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1. Basic assumptions of the quasiparticle-phonon nuc:ear model 

J..m!2 
The wave functions of low-lying states have one domiiating com­

ponent: one-quasiparticle in odd-A nuclei and one-phonon <r two-qua­
siparticle in even nuclei. The simplicity of the structurE of low-ly­
ing states enabled a detailed experimental and t~eoreticaJ i~vestiga­

tion. With increasing excitation energy the density of stetes in ato­
mic nuclei increases and their structure becomes complica1ed. From 
simple low-lying states one passes to more complicated stetes at in­
termediate and high excitation energies. In studying the ftate struc­
ture at intermediate and high excitation energy an importEnt role in 
atomic nuclei is attributed to the fragmentation of single-particle 
states, i.e. the distribution of the strength of single-perticle sta­
tes over many nuclear levels. In the models of independent particles 
and quasiparticles the single-particle strength is concentrated on a 
single level. In the extreme statistical model it is randcmly distri­
buted over all nuclear levels. A large region of intermediate and high 
excitation energies of an atomic nucleus lies between the low-lying 
states and the states that may be described by the extreme statistical 
model. 

The experimental study of the state structure of thie region en­
counters great difficulties. It is practically impossible to measure 
the characteristics of each of many thousands levels. Moreover, due 
to the complication of the state structure there is a lar£e number of 
components of the wave func~ions that should be measured experimental­
ly. Complication of the state structure begins at low excitation ener­
gies. 

The existing theories and computer technique does not allow .,a 
correct description of the structure of each level at the excitation 



energy above J MeV, apart from light and magic nuclei. This is caused 
by the necessity of diagonalizing matrices of an order of 1014-1020 • 
Moreover, one should take into consideration a rough description of 
nuclear forces and an approximate solution of the nuclear many-body 
problem. The main reason ·ia that there is no need in calculating each 
of many millions of components of the wave function of each state sin­
ce the quantitative data on nuclear structure are available for few­
quasiparticle configurations of the wave functions. The most exact ex­
perimental data follow from the fragmentation of one-quasiparticle, 
one-phonon and quasiparticle 0 phonon states. The only exception is 
the high-spin states. At intermediate excitation energies the fragmen­
tation of one-quasiparticle states appears as local maxima or sub­
structures in the cross sections of the one-nucleon transfer reactions. 
The fragmentation of the subshells s112 , p112 and p

312 
determines a­

and p-wave neutron strength functions. The giant resonances ·are de­
fined by the position of collective one-phonon states and the widths 
of giant resonances are due to their fragmentation. The few-quasipar­
ticle components reveal the effects of the shell structure. The prob­
lem of the nuclear theory is not so much a more exact solution of the 
many-body problem in the general form as a more exact description of 
those nuclear characteristics which are being measured in experiment 
at present time and would be measured in the nearest future. In de­
scribing the fragmentation, an important r<~le ::i:s played by the cou-
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to the interaction of quaiparticles with ph<~nons; this fact has been 
pointed out in refs/1- 61 in 1968-1971. Just the results of these in­
vestigations made the basis of the QPJK. 

The QPHK was formulated to describe few-q~siparticle components 
of the wave functions at low, interaediate and high excitation ener­
gies/4,7-111. The fragmentation of one-quasiparticle, one-phonon and 
quasiparticle 8 phonon states over maD7 nuclear levels is described 
in the framework of the aodel. Those characteristics of complex nuc­
lei that are defined by these coaponents are calculated. 

Bow we present the general scheme of solving the many-body nuc­
lear problem (fig. 1) preceding the foraulation of the QPHK. !he nuc­
lear Hamiltonian in the general fora is expressed through the opera­
tors of creation aj and absorption ~ of neutrons and protons and 
the system of equations is introduced. The Hartree-Pock-Bogolubov ap­
prox~tion (HPB) is used for deriving the closed systea of equations. 
Many equations turn out to be rejected within this approximation. It 
is assuaed that the influence of rejected equations is insignificant; 
moreover, they can partially be compensated by the effective forces 
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with constants fixed from the experimental data. The HFB method and 
the condition under which the density matrix is diagonal allow one to 
separate an average field and interactions leading to auperconducting 
pairing correlations. Then,uaing the canonical Bogolubov transforma­
tion one is led to the model of independent quasiparticles. 

H =- L. TUJ') a; af'- L G U,/1 ; 12'1/) a/ a; a1. a,. 
7:1' 1.12 ' 2 z • 

I,' I; 

System of coupled equations 

.. ~ 
Hartree-Fock-Bogolubov method 

<a/ a/ a~..a1 . >=<a; a!.,>< a; a!.'>-<a;al.'><~·a~.,>+<(J/Gj><a~.· a;:> 
'zz, •• zz •2 21 1 z 2• 

System of two equations 

<a;Jl,>= 0,.prn 

Ha = Hav + Hpait 
u 

a,= u, o<'. 7Jr:Xj 
Model of 

independent 
1 quasl.par"tic.Les 1 

Fig. 1. Nuclear many-body problem 

An approximate solution of the nuclear many-body problem symbo­
lically represented in fig. 1, is used to construct the QPNM Hamilto­
nian. The QPN.K Hamiltonian includes an average nuclear field as the 
Saxon-Woods potential and the superconducting pairing interactions. 
It also contains the multipole and spin-•ultipole isoscalar and iso­
vector including charge-exchange interactions in the particle-hole 
and particle-particle channels as well as the tensor isovector interac­
tion. 

