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I. Introduction

The aim of this paper 1s to obtain for the semisimple Lie algeb-
ras of types Bn’ Cn and Dn a list of pairs of irreducible represen-—
tatlons which have the property that the Kronecker product of the
elements of a given pair decomposes into a direct sum of two irredu-—
cible representations.

Using a procedure due to Okubo

/1/

these results prove to be
conslstent with our previous results in which, after determining the
second-degree polynomial identities which can be satisfied by linear
representations g of a Lie algebdbra /2’3/, the representations i
(satisfying the identities) have been obtained for the semisimple
Lie algebras C (n%2) and D (nz 5)/4’5/.

2. The procedure of Okubo

Okubo has proved 1/ that there exists a direct connection
between the polynomial identitles satisfied by finite—dimensional
representations of Lie algebras and the Clebsch-Gordan series of the
direct products of these representations with other finite—dimensio-

nal representations. This conneotion results in the following way?
For any two finlte-—dimensional representations f; end fo
(of maximal welghts A and respectively) of a reductive Lie
algebra [ acting in the linear spaces Y& and V,, , an opera-
tor A actingon V. @& Vo i
A = 2 F ter) ® fnle” (2.1)

may be defined. In formula (2.1) 1§ 6;5,_ i1s a basis in the Lie
algebra L. and { ej}} is another basis in L having the
2-4
property .
(e, e?) =iy (2.2)

2

if we denote by ( > ) a nondegenerate bilinear form on L ( the
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exlstence of which is ensured by the property of L. to be reduoti-

ve)-
The operator A\ ocommutes with the operators of the direct pro-

duct of the representations fk and FJL (25
(2.

foie) ® Lo + 1. ® ol

for any <<€ L . Hence, by Schur's lemma, In any irreducible sub-
space of V. @ V, the operator A 1s proportional with the

unity operator. Thus, if

2 (2.4)
’oA @ F_‘—L - n@.w ‘DE"K
and -
V@ Vo = © Vs (2.5)
Rty [,
we ohtain for A, the spectral decomposition
S - (2.6)
A= > Mg
R=1 \/
where E; 15 the projector on the subspace = "
—a

The ;olynomial of minimal degree, whioh vanisﬁ%s if its indeter-
minate 1s replaoced by the operator A , generates the poly7§?i?l
identities satisfied by the representations ﬁ\ or ECL :
the polynomial identities for f, ( ﬁa_) are obtained 1f in the
polynomial satis(ied by the operator A in expression (2.1) of

A ﬁIL(fe") ( fa (e;)) are replaced by matrices of these
operators in a fixed basis in Vo 0 VG )+

Equations (2.4), (2.6) tell us that the minimum degree of the
polynomial equation P(A) =0 satisfied by A 1s equal to
the number of distinot elgenvalues Ay of A (or, what amounts
to the same, to the number of distinot eigenvalues of the Casimir
operator) i.e,9 to the number of distinct terms in the Clebsch-Gor=

dan series (2.4).
/243/

3. The procedure developed in and

subsequent results

In paper s2/ 41t has been proved that the polynomial identiltles
of degree & which are satisfied by the generators of a Ppisson
bracket realization of a Lie algebra [ ocan be obtained by equating
to mero the basls vectors of subrepresentations of the symmetric
part (ad @k ), of the direct k— th power of the adjoint

representation of L .

The polynomial identities satisfied by linear representations
of /- are obtained by symmetrization /3/ from the polynomial iden—
tities satisfied by the corresponding Polisson bracket realizations.

In paper 2 we deduced the expressions of the second-degree
polynomial identities for the non-exceptional semisimple Lie algebras
Ah(n'z kh e En(n 22, Cn(n > 2) and Dn(n 2 5). (These identities are
obtained by the vanishing of second-degree tensor operators which
transform under subrepresentations of (ad &® ad)s e

In order to be an intrinsic property of the Lie algebra L
a set of polynomial identities has to be lavariant under the auto-
morphlisms of & s hence under the adjoint group. Intrinsio poly-
nomial identities can be thus provided only by subrepresentations
of the extension of the adjoint representation to the symmetric or

o the universal enveloping algebras: the procedure developed in
253/ allows thus the determination of all intrinsic polynomial
identities,

Subsequent papers were aimed to extract the informa-
tion contained in the polynomial identities derived in /3/ + In pa-
pers 7455/ it was proved that the tensor operators deduced in/j/
for the algebras ¢ (2n,C) (n 7 2) and so (2n,C) (n » 5) determine
the welghts of the linear representatlons of these algebras for
(the states of) whioh these tensor operators vanish.

