

сообщения обьединенного
 института
 ядерных

исследований
дубна

E4-85-526
M. Iosifescu, H.Scutaru*

REPRESENTATIONS
WHICH SATISFY IDENTITIES ASSOCIATED
WITII TENSOR OPERATORS.
Second-Degree Tensor Operators Transforming under the Representations: $\left(\Lambda_{4}\right),\left(2 \Lambda_{2}\right)$ of $\operatorname{so}(2 n, r)$ and $\left(4 \Lambda_{1}\right),\left(2 \Lambda_{2}\right)$ of $\operatorname{sp}(2 n, c)$

[^0]
1. Introduotion

It is known /l/ that if the enveloping algebra of a I_{1} e algebra
\angle acts on (states of) a degenerate representation of this algebra (1.e., a representation for which one or more Dynkin indices vanish) then the generators are not independent but satisfy polynomial relations or syzygies in addition to the commutation relations (of. also ${ }^{12,3 /}$).

In previous papers $/ 4,5 /$ we proved that polynomial relations sat1sfied' by the generators of representations of a $\mathrm{L}_{1} \mathrm{e}$ algebra can be obtained by equating to zero the symanetrized basis vectors of subrepresentations of the eymmetrio part of direct powers of the adjoint representation.

Such polynomial relations which are obtained by the vanishing of tensor operators T_{σ} which transform under a subrepresentation σ of $(a d \otimes a d)$ s say, contain information about the representation ρ on (the states of) which $T_{\sigma}=0$ holds; otherwise stated it is to expected that tensorial syzygies specify the representations on which they are valld.

In previous papers $/ 2,3,6 /$ we started to extract the informo tion contained in second degree tensorial syzygies $\sigma=0$ associated with subrepresentations σ of (ad \otimes ad $)_{s}$. In particular, in paper $/ 6 /$ (\quad hich, in the following, will be designed by (I)) we consldered th1s problem for second-degree tensor operators T(za, which transform under the representation (2 (1) of $S_{0}\left(2 n, C\right.$) and $T_{(3)}$ which transform under the representation (Λ_{-}) of $\Delta p(2, C)$. We proved that

1) The representations ρ of $s o(2 n, c)$ on (the states of) which $T_{C}(1$,$) vanishes are either \rho=\left(k 1_{n-}\right)$ or $\rho=\left(k \Lambda_{n}\right)$
2) The representations ρ of $\operatorname{sp}(2 n, c)$ on (the states of) which $T_{\left(1_{*}\right)}$ vanishes are $\rho=\left(k \Lambda_{n}\right)$ (We denoted by $\left(\Lambda_{i}\right)(1=1, \ldots$ rank $L)$ the fundamentel representations of the Lie algebra L).

In the present paper we continue to extract information from the relations $T_{\sigma}=0$ associated with the other subrepresentations $\sigma<(\text { ad } \otimes \text { ad })_{s}$. Taking into aooount that /7/:

$$
\begin{aligned}
& \text { for } \Delta o(2 n, c):(\operatorname{ad} \otimes a d)_{s}=(0) \oplus\left(2 \Lambda_{1}\right) \oplus\left(\Lambda_{4}\right) \oplus\left(2 \Lambda_{2}\right) \\
& \text { for } p\left(2 n_{1} C\right):(\operatorname{ad} \otimes a d)_{s}=(0) \oplus\left(\Lambda_{2}\right) \oplus\left(4 \Lambda_{1}\right) \oplus\left(2 \Lambda_{2}\right)
\end{aligned}
$$

It remains to determine the representations ρ (if any) on which the tensor operators $T_{\left(\Lambda_{4}\right)}$, and $T_{\left(2 \Lambda_{2}\right)}$ of so $(2 n, C)$ and $\left.T_{\left(41_{1}\right)}\right)$ and $\left.T_{\left(21_{2}\right.}\right)$ of $\Delta_{p}\left(2 n_{1}, C\right)$ vanish.

This will be done in the subsequent seotions.
Throughout the present paper we use the notation introduced in (I).