The parameters of the Saxon-Woods potential are fixed so as to ob­

tain a correct description of the low-lying states in odd-A nuclei 
taking account of the quasiparticle-phonon interaction. Undoubtedly, 
one can use another form of the average field potential or to calcu­
late the energies and waTe functions of single-particle states within 
the Hartree-Pock method and to use them in the calculations within 
the QPN.K; this arbitrariness is of no fundamental importance. The ap-
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plication of the Hertree-Pock method imlies an early stage of parame­
trization, i.e. the parametrization of an effective interaction, for 
instance, in terms of the Skyrme forces. In the interactions leading 
to pairing, instead of the functions one uses the C{)nstants G11 and Gz 
whose values are determined from the difference of nuclear masses. 
This approximation does not reduce the accuracy of calculations within 
the QPII. 

The effective interactions between ~uasiparticles are expressed 
as the series of multipoles and spin-multipoles. The effective inte­
ractions as though compensate equations rejected within the HFB me­
thod. They are also related to nucleon-nucleon interactions in the 
nuclear matter and some terms correspond to the exchange by one or two 
mesons. For the calculations within the QP.NII it is essential that the 
interaction between quasiparticl~s is represented in a separable {fac­
torized) form. As is known/12 •13/ separable potentials are widely used 
in describing nucleon-nucleon interactions and in studying three-body 
nuclear systems and lightest nuclei, i.e. separable potentials are 
used in the cases where the results of calculations are more sensitive 
to the form of radial dependence of forces in comparison with the cal­
culations of the properties of complex nuclei within the QPNII. It is 
to be noted that the matrix elements of effective interactions are 
used in the calculations. The single-particle wave fUnctions truncate 
a small part of interactions. One can construct separable interac­
tions whose matrix elements are similar to those of more complex for­
ces/141. It may be assumed that appropriately chosen interactions bet­
ween quasiparticles in a separable form do not limit the accuracy of 
calculations. • 

There is a certain arbitrariness in the radial dependence of se­
parable interactions. The existence of collective vibrational quadru­
pole and octupole states indicates a maximum on the nuclear surface 
in the radial dependence of multipole forces. Therefore, for multipo­
le forces R ~ ( 't) is taken in the form of R ~ ( 'l) = z ~ or R) ( 'l) = ~~<zJwhere 
VCz) is the central part of the Saxon-Woods potential. Such a type of 
radial dependence is also used for spin-multipole forces. The ambi­
guity of radial dependence of the separable spin-multipole interac­
tion is especially large due to the absence of clearly seen collecti-
ve states of the magnetic type. 

Since the role of the one-pion (p-meson) exchange process at 
large nucleon-nucleon separations is very high, the QPBII Hamiltonian 
presented in refs./7-111 should be added by the isovector tensor in­

teraction in the form 
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where _ 

(S~M r = -~ ,<im I i) R), ('l) f6 y),f' l I j'm'>a-'"m a,·,m I 

pmm fJ..M I 
The effective separable interactions between quasiparticle& in the 

QPHM with the constants fixed from the experiaental data and phenome­
nological eatiaates are thought to be not weaker than more coaplex ef­
fect~ve interactions used in other papers. They are more advantageous 
than the Landau-Migdal density-dependent zero range force that is wi­
dely used in calculating the structure of closed shell nuclei. 

One should not attach great importance to the self-consistency 
between an average field and effective interactions, since a great 
nlUiber of equations is rejected within the HP.B method. 'rhe self-consis­
tent calculations are very important by a qualitative description of 
nuclear characteristics rather than by their detailed descriptioa of ex­
periment. They showed that in solving the nuclear many-body problem 
the ~ method may serve as a good basis for constructing nuclear mo­
dels. 

