experimental value Sx =0.7 x 10 . 
The largest contribution in (14) comes from the fragmentation 
гi1 the 501* state^that is, from the same state which ^ives the 
iaain contribution in (13). 

In the present paper we have suggested a fundamentally new 
3emi-microscopic method of calculation of the neutron strength 
functions based on the account of she quasiparticle-phonon inte
raction. The ,> and p -wave neutron strength functions for 

IL and £^ calculated by this method are in satisffactory 
agreement with experiment. Note that there is a good description. 
of the quantities <Л, and Ox in these nuclei in the framework 

of the phenorcenologi^^l approach by a suitable choice cf the 
optical model potential parameters. We would like to stress thai 
all the calculations of the neutron strength function available 

by the present time have been performed phenomenologically on 
the basis of the Breit-Wigner formula in the framework of the 
optical model (see ret. ). 

5. The calculation of the single-particle fragmentation 
provides new possibilities of studying the structure of the 
states of intermediate excitation energy for the description of 
which the language of the strength functions of different kind 
should bf used. There have appeared first eiperi -
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/21 / 
mental papers' ' on the study of the single-particle fragmen
tation. 

The calculations of single-particle fragmentation in odd-A 
deformed nuclei allows one,e.g.,to find the dependence of the P.-
wave strength functions on excitation energy. To this end, when 
calculating fragmentation we should take into account in the 
wave function (1) the terms qaasiparticle plus two phonons 
and generalize it by introducing summation over О for a simul
taneous account of several single-particle states. The (u/> ) 
reactions exhibit the behaviour of the С -wave strength func
tions for particle states at different excitation energies. At 
the neutron binding energy and still slightly higher these func
tions coincide with the neutron strength functions. The (at) 

reactions yield some information on the I - wave strength func
tion behaviour for hole states at different excitation energy. 

Of great interest is the stady of single-particle fragmen
tation in spherical nuclei and the calculation of the neutron 
strength functions. It is important not only to obtain good va
lues of the neutron strength functions in the range of their 

maxima, but also to explain their behaviour in the range of 
their minima. These problems are the focus of our attention. 

In conclusion we are grateful to Profs. H.H.Bogolubov, 
A.M.Lane, Yu.P.Popov, O.W.Schult and Dr. V.I.Furman for interest
ing discussions of the related problems. We thank also Drs. 

F.A.Gareev and R.lf.Jamalejevfor the calculation of the wave func
tions of some single-particle states and Dr.V.O.Hesterenko for the 
assistance in making part of the numerical calculations. 
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Tahle 

The к И values and the number of the terms of the wave 
function (1) in г3,11 . 

),ц Number of terms of the type 

20 22 30 31 32 33 41 43 t 4 . 

44 54 55 65 66 76 77 *•" - 3 ^ fy % 

J - * , 2 , . . . 10 

j = 1 , 2 , . . . 35 

j » 1 , 2 , . . . 70 

870 9*10* 

1*10* 1.1X10 6 

5JM04 5 *10 6 
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