

сообщения объедииениого
 ииститута ядерных исследовании дубиа

E4-85-527

M. Iosifescu, H.Scutaru*

KRONECKER PRODUCTS
WHICH DECOMPOSE
INTO TWO IRREDUCIBLE
REPRESENTATIONS

Central Institute of Physics, Bucharest, Romania

I. Introduction

The aim of this paper is to obtain for the semisimple Lie algebmas of types B_{n}, C_{n} and D_{n} a list of pairs of irreducible representations which have the property that the Kronecker product of the elements of a given pair decomposes into a direct sum of two irreducible representations.

Using a procedure due to Okubo/l/ these results prove to be consistent with our previous results in which, after determining the second-degree polynomial identities which can be satisfied by linear representations ρ of a Lie algebra $/ 2,3 /$, the representations ρ (satisfying the identities) have been obtained for the semisimple Lie algebras $C_{n}(n \geqslant 2)$ and $D_{n}(n \geqslant 5)^{/ 4,5 / .}$

2. The procedure of Okubo

Okubo has proved $/ 1 /$ that there exists a direct connection between the polynomial identities satisfied by finite-dimensional representations of Lie algebras and the Clebsch-Gordan series of the direct products of these representations with other finite-dimensiohal representations. This connection results in the following way:

For any two finite-dimensional representations P_{\wedge} and P_{Ω} (of maximal weights Λ and Ω respectively) of a reductive lie algebra L acting in the inner spaces V_{\wedge} and V_{Ω}, an operator A acting on $V_{\wedge} \times V_{\Omega}$ i

$$
\begin{equation*}
A=\sum_{i=1}^{n} p_{\Lambda}\left(e_{i}\right) \otimes p_{\Omega}\left(e^{i}\right) \tag{2.1}
\end{equation*}
$$

may be defined. In formula (2.1) $\left\{e_{i}\right\}_{i=1}^{n}$ is a basis in the $I_{\text {ie }}$ algebra L and $\left\{e^{j}\right\}_{j-1}^{n}$ is another basis in L having the property

$$
\begin{equation*}
\left(e_{i}, e^{j}\right)=\delta_{i j} \tag{2.2}
\end{equation*}
$$

If we denote by (,) a nondegenerate bilinear form on L (the
existence of which is ensured by the property of L to be reduotive).

The operator A oommutes with the operators of the direct product of the representations P_{\wedge} and P_{Ω}

$$
P_{\Lambda}(x) \otimes I_{\Omega}+I_{\Lambda} \otimes p_{\Omega}(x)
$$

for any $x \in L$. Hence, by Schur's lemma, in any irreducible subspace of $V_{\Lambda} \otimes V_{\Omega}$ the operator A is proportional with the unity operator. Thus, if
and

$$
\begin{equation*}
P_{n} \times P_{\Omega}=\oplus_{k=1}^{m} P_{\Xi_{k}} \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
V_{\Lambda ~(x) ~} V_{\Omega}=\bigoplus_{x=:}^{m} V_{\Xi_{R}} \tag{2.5}
\end{equation*}
$$

we ohtain for A the spectral decomposition

$$
\begin{equation*}
A=\sum_{k=1}^{m} \lambda_{k} P_{\Xi_{k}} \tag{2.6}
\end{equation*}
$$

where $P_{\Xi_{k}}$ is the projector on the subspace $V_{i=1}$.
The polynomial of minfmal degree, whioh vanishes if its indeterminate is replaced by the operator A, generates the polynomial identities satisfied by the representations P_{\wedge} or P_{Ω} the polynomial identities for $P_{\wedge}\left(P_{\Omega}\right)$ are obtained if in the polynomial satisfied by the operator A in expression (2.1) of A , $P_{\Omega}\left(e^{i}\right)\left(\rho_{n}\left(e_{i}\right)\right)$ are replaced by matrices of these operators in a fixed basis in $V_{\Omega}\left(V_{A}\right)$.

Equations (2.4), (2.6) tell us that the minimum degres of the polynomial equation $\mathscr{P}(A)=0$ satisifed by A is equal to the number of distinot eigenvalues λ_{k} of A (or, what amounts to the same, to the number of distinot eigenvalues of the Casimir operator) i.e.g to the number of distinct terms in the Clebsch-Gordan series (2.4).

$$
\text { 3. The procedure developed in } / 2,3 / \text { and }
$$

In paper ${ }^{/ 2 /}$ it has been proved that the polynomial identities of degree k whioh are satisfled by the generators of a Poisson bracket realization of a Lie algebra L can be obtained by equating to zero the basis vectors of subrepresentations of the symmetric part (ad $\otimes k)_{S}$ of the direct k-th power of the adjoint representation of L.