The scheme of calculations within the QPHM is shown in fig. 2. 
The e:xplici t form of the model Hamiltonian is gi ve.D. in refs .11 ' 81 for de­
formed nuclei and in ref./9/ for spherical nuclei. Transforming the 
......... ~ .... , ltaWt; 1 +nn; on 'h"r +lo.n nn""'"''".; ,..n1 'tll"\lP"'1 n'hn- + ..... aono.PI"\,..,..,n+; ,....,.. ,.,,..,...,. ----- ------------- -,., ---- -------~-- --~------- ------------------
ses from the nucleon operators to the quasiparticle o<.';,.and oijm opera-

• .. .J ' tors. The pairs of operators d;m o(j'm' and vi'm'~·m are expressed thro-
ugh the phonon operators and the quasiparticle operators remain only 
in the form o</m o(jm'• Such an inclusion of phonon operators overcomes 
difficulties with double counting of some diagrams that take place 
in the nuclear field theoryl151. Then, the RPA equations are solved 
to determine the energies and wave functions of one-phonon states. 
All the model parameters are fixed at this stage. By using the expe­
rimental data to fix the constants of pairing, aultipole and spin­
multipole isoscalar and isovector interactions, one as if takes into 
acco~t the effect of a Chain of equations rejected within the HlB 
method. 

~he specific feature and advantage of the QF.IM is the use of one­
phonon states as a basis. This is possible due to the fact that the 
RPA provides a unique description of collective, weakly collective 
and two-quasiparticle states. Within the RPA the secular equations of 
the JII.Odel Hamiltonian are transformed to the form 

HGPhNM = ~ Ej c~.,:, ~im • HlJ + H?J-'f 
J 
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H = H ov + H pai -z .,. H,., + Hs .,. H r 
~ 

separable form 
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a1 = u, r:X1 .,. Yi ct:j 

Q~pi r~; a;,} => Q>.pi o<; a,· 
RPA RPA ci.J' c:~., 

np-phonon phonon quasiparticles 

RPA-equations, phonon space, all the constants 
are fixed 

ij 

H =[.E o<•c1 •H •H 
QPhNN I I I I 1t 1J9 
~ '--..... 
quasiparticle quasiparticle-phonon 

interaction and phonons 
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6 

l 

.• 

containing free quasiparticles and phonons and the quasiparticle-pho­
non interaction Hv~· Formula (1) includes also the np phonon opera­
tors describing charge-exchange giant resonances and T~ excited sta­
tes. This is the first specific feature of the QPNM. 

The phonon space corresponds to a full space of two-quasiparticle 
states of the particle-hole-type and some states of the particle-par­
ticle-type. A full space of two-quasiparticle states is used when the 
interactions in the particle-particle channel are taken into account. 
The multipole forces are used to construct a phonon basis in deformed 
nuclei for K71 = ot, 1~, 2~, ••• 7i. In spherical nuclei the multipole 
forces are used to construct one-phonon states with Jil = ,-, 2+, 3-, ••• 
7- and spin-multipole forces for the states with J~ = 1+, 2-, 3+, ••• 1: 
For each value of Kfl or Ji several hundreds of roots of the secular 
equations and relevant wave functions are calculat~d. The calculations 
of the state densityf 161 indicate the completeness of the phonon space. 
As a result of calculations of the phonon space all the QPN.M constants 
turned out to be fixed. 

The second specific feature of the model is: the quasiparticle­
phonon interaction is responsible for the fragmentation of quasipar­
ticle and collective motion and thus for the complication of the nuc~ 
lear state structure with increasing excitation energy. 

The excited state wave functions are represented as a series in 
a DUDJbPl" Of" nhnT10T1 f'ITH3-,..a+n.,.a ;.,., ,..,,IM_ A ..,""...,, ... ..; ---'- -L-- ~- ~---""1 .J...-'-..,..!-., 

- ... • - -- - ------- --- ................... ..., ,JU.W.Jo. ., • .t' ......... ~"" 

by a quasiparticle operator. The approximation consists in the cut-off 
of this series, that is the third specific feature of the model. The 
cut-off of the series is the approximation similar to the cut-off of 
the chain of equations in the HPB approximation. At present our expan­
sion is limited to two phonons, that is demonstrated in the scheme 
(fig. 2). To elucidate the influence of many-phonon terms of the wave 
functions on the calculated effects is as difficult as to evaluate the 
role of neglected in the HPB approximation chains of equations of the 
many-body problem. It is stated in both the cases that approximate 
equations describe correctly the properties of nuclear excitations 
and the te~ neglected are partially taken into account by using con­
stants fixed from the experimental data. In the calculations the Pau­
li principle is taken into account by using exact commutation rela­
tions between the phonon and quasiparticle operators. 

The fourth specific feature of the model is the use of the 
strength function method. By using a version of the strength function 
method deTeloped in refs./7, 17/ one can directly calculate the redu­
ced transition probabilities, spectroscopic factors, transition den-
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sities, cross sections and other nuclear characteristics without sol­
ving the relevant secular equations. The application of the strength 
function method reduces the computer time by 103 times and makes it 
possible to calculate the fragmentation of one-quasiparticle, quasi­
particle ® phonon and one-phonon states for many nuclei. The cha­
racteristics of highly excited states are calculated for spherical 
nuclei with closed and open shells and for deformed nuclei. 

