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1. Introduction

The prooblem of two-phonon collective states in doubly even de-
forwad nuclei is still unciear. The Born-Mottelson model implies two-
phonon collective states in deformed nuclei; this has been pointed
out once more in ref./1/. According to the interamcting boson model,
the low-lying states should include those with large two-boson compo-
nent 2 « The study of two~phonon states within the quasiparticle-pho-
non nuclear model has shown/4/ that the Pauli principle, i.e. the in-
clusion of exact commutation relations between phonons, shifte the
two-phonon poles towards larger excitation energies. The relevant se-
cular equations have been solved in ref./5/. The Pauli principle
shifta the centroid energies of collective two-phonon etates by 1-2
MeV. AL excitation energies of 3-4 MeV the collective two-phonon
strength should be distributed over many nuclear levela. On this ba-
sis it has been concludedls, that there are no collective two-phonon
states in doubly even deformed nuclei. In describing the two-phonon
collective states in deformed nuclei the guasiparticle-phonon nuclear
model is in contradiction with the Bohr-Mottelson end interacting bo-
gon models. A disagreement between the gumsiparticle-phonon nuclesar
model end the interacting boson model has been reported in descri-
bing other nonrotationdl states in deformed nuclei. According to
rer.fT/, in doubly even nucleil the Fauli principle does not shift
congiderably the energies of two-phonon states, which is in egreement
with experimentsl dates on the two-phonon collective states in spheri-
cal nuclei.

The analysis of experimenisl datalul has provided evidence for
the absence of two-phomon collectlive states in deformed nuclei. As
follows from recent experimental deta on 1G&Er/9’1°/, the levels that
have been treated es two-phonon ones have s dominating one-phonon com—
ponent. The absence of two-phonon quadrupole states with an energy
less than 2 MeV in 1bBEr is explained/1'11, by & large anharmonicity
of P - and 5":v1brat10ns due to a three-axis ellipsoid form of a
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nucleus. The absence of two-phonon octupole states in some isotopes

of Ra, Th and U/1Z/is attributed in many papers to the existence of a
stable octupcle deformation. It is 10 be moted that the new experimen-
tal data on 168Er of refu./9’13/ are in good agreement with the calcu-
lutions within the quuaiparticle-phonon nuclear model and with those
of the structure of one-phonon atatos/14/ and digsagree with the cal-
culationg within the interacting boson model.

Since the problem of two-phonon collective states in doubly even
deformed nuclei is very important, it is necessary to study the beha-
viour of two-phonon states by utilizing snother mathematical forma-
liem. Am important role of the Pauli principle in two-phonon compo-
nents of ihe wave functions necessitates culculations with phonong
constructed of the cperators of "true" bosons. Whether a large shift
of iwo-phonon poles occurs in this statement of the problem is the
aim of the present paper.

2. Model Hemiltonian

We consider doubly even deformed nuclei. The Hamiltonian of the
quasipariicle-phonon nuclear model contains an average field (Saxon-
Woods potential), pairing interaction, multipole-multipole end spin—
multipole - spin-multipole isoscalar and isovector forces. For simp~
licity we shall use the multipole-muliipole isomcalar forces. After
Bogolubov's {{, V~transformation the model Hemiltonian expressed
through the quasiperticle operators lus
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where Gféaﬂ{ia the constant of isoscalar multipecle forces, EG?} are

one-quasipaerticle energies, qd- are guantum numbers of single-partic-
le states, C‘q5~ﬁﬂqafare the quasiparticle creation (anuihilation) ope-
ratora.