The polynomial identities satisfied by linear representations of l_{-}are obtained by symmetrization $/ 3 /$ from the polynomial identities satisfied by the corresponding Poisson bracket realizations.

In paper $/ 3 /$ we deduced the expressions of the second-degree polynomial identities for the non-exoeptional gemisimple Lie algebras $A_{n}(n \geqslant 3), B_{n}(n \geqslant 2), C_{n}(n \geqslant 2)$ and $D_{n}(n \geqslant 5)$. (These identities are obtained by the vanishing of seaond-degree tensor operators whioh transform under subrepresentations of (ad x ad) $)_{s}$.

In order to be an intrinsio property of the Lie algebra L, a set of polynomial identities has to be invariant under the automorphisms of L, hence under the adjoint group. Intrinsio polynomial identities can be thus provided only by subrepresentations of the extension of the adjoint representation to the symuetric or to the universal enveloping algebras: the procedure developed in /2,3/ allows thus the determination of all intrinsic polynomial 1dentities.

Subsequent papers $/ 4,5,6 /$ were aimed to extract the information contained in the polynomial identities derived in . In papers $/ 4,5 /$ it was proved that the tensor operators deduced in for the algebras $s p(2 n, C)(n \geqslant 2)$ and so $(2 n, C)(n \geqslant 5)$ detemine the weights of the linear representations of these algebras for (the states of) whioh these tensor operators vanish.

The Clebsoh-Gordan series of (ad (x) ad)s for the semisimple Lie algebras C_{n} and D_{n} are the following:
for $C_{n}(n \geqslant 2):(\operatorname{ad} \Theta a d)_{s}=(0) \oplus\left(\Lambda_{2}\right) \oplus\left(4 \Lambda_{1}\right) \oplus\left(2 \Lambda_{2}\right)$,
for $D_{n}(n \geqslant 5):(\operatorname{ad} \otimes a d)_{s}=(0) \oplus\left(2 \Lambda_{1}\right) \oplus\left(\Lambda_{4}\right) \oplus\left(2 \Lambda_{2}\right)$,
where by $\Lambda_{i}, 1=1, \ldots, n$ we denoted the fundamental weight system of a Lie algebra of rank n and by (\wedge_{i}) the oorresponding representations.

Let us denote a tensor operator associated with representation
σ by T_{σ}. The following results hold $/ 4,5 /$:
For $\operatorname{sp}(2 n, c)$:
a) The only representations ρ for (the states of) whioh the socond-degree operator $T_{\left(\Lambda_{2}\right)}$ vandshes are $P=\left(k \Lambda_{n}\right)$
b) The only representation ρ for whioh the second-degree tensor operator $T_{\left(4 \Lambda_{0}\right)}$ vanishes is $\rho=\left(\Lambda_{1}\right)$
c) There are no representations ρ of $\mathrm{sp}(2 n, c)$ for mhich the teasor operator $\Gamma_{\left(2 A_{2}\right)}$ vanishes.

$$
\text { For } s(2 n, c) \text { : }
$$

a) The only representations ρ for which the second-degree tensor operator $T_{(211)}$ vanishes are $\rho=\left(k \wedge_{n-1}\right)$ and $\rho=\left(k 1_{n}\right)$
b) The only representations for whioh the second-degree tensor operator $T_{\left(\Lambda_{4}\right)}$ vanishes are $f=\left(k \Lambda_{1}\right)$
c) There exists a representation, $\rho=\left(\Lambda_{n}\right)$, of so $(2 n, C)$ for which the tensor operator $T_{\left(2 \lambda_{2}\right)}$ vanishes.
4. Representations the Kronecker product of which has a Clebsch-Gordan series composed of two terms

To determine, using Okubo's procedure, all finite-dimensional representations which satisfy second-degree polynomial identities we have to find (keeping the same notation as in seotion 3) all the pairs of representations (\wedge) and (Ω) suoh that the ClebschGordan series of their $\mathbb{K}_{\text {roneoker }}$ product contains only two terms

$$
\begin{equation*}
(\Lambda) \otimes(\Omega)=(\Lambda+\Omega) \oplus(\Omega) \tag{4.1}
\end{equation*}
$$

We shall give solutions of this problem for algebras of types B_{n} C_{n} and D_{n}.