The general scheme of calculations within the QPNM is the follo­
wing. The wave functions of the excited states of odd-A, doubly ~v~n 
and doubly odd spherical nuclei are written as 

lf.v[JM)= C:r.y {cx';M + ~.Dr(Jv) {cii:n a;pi]JM + 

+ L F:A,i,A,iz (JY)[ot'+ [Q~ . a+ ] J¥. 
l,i,l~izji Jl jm l,p, t, AzJlzLz JIM' JM o , 

(3} 

!fv UN)= f 2_ Ri <Jv> a;pi .. ,~, . P:.:~· (J-i )[ a;,)J,i, a;zl'ziz 11,.. } lfo 
L A,L1"zLz r· 

(4) 

'iv (JM )= f r R i ( JY) ..a;,.ui + r: )5}.:·:; (JY )[ n;,p,i, a;z}lzlz J:rM} '1! 0 
t ~.L,~zlz 

(5) 

where ~ is the ground state wav~ function of a doubly even nucleus 

(phonon vacuum); o(]m , fl;pi , S2 J.pi are the quasiparticle and phonon 
creation operators. Then, we find an average value of HQPhNH (2) over 
(3) or (4) or l5J. Using tne var~al<~Ona.L prJ.ncip.i.e wui i.W...i..u.t:S .i..u.i.u "'"­

count the normalization of the wave function (3) or (4) or (5), we get 
the secular equation for the energies of excited states and write it 
down as 

§r2.,J=D. (6) 

We also get the systems of equations for the coefficients of the wave 
functions (3) or (4) or (5). 

The following nuclear characteristics are calculat~d within the 
QPNM: 

1) Low-lying nonrotational states of deformed nuclei/18-21/, 

2) fragmentation of one-quasiparticle and two-quasiparticle sta­
tes in deformed nuclei/17-22/, 

3) fragmentation of one-quasiparticle states in spherical nuc-

1 ./23-25/ e1 , 
4) fragmentation of two-quasiparticle states in spherical nuc-

1 -/10-26/ e1 , 

5) neutron s-, p-, d-wave strength functions in spherical and de­
formed nuclei/10 •17• 25 •271, 

6) radiative E1-, E2- and M1-strength functions for transitions 
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from neutron resonances to the ground states of spherical and defor­
med nuclei/28-30/, 

7) photoabsorption cross sections in the region of the giant di­
pole resonance tail in spherical nuclei/1°, 25,28 ,31/, 

8) positions, widths and transition densities for EA- and MA­
giant resonances in spherical and deformed nuclei/8 ,10,25, 28 ·32,33/, 

9) strength distribution of the charge-exchange Gamow-Teller and 
spin-dipole resonances in spherical and deformed nuclei/34,35/, 

10) description of the scattering of photons, electrons and pro­
tons with excitation of giant EA -and MA-resonances/36/ and others. 

A rather good description of the relevant experimental data is 
obtained. Some predictions are made. The calculations are performed 
with the same model parameters for each group of nuclei. After fixa­
tion of the phonon space the model has no any free parameters. 

In these lectures the application of the QPNM is given for two 
cases for the description of the fragmentation of charge-exchange re­
sonances in spherical nuclei and for the description of vibrational 
low-lying states in doubly even deformed nuclei and comparison of the 
QPNM results with the interacting boson model (IBM). Part of the re­
sults obtained within the QPNM will be presented in the lectures by 
Ch.Stoyanovl 371. 

2. Fragmentation of charge-exchange collective states 

In recent years much attention has been paid to the study of gi­
ant charge-exhange resonances. Only part of the charge-exchange reso­
nance strength is observed experimentally as compared to the relevant 
sum rules. The fragmentation of these states due to the coupling with 
2p-2h configurations and to the mixing with ~ -isobar-nucleon hole 
configurations is the reason for the quenching of strength in the re­
gion of maximum. The influence of admixtures of 2p-2h configurations 
has been studied in refs./38-41/ and other papers. The fragmentation 
of charge-exchange phonons is studied within the QPNK. A general me­
thod of introducing charge-exchange phonons in the QPRK is expounded 
in ref./

421
• The fragmentation of the Gaaow-Teller resonance in some 

spherical nuclei has been described in refs./34,41/. 

It is assumed in some papers, for instance in ref./39/, that the 
inclusion of tensor forces 1n calculating the fragmentation of the Ga­
mow-Teller resonance leads to a shift of a considerable part of its 
strength towards high excitation energies. Within the QPBK the influ­
ence of tensor forces can be studied if the model Hamiltonian is added 
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by the term ( 1). For the spin-mul tip ole states with 1
11 = 1 +, 2+, 3; ••• 

a c.;iwul t:Jnc")'~ ~ inclusion of spin-mul tipole with ). = :!f and tensor for­
ces leads to the following secular equation for the energies w, i of 
one-phonon states: 

L-fJ.XJ.-fLi+ i.XLtfLi_f 
£1 (+) JeT (+) 

J.•IJ.XLttl-i ~.,X.t-ft.i 
X, (+) +;t_T {+) 

L-(L xLtl'-' ~., xL•IJ.i 
Jel (+) +JlT C+) 

xl'''-xt..'ILi, ~.xt..!ILi_ 
I (0 :JeT (+) 

J.-11- L-IL; LXL!Ii.i 
Xt Xt+-) +JeT (+-) 

x'-•IL x/..!lli. '- xL-fi.i 
1 1+-J Jlr r+-) 

1..-flxl.!l'-i '-x~..,~.,, 
Jl, (+-) + J{T (+-) 

'-•1/.. xL•fLi ~. xi.!IJ.i 
Jl, t•-J •;;er 1+-! 