The multipole moment operator ) with pruJecL;un/AC and the pro-
Jection sign 6 has the form/15 3
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(Q1q¢}. {m' QNLJagE the single-particle matrix elements. The fpe—
rators A, J , B and B are expressed through the operators ciq6~,
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3. Boson transformetion of the Hamiltonian

By analogy with the two-quesiparticle operators we shall consi-

der the ideml boson operators
+
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satisiying the following commutation relations:
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and the condition 2
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Analogously to (3), (3'), (4) end (4') we way introduce the ide-
al boson operators with an appropriate sign of the momentum projec—
tion
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1t follows from (5) end (6) thet the cperatoras (8) and (8') salisfy
the following commutation relations:
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How we find the boson images of the operators .ﬂ ﬂ .ﬁ‘L -ﬁ+ B
and B satisfying the conmtation relations for these operators up to
the terms quadratic in 5 { ! end ‘ The relevant boson images
have the form
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The coefficients -2, and ’L'L nre determined from the requirement
that the commutstion relations between bilinesr combinations of fer-
mion operators mre Tulfiled. If in these commutation relations the

terms quadratic in &5 and Ty sre retained, then I;=-7 $(1- _)
—-1 . If only the linear terms are considered, then I, -0 end
% 3
1
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4. The RFA phonons
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Now we pusa from the operators b {q,q_,‘,/llé') , & r/q,(]_w/m‘) to
the cperantors G o diagonalizing a part of the Hamiltonien quadra-
tic in the boaon opermstors. For this purpose we use the linear trans-
formation
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where the boason operators 0}5“ ij satisfy the commutation re-
lations
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The commutation relations (15) results in the known within the
HPA relstions of orthogonality for the amplitudes '1” (// Vand V I
Using the latter one can eun:_ly express the operators f‘ 5 ‘.{
and through the operators R’ and (2 . Substituting these expressi-
ons into Hemiltonian (1), we obtain the system Hemiltonian given in
terma of ideal boson operstors and containing the aecond third and
fourth order terms in the boson operators LQ‘?‘,- ¥ i‘r
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For compactness, only the main terms of the third end fourth
order in (2, g are glven in (1€). With the same aim, lue terms con-
teining the amplitudes ¥ and ‘¥ are omitted in (17)-(21) since the
general structure of the coefficients is obvious from the above exp-
ressione and the guentum number 6 is not singled out explicitly.
Moreover, we huve used Xq,=0and Ty=-]1.

The first two terme in (16) are the RPA ilamilioninn, Requiring
it dlaba?a.l we obtain the well-known expressions for the emplitudes
SV e.nq'f f./_ In our case, the terms quadretic in the operators 0'1 i

%arc also glven in the third and fourth terms of (16). They have
beén obteined in reducing to the normal form the third and fourth or-
der terma in H. Their.consideration brings us beyond the scope of
the RFA. In the RPA wu get D Z"F'fi—y— and
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The fifth term in (16) describes the energy shift of the two-
phonon pele. It is interesting to compare the results of this paper
with those of refs./%5/ in which the effect of the Pauli principle
on the properties of two-phonon states was teken into sccount in a
different way. The comparison shows that up to the main terms conta-
ining only the amplitudes W i the results of both the considera-
tions for Jf(?,?lig;ﬂ)eoincide.

The diagonal part of the four-boson term in (16) leads to the
following expression for the emergy shift of the two-phonon pole
ijTfL=
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plus the terms conteining small emplitudes ?ar
Here ﬁgf,/yzlk’,k_’l%q)comprmfaea the sum of the Krou?gx?g!aym-
bols. The genernl form of J.f(:?’ fs, ’j’)is given in refs.’-? « The
compariscn of expreasion (22) with the relevant formulas from ref. /54



indicates that both the methods of calculation provide similar axpros-
c¢igns for the two—phonon energy shift. . =

The present investigation has confirmed the canclusion about the
gbsence of collective two-phonon states in deformed nuclei.

References:

1. Bohr A., Mottelson B.H., Physica Scripte, 1982, v. 25, p. 28.

2. Warner D.D., Cesten P.F., Davidson W.F., Phya.Rev.C,1981, v. 24,
p. 1713. Cesten R.F., Warner D.D., Phys.Rev.C, 1982, v. 25,

p. 2019; Phys.Rev.Lett., 1982, v. 48, p. 666.