The following result due to Dynkin ${ }^{/ 8 /}$ allows the calculation of a seoond term (-) in the Ciebsch-Gordan series of (\wedge) $\otimes(\Omega)$.

Let L be a semisimple Lie algebra and let (\wedge) and (Ω) be two irreducible representations of L labelled by their maximum weights \wedge and Ω.

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \quad$ be a minimal chain of simple roots connecting the weights Λ and Ω, i.e., a set of simple roots such that

$$
\begin{align*}
\left(\Lambda, \alpha_{1}\right) \neq 0 & \left(\alpha_{k}, \Omega\right) \neq 0 \tag{4.2}\\
\left(\alpha_{i}, \alpha_{i+1}\right) \neq 0 & (i=1, \ldots, k-1)
\end{align*}
$$

and suoh that no proper subset of $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ having the same properties exists. Then

$$
\begin{equation*}
\Xi\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)=\Lambda+\Omega-\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}\right) \tag{4.3}
\end{equation*}
$$

is the maximum weight for one and only one of the irreducible oomponents $\left(\phi_{1}\right),\left(\phi_{2}\right), \ldots,\left(\phi_{2}\right)$ in the decomposition of the Kroneoker product
$(\Lambda) \otimes(\Omega)=\left(\phi_{1}\right) \oplus\left(\phi_{2}\right) \oplus \ldots \oplus\left(\phi_{l}\right)$.
Let us apply Dynkin's theorem to the algebras B_{n}, C_{n} and D_{n}.

1) Algebras of type B_{n}

Let us denote by (Λ_{i}), $1=1, \ldots, n$ the fundamental representations and oonsider for algebras of type B_{n} the Kronecker product $\left(m \Lambda_{1}\right) \otimes\left(\Lambda_{m}\right)$; this product admits as a first term in its Clebsch-Gordan deoomposition the representation ($m \Lambda_{1}+\Lambda_{n}$).

We shall deduce a second term by using Dynkin's theorem and then prove oalculating the dimensionalities of the representations involved that no other terms exist. The same procedure will be followed for the algebras of types C_{n} and D_{n}.
${ }_{n}$ Expressed in terms of the besis vectors $\varepsilon_{i}, i=1,2, \ldots, n$ in R^{n}, the basis composed of simple roots in B_{n} is

$$
\begin{equation*}
\alpha_{1}=\varepsilon_{1}-\varepsilon_{2}, \quad \alpha_{2}=\varepsilon_{2}-\varepsilon_{3}, \cdots, \quad \alpha_{n-1}=\varepsilon_{n-1}-\varepsilon_{n}, \quad \alpha_{n}=\varepsilon_{n} \tag{4.4}
\end{equation*}
$$

and the fundamental weights of B_{n} have the expressions /9/

$$
\begin{align*}
& \Lambda_{i}=\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{i} \quad(1 \varepsilon i<n) \tag{4.5}\\
& \Lambda_{n}=\frac{1}{2}\left(\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{n}\right)=\frac{1}{2}\left(\alpha_{1}+2 \alpha_{2}+\cdots+n \alpha_{n}\right) .
\end{align*}
$$

The minimal chain between

$$
\begin{equation*}
\Lambda_{1}=\varepsilon_{1}=\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n} \tag{4.6}
\end{equation*}
$$

and Λ_{n} is $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$; Hence, a second term in the Clebsch--Gordan series of $\left(m \Lambda_{n}\right) \otimes\left(\Lambda_{n}\right)$ has the maximum weight:

$$
\begin{equation*}
m \Lambda_{1}+\Lambda_{n}-\varepsilon_{1}=(m-1) \Lambda_{1}+\Lambda_{n} \tag{4.7}
\end{equation*}
$$

Applying Weyl's dimension formula, we get

$$
\begin{align*}
& \operatorname{dim}\left(m \Lambda_{1}\right)=(2 n+2 m-1) \frac{(2 n+m-2)!}{(2 n-1)!m!} \\
& \operatorname{dim}\left(\Lambda_{n}\right)=2^{n} \tag{4.8}\\
& \operatorname{dim}\left(m \Lambda_{1}+\Lambda_{n}\right)=\frac{2^{n}(2 n+m-1)!}{(2 n-1)!m!}
\end{align*}
$$