The Clebsch-Gordan series of (ad (9 ad), for the semisimple
Lie algebras Cn and Dn are the following:

¥

/4,5,6/

for C (n» 2): (ad@ad) = ()@ (AL)@(44)@(2M),  (3.1)
for D (n 3 5): (ad@ad), = (o) ® (2A)@ (M) @ (243),  (3,)

where by /\/, 1®=l,...,n we denoted the fundamental weight system
of a Lie algebra of rank n and by ( /\. ) the corresponding re-
presentatione.

Let us denots a temsor operator associate; with representation
o by 7, . The following results hold /4,5 :

For sp (2n,C):

a) The only representations ¢ for (the states of) which

the second-degree operator 7(A.) vanishes are p = (kA.)
b) The only representation ¢ for whioh the second-degree
tensor operator T¢«a,) vanishes is ¢ = (A4)

¢) There are no representations ¢ of sp (2n,c) for
which the tensor operator 7[2A1) vanishes.



For  4c (2n,C):
a) The only representatlons ¢ for which the second-degree

tensor operator 722,‘4) vanishes are ¢= (kA,,) and
¢ = (RAL)

b) The only representations for which the second—degree tensor
operator 7., , vanishes are ¢ = (RA,)

¢) There exists a representation, ¢ =(/A,).9Z 36 (2n,C) for which
the tensor operator 7214‘) vanishes .

4. Representations the Kronecker product of which has
a Clebsch-Gordan series composed of two terms

To determine, using Okubo's procedure, all finite-dimensional
representatlions which satisfy second-degree polynomial identitiles
we have to f£ind (keeping the same notation as in section 3) all the
pairs of representations ( A ) and ( £2 ) suoh that the Clebsch-
Gordan serles of their Kronecker product contains only two terms

(AYB(N) = (A+N)@ (=), (4.1)

We shall give solutlons of this problem for algebrag of types Bn
C, and Dn'
The following result due to Dynkin allows the calculatilon
of a seoond term ( [— ) 1in the Clebsch-Gordan series of (A)G(L2),
Let L be a semisimple Lie algebra and let ( /A ) and ( <2 )
be two irreducible representations of L 1labelled by their
maximum weights A and (2 .
Let Ky g Ry won , Ox be a minimal chain of simple roots
connecting the weights /A and {2 sy l.0.3a set of simple roots
such that

/8y

#* O
( /\J“")#o 2 (dk’ﬂ) (4.2)
(%, ®ips) #0 (< =ty kat)
and such that no proper subset of { % > --- > %=}  having the
same properties exists. Then

E(d,,w,_...)«k) = A+ — (o +% +- ) (4.3)

is the maximum weight for one and only one of the irreducible com=—
ponents (&), LB )i 5 (d}) in the decomposition of the Kronecker
product

(AN) ®(2) = (F)@(h)@ - @ (b))

Let us apply Dynkin's theorem to the algebras Bn’cn and D
n
1) Agebras of type B,

Let us denote by (A.), 1=l,...,0 the fundamental representa—
tlons and consider for algebras of type Bn the Eronecker product
(mA) @ ( A.); this product admits as a first term in 1ts
Clebsch~fordan decomposition the representation (A, + A, ) .

We shall deduce a second term by using Dynkin's theorem and
then prove oaloulating the dimensionalities of the representations
involved that no other terms exist. The same procedure will be
followed for the algebras of types Cn and Dn .

Expressed in terms of the basis veotors EC, £ = 4,2,..

e = ’ ™
in R, the basis composed of simple roots in Bn is
Uym EmE, W mE E, ., W, = E_ € , = =&, (4.4)
and the fundamental welghts of Bn have the expresslons 79/
/\;: E, + £, + ... + & (1‘.4:<"l)
(4.5
/\"'h = .;_ (g + €2 + --. -f-E,‘) = _;_ ( 1111—2_11:-.,. +nﬁh]'
The minimal chain between
/\4"51 m o, A, .. e W, (4.6)
P ;
and n 18 { ¥, ... > ®m} , Hence, a second term im the Clebsch—-
—Gordan serles of (™ A,) @ (A=) has the maximum welghts
mA = Ay = g = (m=1) A, + A, » (4.7
Applying Weyl's dimension formula, we get
) 2 e
olem. (‘,m/\1) = (2nrlm—4)( ailhi 2)./
(zn-4)! m/
lim (An) = 27 (4.8)

2‘”(?—?\ -v-rn-4)'/

Aim (m A, +/\,\) =
(?.n—-d).l  d



and the equality

olim (mAs) &im (An) = Aim (mA, A, )+ dim ((m=)A, fn~)(4 9)

leads to the result
(mrA) B (Nn) = (mA+A)B ((m-9)A, 1-/\") (4.10)

which had to be proved.
11) Algebras of type .

