

сообщения
объединеиного
инСТИТУта ядерных
исследований
дубна

E4-85-467

M.Kaschiev, S.I.Vinitsky

SCIIRÖDINGER EQUATION

FOR A THREE-PARTICLE SYSTEM
IN SPHEROIDAL COORDINATES

1. INTRODUCTION

The three-body problem takes a kew position in the theoretical study of muon catalysis ${ }^{\prime \prime}$. Different methods exist for a numerical solving of the problem. One of them is the adiabatic representation in the three-body problem ${ }^{\prime 2!}$. In this approach, with the help of continuous analog of Newton method $/ 3 /$ we have (ref. 4.5 ;) first calculated the energy of a weakly bound rotational-vibrational state ($J=1, v=1$) of mesic molecule dt μ with accuracy -0.001 eV . Moreover, in this case a high rate of resonance formation of mesic molecule dt μ was first predicted in ref. ${ }^{6}$. However, in viev of the importance of the problem, it is necessary to develop other, alternative methods and, in particular, an approach, which does not require any standard separation of variables.

In the first paper '7' we introduced new variables in the three-body problem. Their advantage is that they correctly describe adiabatic character of motion of nuclei in a mesic molecule and provide a suitable representation for the asymptotic of solutions in all three channels of disintersation of a three-particle system (a, b, c) into subsystem ($a c$) +b, $a+(b c$) and (ab)+c. In this way, new coordinates establish a clear relation between all three sets of Jacobi variables a prolate spheroidal coordinates used in adiabatic representaion ${ }^{\prime \prime \prime}$ as well as with the Fock coordinates on a $3-$ d sphere $^{\prime 9}$ and different types of hyperspherical coordinates ${ }^{10,11 \text { '. }}$

In this paper the three-body problem in the tota -angularmomentum J representation ${ }^{12 /}$ is formulated as a 3 -d spectral problem in new variables ${ }^{7 /}$ parametrized in prolate spheroidal coordinates. We have determined the boundary condit:ons on solutions of the discrete spectrum and have derived the corresponding Rayleiph-Ritz variational functional. Such an approach does not require the separation of variables and essentially enlarges the class of solvable three-body problems of quantum mechanics. In this case we are able to apply some va-riational-difference methods ${ }^{13,14{ }^{\prime}}$ for solving the $3 \cdot d$ spectral problem. These methods in a number of $2-$ d spectral problems of quantum mechanics/15! nuclear physics ${ }^{16 /}$ and classical electrodynamics'17/have provided a higher accuracy of calculations and shortened computer time as companodmith otherwippeach.

2. COORDINATE SYSTEM

Let us consider a system of three particles a , b, and c with charges and masses ($e Z_{a}, M_{a}$), $\left(e Z_{b}, M_{b}\right)$, and ($-\mathrm{e}_{\mathrm{c}}$), respectively. We assume particle \mathbf{c} to be a negative muon; particles a and b, nuclei of hydrogen or helium isotopes, and $Z_{a} M_{a} Z$ $\geq Z_{b} M_{b}$. Such a system of three particles in a bound state is called the mesic molecule.

In the c.m.s. of the mesic molecule we introduce the Jacobi variables: radius-vector $\vec{R}=\{R \Theta \Phi\}$ connecting nuclei a and b and radius-vector $\overrightarrow{\mathbf{r}}_{\mathrm{c} 0}=\left\{\mathbf{x}_{\mathrm{c} 0} \mathrm{y}_{\mathrm{c} 0} \mathbf{z}_{\mathrm{c} 0}\right\}$ connecting the $\mathrm{c} . \mathrm{m}$. of nuclei (c.m.n.) with muon. In this case the Hamiltonian of the mesic molecule has the form ($h=e=1$)
$H=-\frac{1}{2 \mathrm{~m}_{0}} \Delta_{\mathrm{r}_{\mathrm{c} 0}}-\frac{1}{2 \mathrm{M}_{0}} \Delta_{\mathrm{R}}-\frac{\mathrm{Z}_{\mathrm{a}}}{\left|\overrightarrow{\mathrm{r}}_{\mathrm{c} 0}+\gamma_{\mathrm{a}} \overrightarrow{\mathrm{R}}\right|}-\frac{\mathrm{Z}_{\mathrm{b}}}{\mid \overrightarrow{\mathrm{r}_{\mathrm{c} 0}+\gamma_{\mathrm{b}}} \vec{R}}+\frac{\mathrm{Z}_{\mathrm{a}} \mathrm{Z}_{\mathrm{b}}}{\mathrm{R}}$
$m_{0}^{-1}=M_{c}^{-1}+\left(M_{a}+M_{b}\right)^{-1}, \quad M_{0}^{-1}=M_{a}^{-1}+M_{b}^{-1}$,
$\gamma_{a}=M_{b} /\left(M_{a}+M_{b}\right), \quad \gamma_{b}=-M_{a} /\left(M_{a}+M_{b}\right)$,
where m_{0} and M_{0} are reduced masses of the muon and nuclei, and $\gamma_{\mathrm{a}} \mathrm{R}$ and $\gamma_{\mathrm{b}} \mathrm{R}$ are distances from nuclei to their c.m.