and the equality

$$
\operatorname{dim}\left(m \Lambda_{1}\right) \operatorname{dim}\left(\Lambda_{m}\right)=\operatorname{dim}\left(m \Lambda_{1}+\Lambda_{m}\right)+\operatorname{dim}\left((m-1) \Lambda_{6}+\Lambda_{n} k_{4.9}\right)
$$

leads to the result

$$
\left(m \Lambda_{0}\right) \otimes\left(\Lambda_{n}\right)=\left(m \Lambda_{1}+\Lambda_{n}\right) \oplus\left((m-1) \Lambda_{1}+\Lambda_{n}\right)(4.10)
$$

which had to be proved.
11) Algebras of type Cn

Let us consider the Kroneoker produot

$$
\begin{equation*}
\left(\Lambda_{1}\right) \otimes\left(m \Lambda_{n}\right)=\left(\Lambda_{1}+m \Lambda_{n}\right) \oplus \ldots \tag{4.11}
\end{equation*}
$$

and determine a second term in the Clebsch-Gordan series of the r.h. $\mathrm{B}_{\text {。 }}$

Expressed in terms of the basis vectors $\varepsilon_{i} \quad(i=1,2, \ldots, n)$ in \mathcal{R}^{n}, a basis oomposed of simple roots of C_{n} is

$$
\alpha_{1}=\xi_{1}-\varepsilon_{2}, \quad \alpha_{2}=\varepsilon_{2}-\varepsilon_{3}, \ldots, \alpha_{n-1}=\varepsilon_{n-1}-\varepsilon_{n}, \alpha_{n}=2 \varepsilon_{n}^{(4.12)}
$$

and the fundamental weights of C_{n} have the expression 19/:

$$
\begin{equation*}
\Lambda_{i}=\varepsilon_{1}+\varepsilon_{2}+\ldots+\varepsilon_{i} \quad(1 \leq i \leqslant n) \tag{4.13}
\end{equation*}
$$

The minimal chain between Λ_{1} and Λ_{n} is again $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ and a second term in the Clebsch-Gordan series (4.11) has the maximum weight

$$
\begin{aligned}
\Lambda_{1}+m \Lambda_{n}-\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}\right) & =\Lambda_{1}+m \Lambda_{n}-\left(\varepsilon_{2}+\varepsilon_{n}\right)(4.14) \\
& =(m-1) \Lambda_{n}+\Lambda_{n-4} .
\end{aligned}
$$

We have dim $\Lambda_{1}=2 n$; applying again Weyl's formula and denoting by f the factor

$$
f=\prod_{1<i<j<n}(j-i) \quad \prod_{1<i<j<n}(2 n+2 m+2-i-j) \prod_{i=2}^{n-1}(n+m+1-i)^{(4.15)}
$$

Fe obtain

$$
\begin{align*}
& \operatorname{dim}\left(m \Lambda_{n}\right)=f \frac{(n-2)!(n-1)!(2 n+2 m)!}{(2 m+1)!} \\
& \operatorname{dim}\left(\Lambda_{n-1}+(m-1) \Lambda_{n}\right)=f \frac{2 m(n-2)!n!(2 n+2 m)!}{(n+2 m+1)(2 m+1)!} \tag{4.16}\\
& \operatorname{dim}\left(\Lambda_{1}+m \Lambda_{n}\right)=f \frac{(2 n+2 m+2) n!(n-2)!(2 n+2 m)!}{(n+2 m+1)(2 m+1)!}
\end{align*}
$$

Whence

$$
\operatorname{dim}\left(\Lambda_{1}\right) \operatorname{dim}\left(m \Lambda_{n}\right)=\operatorname{dim}\left(\Lambda_{1}+m \Lambda_{n}\right)+\operatorname{dim}\left(\Lambda_{n-1}+(m-1) \Lambda_{n}\right)
$$

follows and thus

$$
\left(\Lambda_{1}\right) \otimes\left(m \Lambda_{n}\right)=\left(\Lambda_{1}+m \Lambda_{n}\right) \oplus\left(\Lambda_{n-1}+(m-1) \Lambda_{n}\right)_{(4.18)}
$$

111) Algebras of type D_{n}

Denoting again the basis vectors in R^{n} by $\varepsilon_{i} \quad(1=1,2, \ldots n)$ the basis in D_{n} has the expression

$$
\alpha_{1}=\varepsilon_{1}-\varepsilon_{2}, \alpha_{2}-\varepsilon_{2}-\varepsilon_{3}, \ldots, \quad \alpha_{n-1}=\varepsilon_{n-1}-\varepsilon_{n}, \quad \alpha_{n}=\varepsilon_{n-1}+\varepsilon_{n} \cdot \text { (4.19) }
$$