2. Representations for which the tensor operator

$\left.\bar{T}_{5} \Lambda_{4}\right)$ of $A_{0}(2 n, C)$ ranishes

Expressions for second-degree tensor operators $T_{\left(\Lambda_{4}\right)}$ transforming under the subrepresentation $\left(\Lambda_{4}\right)<\left(\operatorname{ad}(\mathbb{O C l})_{s}\right.$ of so $(2 n, C)$ $(\mathrm{n} \geqslant 5)$ have been obtained in $/ 5 /$ in terms of the generators of so ($2 n, c$) defined by the Lie relations

$$
\begin{equation*}
\left[M_{i j}, M_{k l}\right]=\delta_{i k} M_{j k}+\delta_{j k} M_{i l}-\delta_{i k} M_{j e}-\delta_{j l} M_{i k} . \tag{2.1}
\end{equation*}
$$

The expressions of the components of the tensor operator $T_{\left(n_{4}\right)}$ are

$$
T_{\left(A_{4}\right)}(p, q ; 1, \Delta)=\left\{M_{p q}, M_{r s}\right\}+\left\{M_{p s}, M_{q r}\right\}+\left\{M_{p r}, M_{s q}\right\}_{q}(2.2)
$$

where $\{$,$\} designate the anticommutator.$
It is easy to prove that the operators of the natural representation (Λ_{1}) defined by

$$
M_{i j}=e_{i j}-e_{j i}
$$

W1th $\left(e_{i j}\right)_{k e}=\delta_{i n} \delta_{j e}$ satisfy the identity $T_{\left(\Lambda_{i}\right)}=0$.
We shall prove in this section that (as a sort of converse of
this statement) we can state
Theorem I. The representations ρ of the algebra so $(2 n, c)$
$\left(\mathrm{n} \geqslant 5\right.$) on (the states of) whioh $T_{\left(\Lambda_{4}\right)}=0$ are $\rho=\left(k \Lambda_{1}\right)$.
The highest-weight vector v_{g} satisfies the equations
$-c_{k e} v_{s}=e_{k l} v_{s}=A_{e k} v_{g}=0$ for any $l>k>1$.
Proof. As pointed out in (I) in order to prove that the tensor operator $T_{(A 4)}$ vanishes on (the states of) the representation ρ it is suffioient to prove that $T_{(14}, v_{s}=0 \quad$ for the highest weight
vector v_{s} of representation ρ. We shall use now this property to determine the highest weight of ς.

In order to do that we shall consider the component $T_{14}\left(2 i ; 2 i-1 ; z_{j}, z_{j}-1\right)(i ; j \leq n)$ and express it in terms of the Cartan-Meyl basis defined in (I). We get

$$
T_{\left(A_{i}\right)}\left(2 i, 2_{i-1} ; 2 j, 2 j-1\right)=-2 A_{i i} A_{j j}-\left\{B_{i j}, C_{i j}\right\}+\left\{A_{i j}, A_{j i}\right\} \text {. } 2.4 \text {) }
$$

Reminding that in the Cartan-meyl basis $A_{i i}$ are generators of the Cartan subal gebra of so ($2 n, c$)

$$
\begin{equation*}
\dot{H}_{i i} v_{s}=f_{i} v_{s} \tag{2.5}
\end{equation*}
$$

and that $A_{i j}(i<j)$ and $B_{i j}$ (any $i_{j} j$) are raising operators

$$
\begin{equation*}
A_{i j} v_{s}=0 \quad(i<j) ; \quad B_{i j} v_{s}=0 \tag{2.6}
\end{equation*}
$$

while $A_{i j}(i>f)$ and $C_{i j}\left(a n y \dot{i}_{j}\right)$ are lowering operators we get from (2.4)

$$
\begin{equation*}
T_{(14)}\left(2 i ; 2 i-1 ; z_{j ;} ; z_{j-1}\right)=-2 f_{j}(f i+1) i_{j} . \tag{2.7}
\end{equation*}
$$

Assuming $i<j$, taking $i=1$ and asking that

$$
\begin{equation*}
T_{\left(1_{4}\right)} v_{\rho}=0 \tag{2.8}
\end{equation*}
$$

we obtain the following solution for the weight of the representation ρ

$$
\begin{equation*}
f_{1} \neq 0, f_{2}=f_{3}=\cdots=f_{m}=0 \tag{2.9}
\end{equation*}
$$

(The same result is obtained assuming $i>j ;$ for $1=j$, equation (2.8) 1s identically satisfied).

