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Consider a lattice of ions the three lowest states of 
which, a doublet and a singlet, are well separated from 
higher excited states. For the description of such a sys­
tem Thomas and Miiller have proposed the following 
pseudospin (with S= 1 ) Hamiltonian /l/ 

JT 1 , 1 
H = t H f - 2 e1, T Ve -f'Qf Q f '• (1) 

where the Jabn-Teller tunneling part is given by 

and 

JT 1 r:., 2 2 
H f = -2 0 [y2Sxf-(Sxf-Syf)]' 

2 
Qe=3Sze-2. 

(2) 

(3) 

As will be shown, systems described by the Hamiltonian 
(1) undergo a phase transition in which energy doublets 
split with decreasing temperature (see Fig. 1). 

Generally, we are dealing with three different cases: 
(a) n > o , 
with the ground-state doublet· in the disordered region 
(Fig. la). This model describes a typical Jabn-Teller 
structural phase transition and has been studied for 0<< v 
in /1/ (where additional references may be found). 
(b) n = o, 
with the triplet in the high-temperature region (it was 
discussed, e.g., by Chen and Levy /2/ ). 
(c) n < o, 
with the doublet lying above the ground-state singlet and, 
therefore, not satisfying the commonly used definition 
of the Jabn-Teller effect. 

3 



.-
I '\ "1.-

u I I 
f uJ • ... ... 

UJ 3 w 
I I 

0 

------ --- I 

::0 I uf( 0 w)r ~ II 
II 

- 3 w 
0 

IJ') 

crt ~ I " , or-

II 

uj 3 I w~ ... 
w 

I I 
0 

00 -...t 0 -...t 00 
I I 

A/ 138 

ko 
.Su 

a -....e 
<» .. 
~") ......... 
al II .,.a &_ 
Sat 
<»'-' ...... 

k 
.B 

~<» a 
·•al 

Wk 
Ul! 
-1:10 
<»_s =--­<»<» -= ~§ 
~ .... 
<»te-4 = 0 • <» .-I 

C»Ull 
.s:l ~ II E-t-; a 
. =--­

- u <»-• <» ~ 
bilk= 
r;::ea~ 

Nevertheless, because of the same physics (splitting 
of the energy terms which considerably contribute to the 
free energy of the system) we shall regard this case as 
a generalized Jahn-Teller structural phase transition. 

The aim of the present work is to analyse all the cases, 
i.e., any sign and magnitude of n, and discuss the simi­
larities and differences between them. 

In this paper we confine ourselves to the zeroth appro­
ximation of the self-consistent method (the so-called mean 
field approximation). With that accuracy the energy levels 
of the Hamiltonian (1) are the following: 

1 
EI,2 = F v ( (i) + Q ± 3p) ' 

1 
E 3 = -- V (w + Q) 

4 

(4) 

(see Fig. 1), where ·v =I'Ve -f, and, for abbreviation 
f 

r ~-----z 

P = y (j)2 __ Qw + Q2 . 
3 

In Eqs. (4) we introduced the order parameter 

. Q = <Qe >, 

and the dimensionless tunneling parameter 

n 
(i) =2-. 

v 

(5) 

(6) 

In order to describe the thermodynamic properties of 
the system, one should calculate the free energy per 
particle, which for the investigated system is equal to 

( {3-I = k T ) 

F = ..!_vQ2-{3-I fn (e-f3EI+e-f3E2+e-{3Eg) (7) 
8 . 

Rewritting it in the dimensionless form we obtain 
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¢(Q,r;w) ,Q2+Q +w -3r En [2ch P ~ - +e r ] 
T ' 

(8) 

where the dimensionless free energy ¢ and tempera­
ture r are defined as 

F 
¢ = 8-y' (9) 

8 kT 
r = -- (10) 

3 v 
respectively. 

The extremum condition, (aF I aQ)"' 0, represents the 
equation describing the temperature dependence of the 
order parameter 

3 ch .l.. + w- 3 Q sh -ll. 
r p r 

Q 1 - (ll) 
2 ch ..£.. + ex p ( ~ 

r r 

Figure 2 demonstrates this dependence for a set of 
different values of w . The transition is of the first 
order as expected from symmetry. It is interesting that 
nontrivial solutions ( Q :/ 0 ) of Eq. (ll), describing the 
ordered phase, exist for all positive values of w , while 
they disappear for negative w less than wex"' -1.5225. 

For the fixed "material parameter" w , the phase 
transition temperature r c is defined by the condition 
that the free energies in ordered and disordered phases 
become equal: 

¢(Q (r ;w), r ;w)"' ¢ (O,r ;w). 
c c 

(12) 

It is illustrated on Fig. (3a) for w , 0. The phase 
diagram calculated for the whole w range is demonstra­
ted on Fig. 4. It represents the curve given by Eq. (12) 
with the substituted Eq. (ll). The limiting temperature 
r E of the existence of the over cooled disordered phase 
is given by the simple equation (see the dashed line on) 
Fig. 4). 
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Fig. 3a. Free energies ¢ vs temperature r for orde­
red (full line) and disordered (dashed line) phases at 
w= 0. The lower point of intersection determines the criti­
cal temperature r c while the higher one - the stability 
limit of disordered phase (i.e., overcooling temperature); 
see also Fig. 4 and 5. The region close to r c is demon­
strated on insert in magnification. 
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Fig. 3b. Free energies ¢ vs tunneling parameter w 
for ordered (full line) and disordered (dashed line) phases 
at r = 0. The lower point of intersecuon determines the 
critical tunneling value w c • The region close to w c is 
demonstrated on insert in magnification. 