Let us consider the Kronecker product
(M) @ (mAL) = (Ajr mAn) @ . (4.11)

and determine a second term in the Clebsch~Gordan serles of the
r.he s,

Expressed in terms of the basis vectors €. (¢ =1,2,-,n)
in R” , a basis oomposed of simple roots of <, 1s

(4.12)

Aym € — €y , o x €,—E& ..., An, = En, —E, | oL, = 26,

and the fundamental weights of Cn have the expression /9/3

. 4.13)
/\'=E,f£.‘_-'._.+£~ (4$L$n). (

4 -

The minimal chain between A, and A, 1s again %, %2, .-, 4..}
and a second term in the Clebsch-Gordan series (4.11) has the
maximum weight

/\14» mAa = ((Xq+ c(.‘_-w...—v-o(..) = A11m/\_‘~(‘-,'f£t) (4-14)
= (m—’)/\n‘ An--'

We have dim A, = 2~ ; applying again Weyl's formula and denoting
by f the factor

n-y

TT (20+2m fz—i—j) TTa(rnsmet

Cw=2

£ TT(j-¢) - L4215
1< d<yen 1<i<y<n

we obtain

e C—

= / - / ~ /
d;m(m/\,\): # (n=2)1! (n 1) (znr2m )|

(zm + 4)_’
(416)

Zm (n,.z)_’ n/ (anzm}‘/

Aim (A,,_,*' (m~1) A, )

0]

(n+2m+1) (Zmrd)_/

(2n+ 2mer2) Al ("'"2-)./<L"‘"2’h)!

dim (A, + m/\,,)

f

l

(n-r?-mfl} (2m+4)!

whenoe

Aim (Aq) dAim (mAn) = dimm (A r m AL) + i (/\":zm—/)(,lhl)")

follows and thus
(A ® (mA) = (A, mAL)@ (A + (=) A)(418)

111) Algebras of type D

n
Denoting again the basis vectors in R vy & (41=1,250e.m)
the basis in Dw has the expression
Ay = Epy= En | Ko m B En (4.19)

o(,:EI—E:_ R Ay - E‘—EL, ETI.

The fundamental weights are /9/
/\‘: % 54 +~ €, v ... - £ (1< < sn—z,)
(4.20)
Ao, = %( €, +€ + ... + £, +E, —&,)
/\,\ = 3_'-(5_, + €, +... * E,,_,_"Eh—v'“if‘)'

The minimal chain between A, and Ane s { %, <, ]

the minimal chain between A, and A, 1s {x o, .., duy, ol
As

oA, + Fn F o A Ayt A, = £ =& (4,21 )
and

& o+ Ay o+ - = Xpy o+ Xn = ) (4.22)



we can write the expressions for the following Kronecker products,

the validity of which will result from Dynkin's theorem and from
calculation of dimensionalities ;

€ mfs ) B My ] 5 Lo, /\ﬂ_.)@(W-t)/‘,«‘/\h)(et.zJ)

(mANE (An) < (mAe A )@ ((m-0) A, » Ansy)  (4u20)

(A)® (mALL) = (A, +mAL)@ (em-1)A, +/\,,) (4. 25)

( A1)® ("‘An) = (/\1 * e An)@ (Ah_ + (m-1) /\q) ‘ (4-26)
The dimensions involved in these calculations are

A i (/\‘) = 2n 3 dlr‘r\ (An-,)"" d""‘(/‘n) :lﬂ—l (4 27)

dim (mA) = PP 20-3) (man-y)

m! (20 -3 )/ (h—i)

d;m (MAI'/"'.“) - da‘m (l‘nA‘ - Ah) - 22 (me2mn- 2)!
m! (20—3)_{ (n‘q) ’

4lso, denoting by f the factor

f = TT —mrEeci-g (#:20
1(‘:<J<’“I 2n -c ‘J‘
we have
c/frh(mAn_‘)z d"m(m/\n)~ ? (me2n _3)/
= b TR

m! (2n~ 3)/

4.29
dim (A, + mA,_) ( :

]

Ainn (A,v MA,') =

= F _(mran-z)y1

ml (2h~a) (m+n-4)

Aim (Ans +Um=-1)An) = dim (A « (m=1) An-y )

(f‘hpln—-B)./ lel

—

e
(m—4),/ (2n ~3)/(m ‘n—i)

Taking into account Egqs. (4.18) and (4.23)-(4.26), and using
Okubo's procedure may lead to a verification of part of the results
obtained in /4’ ana 5/ and reminded in Section 3. Indeed, the in-—
spection of these eguations points out that for semisimple Lie al-
gebras of type Cn only representations ¢ of the types ( A, )
and ( KA. ) ( Ak = positive integer) can verify second-degree
polynomial identlties and that, similarly, for algebras of type Dn’
only the representations ( &4, ), ( & A,,), ( 44, )

( Kk = positive integer) can have this property.

This verification gives however no information concerning the

representation ( A ) under which transforms the tensor operator

7(‘/\) which vanishes on (the states of) the representation ¢ .
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