Thus $\rho=\left(k \Lambda_{1}\right)$.
Let us now deduce from relation (2.8) the information concerning the highest weight vector

To do that, we shall calculate the explio1t expressions of equation (2.8) for different components of the tensor operator $T_{\left(\Lambda_{4}\right)}$
Taking again into account relations $(2.5),(2.6)$, we obtain Taking again into account relations (2.5), (2.6), we obtain
$T_{\left(1_{4}\right)}(2 i-i, 2 i ; 2 l, 2 k-l) v_{j}=\left(f_{i}+1\right)\left(C_{k e}+A_{l k}\right) v_{j}=0 \quad$ (2.10)
and $T_{\left(1_{4}\right)}\left(2 i-1,2 i ; 2 k-1,2 l_{-1}\right) v_{j}=-\sqrt{-i}\left(f_{i}+1\right)\left(C_{k e}-A_{l k}\right) v_{j}=(2.11)$
1f we assume, in both relations, that $i<k<l . \quad=0$
Equations (2.10), (2.11) prove condition (2.3).

Consider now the following equalities valid for $k<l<i$ $T_{\left(1_{4}\right)}(2 i-1,2 i ; 2 k, 2 l-1) v_{j}=$
$=\left[2 f_{i}\left(C_{k e}-A_{e_{k}}\right)-\left\{A_{i e}, C_{k i}\right\}+\left\{A_{i k}, C_{e_{i}}\right\}\right] v_{s}=0$
$T\left(\Lambda_{4}\right)(2 i-1,2 i ; 2 k-1,2 l-1) w_{\rho}=$
$=\frac{\sqrt{-1}}{2}\left[2 f_{i}\left(C_{k e}-A_{i \pi}\right)+\left\{A_{i e}, C_{A x_{i}}\right\}-\left\{A_{i k}, C_{l_{i}}\right\}\right] y_{g}=0$.
Subtraction of (2.13) from (2.12) gives

$$
\begin{equation*}
\left\{A_{i x}, C_{x_{i}}\right\} v_{j}=\left\{A_{i e}, C_{e_{i}}\right\} v_{\rho} \tag{2.14}
\end{equation*}
$$

If $k \neq 1$ both members vanish as a consequence of (2.3). Let $k=1$. From (2.14) and (2.3) we get $C_{e i} A_{i r} u_{\rho}=A_{i \ell} C_{i ;} v_{\rho}$ whence, using (2.14)

$$
\begin{equation*}
-\left[A_{i l}, C_{e_{i}}\right] v_{\rho}=\left[A_{i l}, C_{1 i}\right] v_{s} \tag{2.15}
\end{equation*}
$$

which, using the Lie relations of $s_{0}(2 n, c)(o f .(I))$ gives

$$
-C_{l e} v_{\rho}=C_{e_{1}} v_{\rho}
$$

which is satisfied due to the antisymmetry of the generators Cie of $10(2 n, C)$. This is a confirmationfor the fact that the only generators of so (an,c) which applied to v_{ρ} lead to a nonvanlshing result are

$$
A_{j^{\prime}} \text { and } C_{f y}=-\mathcal{C}_{f} \text { for any } f
$$

3. Representations for which the tensor operator

$T_{\left(4 n_{1}\right)}$ of $s p(2 n, C)$ vanishes

The expression of the second-degree tensor operators $T_{(4 \pi,)}$ Whioh transform under the representation $\left(4 \Lambda_{1}\right) c_{5}(a d \in a d)_{s}$ of $\Delta p(2 n, c)(n \geqslant 2)$ has been obtained in $5 /$ in terms of the generators $S_{i j}=S_{i j}(i, j=1,2, \ldots, 2 n)$ which satisfy the Lie relations