The pundamental weights are $/ 9 /$

$$
\begin{align*}
& \Lambda_{i}=\varepsilon_{1}+\varepsilon_{2}+\cdots \rightarrow \varepsilon_{i} \quad(1 \leq i \leq n-2) \tag{4.20}\\
& \Lambda_{n-1}=\frac{1}{2}\left(\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{n-2}+\varepsilon_{n-1}-\varepsilon_{n}\right) \\
& \Lambda_{n}=\frac{1}{2}\left(\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{n-2}+\varepsilon_{n-1}+\varepsilon_{n}\right) .
\end{align*}
$$

The minimal chain between Λ_{1} and Λ_{n-1} is $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-2}, \alpha_{n-1}\right\}$, the minimal chain between Λ_{1} and Λ_{n} is $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-2}, \alpha_{n}\right\}$.
A_{8}
and
we can write the expressions for the following $K_{\text {ronecker products, }}$ the validity of which will result from Dyakin's theorem and from a calculation of dimensionalities

$$
\begin{align*}
& \left(m \Lambda_{1}\right) \otimes\left(\Lambda_{n-1}\right)=\left(m \Lambda_{1}+\Lambda_{n-1}\right) \oplus\left((m-1) \Lambda_{1}+\Lambda_{n}\right)(4.23) \\
& \left(m \Lambda_{1}\right) \otimes\left(\Lambda_{n}\right)=\left(m \Lambda_{1}+\Lambda_{n}\right) \oplus\left((m-1) \Lambda_{1}+\Lambda_{n-1}\right) \quad \text { (4.24) } \\
& \left(\Lambda_{1}\right) \otimes\left(m \Lambda_{n-1}\right)=\left(\Lambda_{1}+m \Lambda_{n-1}\right) \oplus\left((m-1) \Lambda_{n-1}+\Lambda_{n}\right) \quad(4.25) \tag{4,25}\\
& \left(\Lambda_{1}\right) \otimes\left(m \Lambda_{n}\right)=\left(\Lambda_{1}+m \Lambda_{n}\right) \oplus\left(\Lambda_{n-1}+(m-1) \Lambda_{n}\right) . \quad(4.26) \tag{4.26}
\end{align*}
$$

The dimensions involved in these oalculations are

$$
\begin{aligned}
& \operatorname{dim}\left(\Lambda_{1}\right)=2 n \quad ; \quad \operatorname{dim}\left(\Lambda_{n-1}\right)=\operatorname{dim}\left(\Lambda_{n}\right)=2^{n-1} \\
& \operatorname{dim}\left(m \Lambda_{1}\right)=\frac{(m+2 n-3)!(m+n-1)}{m!-(2 n-3)!(n-1)} \\
& \operatorname{dim}\left(m \Lambda_{1}+\Lambda_{n-1}\right)=\operatorname{dim}\left(m \Lambda_{1}+\Lambda_{n}\right)=\frac{2^{n-2}(m+2 n-2)!}{m!(2 n-3)!(n-1)}
\end{aligned}
$$

lso, denoting by \bar{f} the factor

$$
\begin{equation*}
\bar{f}=\prod_{1<i<j<n} \frac{m+2 n-i-j}{2 n-i-j} \tag{4.28}
\end{equation*}
$$

we have

$$
\begin{aligned}
& \operatorname{dim}\left(m \Lambda_{n-1}\right)= \operatorname{dim}\left(m \Lambda_{n}\right)=\bar{f} \frac{(m+2 n-3)!}{m!(2 n-3)!} \\
& \operatorname{dim}\left(\Lambda_{1}+m \Lambda_{n-1}\right)=\operatorname{dim}\left(\Lambda_{1}+m \Lambda_{n}\right)= \\
&=\bar{f} \frac{(m+2 n-2)!n}{m!(2 n-3)!(m+n-1)} \\
& \operatorname{dim}\left(\Lambda_{n-1}+(m-1) \Lambda_{n}\right)=\operatorname{dim}\left(\Lambda_{n}+(m-1) \Lambda_{n-1}\right) \\
&=\bar{f} \frac{(m+2 n-3)!n}{(m-1)!(2 n-3)!(m+n-1)}
\end{aligned}
$$

Taking into account Eqs. (4.18) and (4.23)-(4.26), and using Okubo's procedure may, lead to a verification of part of the results obtained in $/ 4 /$ and $/ 5 /$ and reminded in Section 3. Indeed, the inspection of these equations points out that for semisimple lie algebras of type C_{n} only representations ρ of the types (Λ_{1}) and ($k \Lambda_{m}$) ($k=$ positive integer) can verify second-degree polynomial identities and that, similarly, for algebras of type D_{n}, only the representations $\left(k \Lambda_{1}\right),\left(k \Lambda_{n-1}\right)$, (k $\left.\Lambda_{n}\right)$ ($k=$ positive integer) can have this property.