1.,-tt..xL-ILi LXL!!Li 
XI (+-) T J(T (+-) 

L•''-'x'-!fJ.,· '- xL-1'-·· 
3{1 !+-! +JeT i+-! 

4-IL Ltfli '-XL+!Li 
J{ 1 X1,_1 +X1 !+-! 

L'''-'x L•ft..i '-xi.! n• 
Jl1 (+-) +3{1 (+-) 

L-11- L-''-' ~-x/..ttJ.i t 
Jet Xr-J •Jer !-! -

i.•ILiXI.tfJ.i '-XL-f.l.i 
J{ f (-) + :J{T (-) 

L-/I..XL!I'-• + ""Lxi-•!J.i 
X, r-J ""r r-> 

t•u··xL'''-' ~.. xl. t/l.i 
J{ f (-) +JeT 1-) - f 

. u' . (t) /•·' where X U• _ _ ! _ ' (f (/pJn) VJeJn r_,;,.Jn 
+ -2 L t z ' (_) 'J..•f,.,. t·,· -J2J.. 

P n Jp n ' t 
f.+fJ.. I L-It.. .. 1.•11.. ')(UtJ )'c .. v - '= _ ) f (JpJn)f (Jp/n JpJn CIPJn 

/ \ (! ) it. I.. 1 ~ 2 . (") 2 
IPJn E;~/n -~'-l.i 

;.'-'~ _t_ L_ 
XI•-) 2L•Ijp/n 

J.!fli __ I_ I 
X(+-) - 2L + f IPJn 

J ~L . ' 2 (•) (-) D 
( (JpJn) UiPin Uiein '-' 

2 Sl2 
C,jPin - Li 

L-IL (. · · L•fL · ·) U(+) , !1-l. _Q . 
f Jp/n)f (JpJn~~~ 

t2 ' - _Qi_ 

(7) 

=0, 

L Jp/n • 
Assuming that X 1 =0 one gets an equation for spin-multipole forces 
with >.=L!{. Rejecting also the components with>.= l•f one arrives 
at the RPA equations that are used for the study of the Gamow-Teller 
resonance. The calculations have shown that the inclusion of tensor 
forces somewhat changes the RPA solutions. 

In describing the fragmentation of charge-exchange phonons the 
wave function is writted in the form (5) and the variational princip­
le is used to find. the secular equation and equations for Ri {J'y) and 
P., ~ •. L 

1 
• Then, the strength functions of (p ,n) and (n, p) reactions are 

"2 Lz 
calculated.Fig. J shows the results of calculations of (p,n) reaction 
with excitation of the Gamow-Teller resonance in 140ce/J4/. In compa­
rison with the RFA calculations the quasiparticle-phonon interaction 

10 

' 

I 

leads to the decrease of strength in the region of resonance maximum 
from 81% to 46% of J(N-Z), to the increase of strength in the low­
energy region from 12% to 30% and to its increase in the regions above 
the resonance maximum from 7% to 24%. The strength shifted to the re­
gion above the resonance maximum is insufficient to explain the rele­
vant experimental data. A similar picture takes place for other sphe­
rical nuclei. 

b(p,nYE),MeV-1 

0.1 

5 10 15 20 25 
E,MeV 

Fig. J. Fragmentation of the Gamow-Teller resonance in 14°ce 

The quasiparticle-phonon interaction causes a strong fragmenta­
tion of spin-dipole one-phonon states/34/. The strength of these sta-
+ne~ .;a nl"'oTICJ;.4n-..n'h1 .. r ..,..nn..;o+..,..;'hn+n.4 ur;+'h;.., +'hn .,..n,.,.;,.., ..... r..P +'hn V'PA on1n~ --- ------------., ----------- -~ ---- --~---- -- ---- ----
tiona though the strength of spin-dipole states is not greatly shif­
ted from the resonance region towards high excitation energies. 

A further study of the fragmentation of charge-exchange one-pho­
non states within the QPNM will be performed along the following li­
nes: 1) improvement of the description of the fragmentation taking 
into account a part of three-phonon terms of the wave functions by 
formulae given in ref./43/; 2) for the states of the magnetic type 
and first of all for the Gamow-Teller resonance the inclusion of the 
tensor force together with the spin-multipole forces with A=L-Iand 
A=L+ f; 3) elucidation of the influence of the radial dependence of 
effective interactions. 