$$
\left[S_{i j}, S_{k e}\right]=g_{k j} S_{i k}-g_{j i e} S_{k j}-g_{i k} S_{j e}+g_{g} . S_{k i}, \text { (3.1) }
$$

where $\quad g_{i j}=\delta_{i j+m}-\delta_{i+n}, j \quad(i, j=1,2, \ldots, 2 n)$.
In terms of these generators the components of the tensor operam tor $T_{\left(4, \Lambda_{1}\right)}$ have the expression

$$
\begin{equation*}
T_{(s 1,)}(p q ; n, s)=\left\{S_{p q}, S_{r s}\right\}+\left\{S_{p s}, S_{r q}\right\}+\left\{S_{p r}, S_{q s}\right\}, \tag{3.2}
\end{equation*}
$$

The generators of the Cartan-meyl basis are related to the generators $S_{i j}$ by the formulae

$$
A_{i j}=S_{i+n, j}, B_{i j}=S_{i m, j+n}, C_{i j}=S_{i j}(i j=1, \ldots, n) \cdot(3.3)
$$

Their Lie relations are given in (I). Remind that like for so $(2 n, c), A_{i i}$ are generators of the Cartan subalgebra of $\Delta p(2 n, c)$ while $A_{i j}(i<j)$ and $B_{i j}$ are raising and $A_{i j}(i>j)$ and C_{j} are lowering operators so that relations (2.5), (2.6) keep valid for sp ($2 n, c$),

Expressed in terms of the generators $\mathcal{A}_{i j}, B_{y}, C_{i j}$ the components of the tensor operator $\bar{T}_{(41,}$) have no more a unique expresm s1on. They are

$$
\begin{aligned}
& T_{(41,)}(p, q, r, s)=\left\{c_{p q}, c_{r s}\right\}+\left\{c_{p s,} c_{r q}\right\}+\left\{c_{p r}, c_{q s}\right\} \underset{p, q, r, s<n}{\text { for }} \text { (3.4) } \\
& \begin{array}{r}
T_{(q 1,)}(n q ; r s)=\left\{C_{p q}, A_{s-n, r}\right\}+\left\{A_{s-n, p}, C_{s q}\right\}+\left\{C_{p r}, A_{s-n, q}\right\}(3.5) \\
\text { for } p, q, r<n ; s>n
\end{array} \\
& T_{\left(4 A_{1}\right)}(p, q ; r, s)=\left\{c_{p q}, B_{r-n, s-n}\right\}+\left\{A_{s-n, p}, A_{r-n, q}\right\}+ \\
& +\left\{A_{r-n}, p, A_{s-n, q}\right\} \\
& \text { for } p, q<n \text { and } r, s>n \\
& T_{\left(4 \wedge_{1}\right)}(p, q ; r, s)=\left\{A_{q-n, p}, B_{r-n, s-n}\right\}+\left\{A_{s-n, p}, B_{r m, q-n}\right\} \\
& +\left\{A_{r-n, p}, B_{q-n, s-n}\right\} \text { for } p<n \text { and } q, r_{1} s>n \\
& T_{\left(4 A_{1}\right)}(p, q ; r, s)=\left\{B_{p-n, q-n}, B_{n-n, s-n}\right\}+\left\{B_{p-n, s-n}, B_{r n, q-n}\right\} \\
& +\left\{B_{p-n, r-n}, B_{q-n, s-n}\right\} \quad \text { for } p, q, r, s>n \text {. }
\end{aligned}
$$

Because of the properties (2.5) (2.6), the components (3.7) and (3.8) vanish identioally when applied to the highest weight vector v_{ρ}

The whole information concerning the representation ρ is thus contalned in the following three relations:

$$
\begin{align*}
& {\left[\left\{C_{p q}, C_{r s}\right\}+\left\{C_{p s}, C_{r q}\right\}+\left\{C_{p r}, C_{q s}\right\}\right] v_{s}=0} \\
& {\left[\left\{C_{p q}, A_{s-n, r}\right\}+\left\{A_{s-n, p}, C_{r q}\right\}+\left\{C_{p r}, A_{s-n}, q\right\}\right] v_{s}=0} \tag{3.10}\\
& \left.\left[\left\{C_{p q}, B_{r-m, s-n}\right\}+\left\{A_{s-n, p}, A_{r-n, q}\right\}+\left\{A_{r-n, p}, A_{s-n}, q\right\}\right] v_{s}=0.10\right)
\end{align*}
$$