This verification gives however no information concerning the representation (\wedge) under which transforms the tensor operator $T_{(\Lambda)}$ which vanishes on (the states of) the representation ρ.

References

1. Okubo S. J.Math. Phys., 1977, 18, p. 2382.
2. Iosifescu M., Scutaru H. J. Math. Phys., 1984, 25, p. 2856:
3. Iosifescu M., Scutaru H. Molynomial constraints associated to dynamical symetries". Preprint, Bucharest, FT-253, 1984.
4. Iosifescu M., Scutaru H. Mepresentations which satisfy identities associated with Tensor operators. Second-degree tensor operators which transform under the representations ($2 \Lambda_{1}$) of $10(2 n, c)$ and $\left(\Lambda_{2}\right)$ of $s p(2 n, c)$. JINR, E4-85-525, 1985.
5. Iosifescu M_{*}, Soutaru $H_{\text {. Mepresentations which satisfy }}$ identities assoolated with tensor operators . Second-degree tensor operators transforming under the representations (\wedge_{4}), ($2 \Lambda_{2}$) of so $(2 n, c)$ and $\left(4 \Lambda_{1}\right),\left(2 \Lambda_{2}\right)$ of $s p(2 n, c)$. JINR, E4-85-526, 1985.
6. Iosifescu M_{*}, Soutaru H_{0} Holstein-Primakoff realizations from quantum constraints". Phys.Lett. $A, 1985$ (to be published).
7. Jarris P. D. J. Phys. A Math. Gek, 1979, 12, p.1.
8. Дынкин Е. Б. "Максимальнне подгруппн классических групи". Труды MMO, I952, T.I, C. 39.
9. Bourbaki. N. Eléments de mathématique. Groupes et Algèbres de Iie, Hermann, Paris, 1968.

Received by Publishing Department
on July 5, 1985.

$$
\text { Носифеску M. , Скутару } X \text {. E4-85-527 }
$$

Нелью работы является получение для полупростых алгебр Ли типа $\mathrm{B}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}$ и D_{n} множества пар неприводимых представлений таких, что Кронекеровское произведение представлений камдой пары распадается в прямуо сумму двух неприводины)

для проерй

Џля проверки испольэуется теорема Дынкина и вычисляются размерности предПары
Пары представлений, полученные таким образом, следуопие: $\left\{\left(\mathrm{m}_{1}\right),\left(\Lambda_{\mathbf{n}}\right) \mid\right.$ аля алгебр типа $\mathrm{B}_{\mathrm{n}},\left|\left(\Lambda_{1}\right),\left(\mathbb{} \Lambda_{\mathrm{n}}\right)\right|$ для алгебр типа $\mathrm{C}_{\mathrm{n}},\left\{\left(\mathrm{m} \Lambda_{1}\right),\left(\Lambda_{\mathrm{n}-1}\right)\right\}$,
 наибольший вес фундаментального представления $\left(\Lambda_{1}\right)$, a m -произвольное положительное число/

Работа выполнена в Яаборатории теоретической физики оияи.

Сообщение объедииенного института ядерных исследоваиий. Дубна 1985

```
losifescu M., Scutaru H. 
Representations
The aim of the work is to determine, for the semisimple Lie algebras of types \(\mathrm{B}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}\) and \(\mathrm{D}_{\mathrm{n}}\) sets of pairs of irreducible representations having the property that the Kronecker product of the representations of each pair decomposes into a direct sum of two irreducible representations
The proof uses a theorem due to Dynkin and a calcufation of dimensionali-
The pairs of representations obtained in this way are \(\left\{\left(\mathrm{mA}_{1}\right),\left(A_{\mathrm{m}}\right)\right\}\)
```



``` \(A_{1}\left(A_{n}\right)\) fall
```



``` denotes the highest weight of the fundamental representation( \(A_{5}\) ) and \(m\)
is an arbitrary positive integeri.
The investigation has been performed at the Laboratory of Theoretical hysics, JINR.
```