3. Confrontation between the QPNM and IBM in describing 
deformed nuclei 

The phenomenological interacting boson model (IBM) has been for­
mulated by Arima and Iachello/44/ on the basis of the group theory 
method. They introduced two types of bosons; s-bosons with J =0 and 
quadrupole d-bosons (dp , p =0, !1, !2) and assumed that o+ and 2+ 
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collective nucleon pairs play a dominating role for the description 
of quadrupole collective states. They used a finite boson expansion 
of the Schwinger-type and the SU(6) approximation. Bosons are expres­
sed through correlated nucleon pairs, therefore the IBM is related 
with the shell model. However, the IBM is based on a very small part 
of the shell model fermion space. The IBM is widely used for analysing 
the experimental data of the energies and E2 transition probabilities 
£or a large number of spherical, transitional and deformed nuclei. 
The IBM allowed one to describe the spectra of transitional nuclei 
that could not be reproduced in other models. However, a good descrip­
tion of the energies and E2 transitions does not imply a correct de­
scription of the structure of these collective states. Apart from the 
integral characteristics there are also differential ones of vibrati­
onal states which are exhibited in the one-nucleon transfer reactions 
and p - and r -transitions to these states. The calculations within 
the IBM were enormous that in some cases they fall outside the range 
of its applicability. The anharmonic corrections are thought to be 
not very large in deformed nuclei, therefore each wave function of an 
excited state has one dominating component. 

Doubly even deformed nuclei possess low-lying two-quasiparticle 
ft ~ 

and vibrational states. The collective K =2~ (-vibrational, K tt = o; 
p-vibrational and K

71 
.. 01, fj, 21 and 31 octupol~ states and8(£,:\)­

values of their excitation are well described as the one-phonon sta-
,.., 1Q 10/ 

•es· -··-··-·.The one-phonon wave functions are the superpositions of 
two-quasiparticle components. The experimental data available for some 
nuclei confirm that the largest components of the wave functions of 
the first one-phonon states are correctly describ~d. 

According to the generally accepted treatment there should exist 
one-, two- and three-phonon states in doubly even spherical and defor­
med nuclei. In refs./21 •45/ the effect of the Pauli principle on exci­
ted states in two-phonon components of the wave functions has been 
studied within the QPIK taking into consideration many complex dia­
grams. It was concluded in rer.1211 that the collective two-phonon 
states should not exist in deforaed doubly even nuclei. It should be 
emphasized that A.Bohr and B.Mottelson/46/ try to uphold the general­
ly accepted treatment assuaing the existence of collective two-phonon 
states in deformed nuclei. 

~or the description of doubly even deformed nuclei within the 
QPD the wave function (4) is usuall,- taken as a sum of 5-10 one-pho­
non teras and a great number (102 103) of two-phonon ~erma. Accor­
ding to the calculations performed the ca.ponentsApi •221 and 201 con-
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tribute more than 80% to r -vibrational K'l =2~ and f3 -vibrational K
11= 

+ + + + + + + + + . = o
2 

states. The states 22 , 23 , 24 , o3 , o4 , o5 , 41 and 42 have dom~-
nating components ~pi =222, 223, 224, 202, 203, 204, 441, 442. Up to 
the excitation energy of 2 MeV an admixture of two-phonon collective 
components does not exceed 10%. The states with Kn = 3~ and 3~ are as 
a rule two-quasiparticle. It can be stated that up to the energies 
{2.0-2.3) MeV the wave functions of nonrotational states have one do­
minating one-phonon component; they are shown in fig. 4. 

Now we shall compare the description of f3 - and t -vibrational 
states within the QPNM and IBM. Since the one-phonon components 
= 201 and 221 are dominating, the QPNM does not provide a considerab­
ly better description of 0~ and 2~ states in comparison with the RPA 
calculations. The wave functions of 0~ and 2~ states are the superpo­
sition of a large number of two-quasiparticle components of the par­
ticle-hole type. Note, that for the description of 0~ and 2; states 
only a small pa~t of the space of two-quasiparticle states is taken 
into account. In the IBM the one-boson components np =1 and nt =1 do­
minate in the wave functions of 0~ and 2~ states. The particle-par­
ticle components in the wave functions of these states dominate at 
the beginning of the region of deformed nuclei, whereas the hole-hole 
components at the end. Due to the particle-particle structure of nr =1 
operator at the beginning of the region of deformed nuclei the 2~ sta­
+"" m"y h<> w<>ll <>vf'itP<i in .,.., .. ..,tionO'l of th~> tvn~> (d.n) or (He.d) and 
should not be excited (or slightly excited) in the reactions of the 
type (d, t) or (d,JHe). The succe::;s of the IBM in describing the in­
tegral characteristics of 0~ and 2~ states is obvious, especially as 
concerns the E2 transit ion:.~ to the ground state bul<l 'llld be tween th€ 
ba11ds constructed on o; and 2~ states. These state J 'lre treated dif­