Theorem 2. The only representation ρ of the algebra
sp $(2 n, c)$ on (the states of) which $T_{\left(4 A_{1}\right)}=0$ is the represen-
tation $\rho=\left(A_{1}\right)$ having the weight $f_{1}=f, f_{2}=f_{3}=\ldots=f_{n}=0$, 1.e., the natural representation.

The highest weight vector v_{s} satisfies the equations $A_{i j} v_{p}=c_{i j} v_{p}=0$ (3.12) for all $i_{i} j$ for which $f_{i}=f_{j}=0$.

Proof. Let us oonsider eq. (3.11) and take

$$
\begin{equation*}
p=q=r-n=s-n=i \tag{3.13}
\end{equation*}
$$

ve get

$$
\begin{equation*}
f_{i}\left(f_{i}-1\right) v_{p}=0 \tag{3.14}
\end{equation*}
$$

1.e., f: can take only the values 0 or 1 . Let us take in Eq_{q}. (3.II)

$$
p=r-n=i \quad, \quad q=s-n=j
$$

and let $i<j$. We obtain

$$
\begin{equation*}
f_{j}\left(f_{i}-1\right) v_{j}=0 \quad(i<j) . \tag{3.16}
\end{equation*}
$$

Let us now prove that only the representation $\quad \Lambda_{1}$ satisfies all the equations (3.9-11).

To do that let us take in eq. (3.11)

$$
\begin{equation*}
p=q=r-n=i \quad \text { and } \quad s-n=j \tag{3.17}
\end{equation*}
$$

We get for $i \neq j$

$$
\begin{equation*}
\left(f_{0}-A ; \Lambda_{j} r_{p}=0\right. \tag{3.18}
\end{equation*}
$$

vhich is identioally verified for $j<i$ but leads for $j>i$ to the condition

$$
A_{j i} v_{s}=0 \quad \text { for any } j \geqslant i \text { if } \quad f_{i}=0
$$

Let us now admit in E_{q}. (3.11) the following values for the labels of the generator:

$$
p=i, \quad q=r-n=s-n=j \quad(i \neq j)
$$

In this aase eq. (3.11) leads to

$$
\begin{equation*}
f_{j} \quad A_{j} \cdot v_{p}=0 \tag{3.20}
\end{equation*}
$$

whence

$$
\begin{equation*}
A_{j i} v_{s}=0 \text { for any } i<j \text {, if } f_{j}=1 \tag{3.21}
\end{equation*}
$$

Conditions (3.19), (3.21) lead to

$$
\begin{equation*}
A_{j i} v_{\rho}=0 \quad \text { for any } \quad \text { it } f \tag{3.22}
\end{equation*}
$$

unless

$$
\begin{equation*}
f_{1}=1, f_{2}-f_{3}=\ldots=f_{1}=0 \tag{3.23}
\end{equation*}
$$

Indeed, in this case relations (3.18) (3.20) are both verified without any supplementary assumption concerning $A_{j} v_{s}$.

A similar result holds for the generators $C_{i j}$. Let us consider E_{q}. (3.10) In which $p=i$ and $q=r=s-n=j$. In thls case, we get for $i>j$

$$
\begin{equation*}
\left(f_{i}-1\right) C_{i j} v_{j}=0_{1} \tag{3.24}
\end{equation*}
$$

Let us consider now E_{q}. (3.10) with $p=1$ and $q=r=s-n=j$ ($f \neq i$). This case leads for $f>i$ to the relation

$$
\begin{equation*}
\left[4\left(f_{j}-1\right) c_{i j}+2 c_{j f} A_{j i}\right] v_{j}=0 \tag{3.25}
\end{equation*}
$$

Assume now agaln $f_{f}=0$.
We have already proved that unless $f_{1}=1, f_{2}=f_{3}=\ldots=f_{n}=0$ we have $A_{j} \dot{\sim} v_{p}=0$, whence from Eq . (3.25) we get $C_{\dot{y}} v_{j}=0$ unless $i=1$.