3. Couoprep B.T., 94ad, 1978, 7. 9, c. 8I0.

4. Jxonoc P.B., Mosmma X.J., Comopres B.I., TW@, I979, t. 40, c. 245.
Jolos R.V., Molina J.L., Soloviev V.G.,Z.Phys.4,1980,v.235,p.147.

5, Soloviev V.G., Shirikova N.Yu., Z.Phyo.a, 1981, v. 301, p. 293.
Comopres B.T., limpukona H.D,, A%, I982, T. 37, c. I976.

6. Cosopren B.T., Ileckma B E3T®, I984, t. 40, c. 398,

7. Conosrer B.I., Crosmoe Y., HEronaesa P., M3aB. AH CCCP, cep.dus.,
1983, 1. 47, c. 2082,

8. Peker L.XK., Hamilton J.H., Puture Directions in Studies of Nuclei
far from Stebility, ed. J.Hamilton, Amsterdam, Oxford, N.Y.North-
Holland P.C., p. 323, 1980.

9. Kleppinger E.¥., Yates S.W., Phys.Rev.C, 1983, v. 28, p- 943.

10. Davidson W.F. et &l., Phys.Lett.B, 1983, v. 130, p. 161.

11. Dumitrescu T.S., Hamamoto I., Nucl.Phys.a, 1982, v. 383, p. 205.
Matsuo M., Prog.Theor.Fhys. 1984, v. 72, p. 666.

12. Kurcewicz W. et al., Nucl.FPhys.A, 1976, v. 270, p. 175.

13. Davidson W.F., Dixon W.R., Storey R.H.,Can.Journ.Phys.,1984, v. 62,
P+ 1538.
Purke U.G. et el., Preprint Hamilton, Ontario, Canada, 1985.

14. I'puropren E.II., ConoBker B.I., CTDYKTYpS 9eTHHX TeDOPMMDOBAIHLX
anep., M., Hayra, I974.

15. Comoepen B.1., TM2, I982, T. 53, c. 399.

16. CosoBnes B.I',, Teopusa cloEHEX Amep, M., Hayra, IS7I.

Heceived by Fublishing Department
on Uctober 9, 1985,

Dxonoc P.B., H np. E4-85-728
Haygenue capura oyxXGoOHOHHLX NOMOCOB B He)OPMHPOBaHHLIX
Aapax MeTonoM G030HHHX PasSmOKeHHH

Ha ocnope meTona GO3OHHLX Pa3NOXEHHH NMOCTPOeHh HoBue $o-
HOHBl., ['aMUNLTOHHAN MOJENH BHPAXeH Yepes OonepaTophl HOBHLX $OHO-
HOB BIUIOTH [0 YIGHOR Y@TBepTOro MOpAfiKa. PaccuuTaH cOBUT OBYXT
doHoHHOora nomoca. C TOYHOCTHIO A0 TIAaBHLIX YIEHOB OH COBMagaeTr
CO cABHroM, paccymraniuM ¢ RPA doHOHaMM mnMpH CTPOTrOM yueTe
npuuimna Maynu. Tes camend NOATBEPXIEHO 3aKmoYeHHe 06 OTCYTCT=
BWH KONACKTHHHLX AnyxBOHOHILIX COCTOSHME B YeTHO-YeTHMX nedop-—
MHPOBAHHMX spax.

Pabora swmondena B JlaGopaTopun TeopeTHueckol dusuka OWAH

NpermpunT O6begHMHEHHOTO HHCTHTYTA RAEDHMX Hconenopammi. [lyGuaa 1985

Jolos R.V. et al. E4-85-728
Investigation of the Two-Phonon Pole Shift in Deformed
Nuclei by the Boson Expansion Method

New phonons are constructed by the boson expansion me-
thod. The model Hamiltonian is expressed through the new pho-
non operators up to the fourth order terms. The two-phonon
pole shift is calculated. It coincides up to the main terms
with that calculated with the RPA phonons and strict inclu-
sion of the Pauli principle.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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