ferently within the QFNM and IBM. 
(, th ,, · t · t· K 'ii o+ o+ o+ , • '+ 2 • ,orupare e u.escrlp 1on o = 3, 4 , 3, -." ~ 3 , 4 ao on 

states. In the QPIDil the states o;, 0~, o; have lar~;<• (e0-95)/~ one-pho­
non components Api = 202, 203, 204 and the state3 2.;, ij, 24 large one­
phonon components 'Ap~ =222, 223, 224. In some cases a mixture of one­
phonon components is observed. It is to be noted that in describing 
these states the spa~e of two-quasiparticle states became broader in 
comparison with that determining 201 and 221 phonons. These states 
should not have large collective two-phonon components and first of 
all those constructed of 201 and 221 phonons. The available experimen­
tal data/47• 48/ do not contradict this conclusion. Moreover, according 

to the new experimental data/49/ the state K'ii =4+ with an energy of 

2.03 MeV in 16~r which has been thought to be K=4 and treated in 
refs./4G-50/ as the two-phonon state has K=O and is not two-phonon. 
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In the IBM the dominating components of the wave functions are: 
+ + + + 

nr =1' n;a =1 for 21 states,n.r =3 for 23' nr =2 for 03 andnp =2 for 04 
states. The main part of the strength of one-boson states n1 =1, njJ =1 
is concentrated in 2~ and o; states and only a small fraction of their 
strength is attributed to 22, 2;, o; and o; states. This means that 
the dominating components of the wave functions of 2;, 2;, o; and o; 
states are the two- and three-boson ones and the contribution of one­
boson and thereby two-quasiparticle components is very small. These 
components are shown in fig. 4. From the microscopic point of view, 
within the IBM only a small part of the space of two-quasiparticle 

states entering into the wave functions j3- (n,e=f) and ( (nt= 1) -vibra­
tional states is taken into consideration. Withj -boson the space of 
two-quasiparticle states becomes broader. However, according to the 
calculations/5 1/ for 16~r the weight of J -boson in 2;, 2;, o; and 
+ o4 states does not exceed 30% and the two- and three-boson components 

are still dominating. 

+ 
04' 
and 

. + + + + As a result we state that the wave funct~ons of 22 , 23, 24 , 03 , 
o; states in the IBM have large two- and three-boson components 
in the QPNM they have large one-phonon components with i = 2,3,4 

and have no pronounced two-phonon collective components. In the QPNM 
the structure of these states is mainly determined by the set of two­
quasiparticle components that is not available in the IBM. As it has 
been mentioned in ref./5 2/ therP ia funnAmPntAl niffo~on~o in noa~~i-
bing these states within the QPNM and the IBM. 

We shall consider K~ = 4~ and 4~ states. According to the calcu­
lations within the QPN:M the one-phonon components Api =441 and 442 do­
minate in the wave functions of 4~ and 4~ states; the contribution of 
two-phonon components (221,221} does not exceed (1-5)~. In the IBM 
the 4+ state is treated as the two-bosonnr •2 state. According to 
the calculations of ref./5 1/ for 16~r the weight ofj -boson in the 
wave functions of 3~, 4~ and 4; states does not exceed 3~. This 
means that the two-bosonnr •2 components are dominating. There is an 
essential difference in describing 4~ as well as 3~, 3; and 4; sta­
tes within the QPN:M and IBM. The wave functions of these states sho­
uld contain large two-quasiparticle components or large two-phonon 
components. 

Summing up the above discussion we may state that in describing 
nonrotational states with Kn = o+, 2+, 3+ and 4+ of deformed doubly 
even nuclei with excitation energies in the range of 1.5-2.5 MeV 
three basic models are confronted: the Bohr-Mottelson model with its 
microscopic analogue, the QPNM and the IBM. According to the QPNM the 
collective two-phonon states should not exist in doubly even deformed 
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is attributed for each level~ on the left according to the 
QPNM and on the right to the IBM. 
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nuclei, though their existence is predicted by the Bohr-Mottelson mo­
del and in the IBM they are treated as two-boson components. Moreover, 
according to the QPNK the wave functions of each of the states with 

'ii + ++++ ++ + .. K = 21 , 22, 23, o3, o4, o5, 41 and 42 (K- proJect~on of momentum 
onto the nuclear symmetry axis, i = 1, 2, ••• ) has one dominating one­
phonon component, whereas the IBM predicts a two- and three-boson com­
ponent as dominating. Thus the treatment of these states differs qua­
litatively within the QPNM and IBM. It ahould be emphasized that the­
re are no reliable experimental data on collective two-phonon states 
in deformed nuclei. The r~cent experimental data indicate that they 
are correctly described within the QPNM. Further experimental inves­
tigations are necessary to elucidate the structure of nonrotational 
states of deformed nuclei and to settle contradiction between three 
models. 