In conclusion, unless $f_{1}=1$ and $f_{2}=f_{3}=\cdots \Rightarrow f_{n}=0$ we have

$$
C_{j g} v_{s}=A_{i f} v_{\rho}=0
$$

Which is inadmisaible if we remind that for any i, j we have
$B_{i} v_{p}=0$. The only representation which satisfies Eqs. (3.9), (3.10), (3.11) is the natural representation Λ_{1}.

Theorem 3. a) There exist no representations ρ of the algebra sp $(2 n, c), n \geqslant 2$ on the states of which the second-degree sp $\left(z_{n}, C\right)$ tensor operator $T_{\left(z A_{2}\right)}$ vanishes.
b) There exists a representation $\rho=\left(\Lambda_{n}\right) o f$ the algebra so $(z n, c)$

$$
n \geqslant 5 \quad \text { on the states of which the second-degree }
$$

so ($2 n, c)$ - tensor operator $T_{\left(2 \Lambda_{2}\right)}$ vanishes.
The first result is obtained by proving that the vanishing of the corresponding polynomials in $5 /$ leads either to the solution $f_{1}=f_{2}=\ldots=f_{2}=0$ or to incompatibility with the conditions the weight components f_{i} have to satisfy.

The second result is obtained by writing the tensor operator $T_{\left(z A_{x}\right)}(p, q ; r, s)=\frac{1}{3}\left(z\left\{M_{p q}, M_{r s}\right\}-\left\{M_{p s}, M_{q r}\right\}-\left\{M_{p r}, M_{s q}\right\}\right)$ $+\frac{1}{2 n-2}\left(-\delta_{q r} \sum_{i=1}^{2 n}\left\{M_{p i}, M_{i s}\right\}+\delta_{q s} \sum_{i=1}^{2 n}\left\{M_{p i} M_{i r}\right\}+\delta_{p r} \sum_{i=1}^{2 n}\left\{M_{q i}, M_{i s}\right\}-\delta_{p s} \sum_{i=1}^{2 n}\left\{M_{q i}, M_{i r j}\right\}\right.$ $+\frac{1}{(2 n-1)(2 n-2)}\left(\delta_{q r} \delta_{p s}-\delta_{q s} \delta_{p r}\right) \sum_{i, j=1}^{2 n}\left\{M_{j j}, M_{j i}\right\} ;$ for $\left\{\begin{array}{l}p=r=2 i \\ q=s=2 i \sim 1\end{array}\right.$, In the Cartan-Weyl basis (cf. (I) Appendix). The equality $T_{\left(x \wedge_{1}\right)} \vee_{p}=0$ leads to

$$
f_{1}=f_{2}=\cdots=f_{n}=\frac{1}{2}
$$

Referenoes

1. Giroux Y., Conture M., Sharp R. T. J. Phys. A. Math. Gen., 1984, 17, p. 715.
2. Iosifescu M., Scutaru $H_{\text {. }}$ Boson realizations from quantum constraints, Preprint, Bucharest PT-255 (1984). (Submitted to J.Math. Phys.).
3. M. Iosifescu M., Scutaru $H_{\text {. }}$ Holstein-Primakoff realizations from quantum constraints, Phys.Lett. A, 1985 (to be published).
4. Iosifesou M_{4}, Scutaru H. J.Math. Phys. , 1984, 25, 2856.
5. Iosifescu M_{0}, Scutaru $H_{\text {. Polynomial constraints associated to }}$ dynamical symmetries, Preprint, Bucharest, FT-253, 1984.
6. Iosifescu M., Scutaru H_{0} Representations whioh satisfy identities associated to tensor operators. Second-degree tensor operators which transform under the representations ($2 \lambda_{1}$) of $\operatorname{sos}(2 n, c)$ and $\left(\Lambda_{2}\right)$ of $\operatorname{sp}(2 n, c)$ E4-85-525, Dubna, 1985.
7. Jarris P.D. J.Phys. A., Math.Gen. , 1979, 12, 1. on July 5,1985.