9 



4 
re= 3 

2 x(l+Enx)-1 

(2x 2+1) En x 

x = exp ( .!:;!_ ) , 
re 

WhiCh giVeS the ValUeS T £ = 2/3 for W -> oo , T £= 4/3 for 
(I)= 0 and re = 0 for (I) =(I) e = -4/3. 

Figure 4 demonstrates an interesting feature of the 
discussed model; the region of the existence of the ordered 
phase is closed on the negative w side (we=- 3/2 for 
which r c = 0), while it is opened for positive w • 

For the case (a) the phase transition can occur for 
any positive value of n , i.e., also for n » V .The region 
n » v may be discussed in two ways. If the tunneling 
parameter n goes to infinity, for fixed value of interaction 

V , then there exists the temperature range o < T <Too= - - c 
= V 1 4k , where only ordered phase can exist. On the other 

hand, if interaction V goes to zero, when n is held 
fixed, then the critical temperature goes to zero proportio­
nally to V, because according to (10) 

3 
T = -Vr 

c Sk c 

In the opposite case (c) w < 0 there exists the critical 
value of the tunneling energy parameter w c =- 3/2. In the 
region w ex <w < w c the metastable ordered phase can 
exist. For w < w ex = -1.5225 the ordered phase cannot 
exist at all, by analogy with the two-valley model /3/. 

We have noticed that thermodynamic properties of 
our system at constant temperature depend on tunneling 
parameter w in an analogous way as they depend on 
temperature at constant w . This full analogy is easy 
to observe, e.g., comparing Fig. 5a with 5b ·or Fig. 3a 
with 3b. (According to the above mentioned, in the case 
w > 0 this analogy holds only for temperatures T > T :;' ). 

In conclusion we want to remark that for the full 
description of a wider class of structural phase tran-
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Fig. 5a. Free energy ¢ vs order parameter Q for 
a set values of temperature r at constant w= 0. The 
critical isoterm (r = r c ) is distinguished by dotted 
line. The dashed lines show the extremum curves for 
ordered (Q=/0) and disordered (Q "'0) phases. 
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Fig. 5b. Free energy ¢ vs order parameter Q for 
a set of values of tunneling parameter w at constant 
r = 0 . The critical line ( w = w c ) is distinguished by 
dotted line. The dashed lines show the extremum curves 
for ordered (Q=/0) and disordered ( Q"'O)phases. 
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sitions the present model has to be improved by takipg 
into account the coupling with the elastic displacements /4./ 
and first of all, by taking into account the Ising part of the 
Hamiltonian, dropped by Thomas and Muller /I/ . The 
latter leads however serious mathematical complica­
tions. On the other hand, the quadrupole type Hamiltoni­
an (1) gives the simplest description of the first order 
phase transition for the nontrivial physical system. Some 
characteristic features of which we want to underline. 

1° . Firstly, as one can find on Fig. 5a, the critical 
isoterm of the free energy curve for cu ~ 0 is symmetric 
with respect to its maximum point, Qq~~- l/2lt can easily 
be checked that this symmetry is exactly fulfilled if we 
rewrite the fr_ee energy (8) substituting the value of 
critical temperature r c = 1/~ n 2 ,(q ~ Q - Q m) 

~o (q) ~ ~(q+Q m•rc; 0) ~ 

1 1 3 
~(q+2Hq-y)-2 

= ~0(-q). 

3 fn2en(2q+2-q)~ 

Critical isoterm for cu ~ cu c ( r c ~ 0 ) is also exactly 
symmetric with respect to its maximum point Qm~-1/2: 

~ c ( q) = ~ ( q + Q ' 0; (U ) = 
m c 

1 1 /9 1 1 
= (q + 2 )(q- T> - 3 v' T + (q+ 2Hq- 2>· 

In these two points, cu ~ 0 and w ~ w c ,the critical order 
parameter is Q c ~ -1 exactly, while for the intermediate 
points it is only slightly greater than - 1 (with the dif­
ference not exceeding 1%), see Fig. 4 - Top. We observed 
that in this region the critical isoterm is practically 
symmetric (with deviations from the symmetry of the 
same order as the deviation of Qc from -1). Such a sym­
metry was found by Strassler and Kittel /s/ for the com­
binatorical model. This however, is not a general feature. 
Really, in the region w > 0 the asymmetry of the critical 
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isoterm increases with cu (together with increasing de­
viation of Qc from -1, see Fig. 4 - Top). 

2? The height of the barrier between the two minima 
on critical isoterm (A~= ¢max-¢min) is very small (e.g., 
fl~ ~ 0.005 at w~ 0 , fl~ _, 0.008 at w= we) and is going 
to zero in the w-+ oo limit. In this limit, the phase transi­
tion changes its character from the 1st to 2nd order. The 
dependence between the temperature r and order para­
meter Q becomes a symmetrical function of Q, defined 
in the range - 1 'S. Q ~ 1 as follows 

r~l___Q 
3 Arth Q. 

3°. The simple rule according to which r c can be 
determined on the order parameter curve by that point 
Q which is equal to one-half value of the order parameter 
at r.0/2,5/ is not valid in general. It is exactly fulfilled 
at cu= 0 , approximately valid in the vicinity of the point 
w = 0, but completely wrong for w far from zero in both 
directions as can be seen comparing Fig. 2 and 
Fig. 4 (Top). 

We expect that some experimental examples will be 
found among recently investigated double perovskites /6/ 
which exhibit the Jahn-Teller mechanism of phase tran­
sition described above in the point (a). However, up to 
now, no investigation has been reported about the system 
where the splitting of the higher-lying doublet would 
result in the phase transition (as in Fig. lc). It seems 
it may be quite reasonable that such a mechanism can 
occur among non-Jahn-Teller crystals dopped by the 
Jahn-Teller ions. 
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