It is convenient to describe the motion of muon in the bodyrixed coordinate system constructed on spherical unit vectors of vector R :
$\vec{e}_{y}=\vec{e}_{\Theta}, \quad \vec{e}_{y}=\vec{e}_{\Phi}, \quad \vec{e}_{z}=\vec{e}_{R}$
since in this case its potential energy does not depend on angles Θ and Φ^{*}. Instead of $r_{c o}$ we introduce the radius-vector $\vec{r}_{\mathrm{c}}=\left\{\mathrm{x}_{\mathrm{c}} \mathrm{y}_{\mathrm{c}} \mathrm{z}_{\mathrm{c}}\right\}^{\prime 7}!$
$\left\{\overrightarrow{\mathbf{r}}_{\mathrm{c}}\right\}_{\mathrm{i}}=\hat{\mathrm{D}}_{\mathrm{i}}(\Theta \Phi)\left\{\overrightarrow{\mathrm{r}}_{\mathrm{c} 0}\right\}_{\mathrm{j}}(\mathrm{R} / 2)^{-1} \quad \mathrm{i}, \mathrm{j}=1,2,3$.
Components of \vec{r} are given in the body fixed coordinate system (3) which is usually used in passing to the prolate spheroidal coordinates ${ }^{\prime 2,12 /\{\xi \eta \phi\}:}$
$\xi=\left(\mathbf{r}_{\mathrm{a} 0}+\mathbf{r}_{\mathrm{b} 0}\right) / \mathrm{R} . \quad \eta=\left(\mathrm{r}_{\mathrm{a} 0}-\mathbf{r}_{\mathrm{b} 0}\right) / \mathrm{R}$.

[^0]Here ϕ is the angle of rotation about the major axis of the ellipse directed along axis $\vec{e}_{R}, r_{a 0}$ and $r_{b 0}$ are distances from nuclei to the muon. Note that nuclei a and b are placed at focal ellipse points $\{\xi=1, \eta=-1\}$ and $\{\xi=1, \eta=1\}$, respectively. Owing to the scale transformation (dividing by $R / 2$) the position of nuclei in both the coordinate systems (4) and (5) is fixed, i.e., is independent of R. This means that the beginning of vector \vec{r}_{c} can be chosen equally well in the $c . m . n$. and in the geometrical centre of nuclei (g.c.n.))
$\overrightarrow{\boldsymbol{r}}=\overrightarrow{\mathbf{r}}_{\mathrm{c}}+\kappa \overrightarrow{\mathrm{e}}_{\mathrm{R}}, \quad \kappa=\gamma_{\mathrm{a}}+\gamma_{\mathrm{b}}$,
where $-\kappa \geq 0$ is the distance between those centres, or in one of the nuclei
$\vec{r}_{a}=\vec{r}_{c}+2 \gamma_{a} \vec{e}_{R} \quad, \quad \vec{r}_{b}=\vec{r}_{c}+2 \gamma_{b} \vec{e}_{R}$.
The volume element and operators $\nabla_{\vec{r}_{c q}}$ and $\nabla_{\vec{R}}$ are defined in terms of the coordinates $\left\{\vec{R}, \vec{r}_{c}\right\}$ by the relations
$d \tau=1 / 8 R^{5} d R \sin \Theta d \Theta d \Phi d r_{c}$,
$\nabla_{\mathrm{r}_{\mathrm{c} 0}}=(\mathrm{R} / 2)^{-1} \nabla_{\mathrm{r}}=(\mathrm{R} / 2)^{-1} \nabla_{\mathrm{r}}=(\mathrm{R} / 2)^{-1}\left\{\mathrm{e}_{\Theta} \frac{\partial}{\partial \mathrm{x}}+\mathrm{e}_{\Phi} \frac{\partial}{\partial \mathrm{y}}+\mathrm{e}_{\mathrm{R}} \frac{\partial}{\partial \mathrm{z}}\right\}$.
$\nabla_{\vec{R}}=\frac{\overrightarrow{\mathrm{E}_{\Theta}}(}{R}\left(\frac{\partial}{\partial \Theta}-i \mathcal{L}_{y}\right)+\frac{\vec{\sigma}_{\Phi}}{R}\left(\frac{1}{\sin \Theta} \cdot \frac{\dot{\partial}}{\partial \Phi}+i \mathcal{L}_{x}-i \operatorname{ctg} \Theta \mathcal{L}_{z}\right)+$

$$
+e_{R}\left(\frac{\partial}{\partial R}-\frac{\left(r_{c} \cdot \nabla_{r_{c}}\right)}{R}\right),
$$