Conclusion 

Within the quasiparticle-phonon nuclear model one can calculate 
many properties of complex nuclei at low, intermediate and high exci­
tation energies. Part of these calculations has already been perfor­
med. The fact that within the QPNM one can get a good description of 
many nuclear characteristics in a sufficiently wide energy interval 
using one set of parameters indicates that it cor~ectly reproduces 
the basic features of the nuclear many-body problem. The model makes 
it possible to calculate many nuclear characteristics and cross sec­
tions of a large number of reactions for spherical nuclei with A .,.50. It 
is obvious that for further calculations more complicated versions of 
the model will be used by including new terms in ~he functions and by 
taking account ef new forces. The study of fragmentation of quasipar­
ticle 8 phonon states and the calculation of r.-decay of deep hole 
states and relative strength functions are the problems to be solved 
in the nearest future. 

In should be noted that the main contribution to the wave func­
tion• of highly excited states comes from many-quasiparticle and many­
phonon components. At present there is no information on the values 
and distributions of many-quasiparticle components of the wave func­
tions of highly excited states. Certainly we shall witness in future 
the manifestation of new properties of highly excited states defined 
by many-quasiparticle components. 
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B 06•eAHHeHHOM HHCTHTyTe RAePHWX HCCneAOBaHHH Ha4an 
awxoAHTb c6opHHK "HpamKue coo6t~~eHuR OH.HH". B HeM 
6YAYT noMe~aTbCR CTaTbH, COAep*a~He OPHrHHanbHWe Hay4HWe, 
Hay4HO-TeXHH4eCKHe, MeTOAH4eCKHe H npHKnaAHWe peaynbTaTW, 
Tpe6yiO~He Cp04HOH ny6nHKal.IHH. 6YAY4H 4aCTbiO "Coo~eHHH 
011RH", CTaTbH, BOWeAWHe B c6opHHK, HMeiOT, KaK H APYrHe 
H3AaHHR 011RI1, CTaTyc O~HLIHanbHWX ny6nHKaliHH, 

C6opHHK "KpaTKHe coo6111eHHR 011RI111 6yAeT BWXOAHTb 
perynRpHo. 

The Joint Institute for Nuclear Research begins publi­
shing a collection of papers entitled JINR Rapid Communi­
cations which is a section of the JINR Communications 
and is intended for the accelerated publication of impor­
tant results on the following subjects: 

Physics of elementary particles and atomic nuclei. 
Theoretical physics. 
Experimental techniques and methods. 
At.t.~ i ~r-d i.ur::.. 
Cryogenics. 
Computing mathematics and methods. 
Solid state physics. Liquids. 
Theory of condensed matter. 
Applied researches. 

Being a part of the JINR Communications, the articles 
of new collection like all other publications of 
the Joint Institute for Nuclear Research have the status 
of official publications. 

JINR Papid Commum'cations will be issued regularly. 

Conoabea B.r. 
Kaag~acTuqHo~oHOHHaH MOAeJ1h HAPa 

E4-85-706 

H3JIO~emM OCHOBmMe nOJIO~eHHH KBa3HqacTHqHo-~HOHHOH MOAeJIH 
HApa /K$MH/ H AaH~ ABa ee npHMeHeHH~. OnucaHO BBeAeHHe TeH9op­
~ CHJI a K$M» H npuaeAemM pegyJ1bTaT~ ugyqeHHH ~parMeHTa~H ga 
PHAOBo-o6MeHH~ ve3oHaHcoa a c~epuqecKHx HApax. Aauo onucaHHe 
HH3Kone~~x K"~~ 2+ , J+ H 4+ COCTOHHHH B qeTHo-qeTH~ Ae­
~OpMHpoaaHH~ HApax H BhlnOJIHeHO CODOCTaBJieHHe pegyJibTaTOB~ pac 
cqHTaHH~ B K~MH, C pegyJibTaTaMH, DOJiyqeHH~H B MOAeJIH B3aHMo­
AeHCTBy~ 6090HOB. 

Pa6oTa B~nOJIHeHa B na6opaTOPHH TeopeTHqecKOH ~H9HKH OHHH. 

OpeiiPIIJIT ()e,e,q~~aeHHOrO HHCTHTYTA •AepJIIoiX HCCneAOaAHHI. JlyCSaa 1985 

Soloviev V.G. E4-85-706 
Quasiparticle--Phonon Nuclear Model 

Basic assumption of the quasiparticle-phonon nuclear model 
(QPNM) and its two applications are presented. The introduc­
tion of tensor forces in the QPNM is described and the results 
of studying the fragmentation of charge-exchange resonances 
in spherical nuclei are given. The low-lying Kw= o+, z+, 3+ 
and 4+ states in doubly even deformed nuclei are described. 
The results calculated in the QPNM are compared with those 
obtained in the interacting boson model. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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