Иосифеску М., Скутару X.
E4-85-526
Преобразования, удовлетворяющие тождествам, связанным с тензорными операторами. Тензорные операторы второй степени, преобразующиеся по представлениям $\left(\Lambda_{4}\right),\left(2 \Lambda_{2}\right)$ so $(2 n, c)$ и $\left(4 \Lambda_{1}\right),\left(2 \Lambda_{2}\right)$ sp $(2 n, c)$

Настоящая работа продолжает определение /начапо в ${ }^{\text {/6/ }}$ / представлений ρ полупростой Ли алгебры L , для которых $\mathrm{T}_{\sigma}^{(2)}(\rho) \equiv \mathrm{T}_{\sigma}^{(2)}\left(\mathrm{x}_{1}, \ldots, x_{\mathrm{n}}\right)=0$, где $\mathrm{T}_{\sigma}^{(2)}\left(x_{1}, \ldots, x_{n}\right)$ - тензорный оператор, преобразующийся по представлению $\sigma \subset(\operatorname{ad} \cdot a d)_{s}, n x_{1}$ - генераторы ρ. Aля $L=s o(2 \mathrm{n}, \mathrm{c})$ проверено, что, если $\sigma=\left(\Lambda_{4}\right)$, тогда $\rho=\left(\sharp \Lambda_{1}\right) \quad$ и, если $\sigma=\left(2 \Lambda_{2}\right)$, тогда $\rho=\left(\Lambda_{n}\right)$ Для $\mathrm{L}=\mathrm{sp}(2 \mathrm{n}, \mathrm{c})$ проверено, что, если $\sigma=\left(4 \Lambda_{1}\right)$, тогда $\rho=\left(\Lambda_{1}\right) \quad$ и, если $d=\left(2 \Lambda_{2}\right)$, тогда уравнение $T_{\left(2 \Lambda_{0}\right)}^{(2)}(p)=0$ не инеет решений. $\left(\Lambda_{1}\right.$ - наибольший вес фундаментального представления $\left.\left(\Lambda_{1}\right)\right)$.

Работа выполнена в Лаборатории теоретической физики оияи.
osifescu M. , Scutaru H.
E4-85-526
Representations which Satisfy Identities Associated with Tensor Operators. Second-Degree Tensor Operators Transforming under the Representations: $\left(\Lambda_{4}\right),\left(2 \Lambda_{2}\right)$ of $80(2 n, c)$ and $\left(4 \Lambda_{1}\right),\left(2 \Lambda_{2}\right)$ of $\mathrm{sp}(2 \mathrm{n}, \mathrm{c})$

The present work continues the determination (started $\ln ^{/ 8 /}$) of the representations ρ of semisimple Lie algebras L for which $\mathrm{T}_{\alpha}^{(2)}(\rho)$
$\equiv \mathrm{T}_{o}^{(2)}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=0$, where $\mathrm{T}_{0}^{(2)}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{p}}\right)$ is a tensor operator transforming under a subrepresentation a of (ad ad), and x_{1} are the generators of p For $\mathrm{L}=\operatorname{so}(2 n, c)$ it is proved that if $\sigma=\left(\Lambda_{4}\right)$, then $p=\left(k \Lambda_{1}\right)$ and that if $\sigma=\left(2 \Lambda_{2}\right)$, then $\rho=\left(\Lambda_{n}\right)$. For $L=s p(2 n, c)$ it is proved that if $\sigma=$ $=\left(4 \Lambda_{1}\right)$, then $p=\left(\Lambda_{1}\right)$ and if $\sigma=\left(2 \Lambda_{2}\right)$, then there exists no solution to the equation $\mathrm{T}^{(2)}\left(\Omega \Lambda_{2}\right)(\rho)=0 .\left(\Lambda_{1}\right.$ is the highest weight of the funda mental representation $\left.\left(\Lambda_{i}\right) \quad(i=1, \ldots, n)\right)$.

The investigation has been performed at the Laboratory of Computing Techniques and Automation, JINR.

[^0]: * Central Institute of Physics, Bucharest, Romania