where

is the muon angular momentum reckoned from c.m.n., projections of $\mathbb{\Sigma}$ and $\vec{\ell}=-i\left[\overrightarrow{\mathbf{r}} \times \nabla_{\vec{r}}\right]$ onto the axis $\overrightarrow{\mathrm{e}}_{\mathrm{R}}$ being equal, i.e., $\mathscr{L}_{\mathrm{z}}=\ell_{z}$. The total angular momentum of mesic molecule is a sum of the angular momentum of relative motion of nuclei $\vec{L}=-i\left[\vec{R} \times \nabla_{\vec{R}}\right]$ and $\overrightarrow{\mathscr{L}}$
$\vec{J}=\vec{L}+\overrightarrow{\mathscr{L}}=\vec{e}_{\Theta}\left(\frac{i}{\sin \Theta} \frac{\partial}{\partial \Phi}+\operatorname{ctg} \Theta \mathscr{L}_{z}\right)+\vec{e}_{\Phi}\left(-i \frac{\partial}{\partial \Theta}\right)+\vec{e}_{R}^{\mathscr{L}} z_{z}$.
i.e., $J_{z}=\mathscr{L}_{z}$.

The Hamiltonian (2) in coordinates $\left\{\vec{R}, \vec{r}_{c}\right\}$ has the form*

$$
\begin{align*}
& H=-\frac{1}{2 M_{0}} \frac{1}{R^{2}} \frac{\partial}{\partial R} R^{2} \frac{\partial}{\partial R}+\frac{1}{2 M_{0}} \frac{2}{R^{2}}\left(\vec{r}_{c} \cdot \nabla_{\vec{r}_{c}}\right)\left(1+R \frac{\partial}{\partial R}\right)- \\
& -\frac{1}{2 m_{0}}\left(1+\frac{m_{0}}{4 M_{0}} r_{c}^{2}\right) \frac{4}{R^{2}} \Delta_{r_{c}}+V-\frac{2 \overrightarrow{\mathcal{L}} \cdot \vec{J}}{2 M_{0} R^{2}}+\frac{\vec{J}^{2}}{2 M_{0} R^{2}} . \tag{10}
\end{align*}
$$

Here

$$
\begin{equation*}
\overrightarrow{\mathrm{J}}^{2}=-\left[\frac{1}{\sin \Theta} \frac{\partial}{\partial \Theta} \sin \Theta \frac{\partial}{\partial \Theta}+\left(\frac{1}{\sin \Theta} \frac{\partial}{\partial \Theta}-i \operatorname{ctg} \Theta \mathfrak{L}_{z}\right)^{2}\right]+\check{£}_{z}^{2} \tag{10a}
\end{equation*}
$$

is the square of the total angular momentum of the mesic molecule,
$-\frac{2 \vec{£} \cdot \vec{J}}{2 M_{0} R^{2}}=-\frac{\mathscr{L}_{+} J_{-}+\mathscr{L}_{-} J_{+}+2 \mathscr{L}^{\mathscr{L}}}{2 M_{0} R^{2}}$
is the Coriolis-interaction operator,
$\mathfrak{L}_{ \pm}=\mathbf{e}_{ \pm} \cdot \mathscr{L}=\mathscr{L} \pm \mathbf{i}, e_{ \pm}=e_{\Theta} \pm \mathbf{i e}{ }_{\Phi}$.
$J_{ \pm}=e_{ \pm} \cdot J= \pm \frac{\partial}{\partial \Theta}+\frac{i}{\sin \Theta} \frac{\partial}{\partial \Phi}+\operatorname{ctg} \Theta \mathscr{L}_{z}$
are spherical components of $\overrightarrow{\mathfrak{l}}$ and \vec{J}. and
$V=\frac{1}{R}\left[-\frac{2 Z_{a}}{\left|\vec{r}_{c}+2 \gamma_{a} \vec{e}_{R}\right|}-\frac{2 Z_{b}}{\left|\vec{r}_{c}+2 \gamma_{b} \vec{e}_{R}\right|}+Z_{a} Z_{b}\right]$
is the potential energy of mesic molecule.
Coordinates (4) of the vector $\vec{r}_{c}=\left\{x_{c} y_{c} z_{c}\right\}$ are connected with spheroidal coordinates (5) of the vector $\vec{r}=\{x y z\}$ with the origin in g.c.n. (see formula (6)) as follows**
$x_{c}=\mathbf{x}=\zeta \cos \phi, y_{c}=y=\zeta \sin \phi, z_{c}=z-\kappa$,
$\zeta=\left[\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)\right]^{1 / 2}, \quad z=\xi \eta$.
$d r_{c}=d r=\left(\xi^{2}-\eta^{2}\right) d \xi d \eta d \phi$.

[^1]** Here $\{\zeta \phi \dot{\mathbf{z}}\}$ are cylindrical coordinates of the vector \vec{r}.

Here the usual dependence on the dimensional parameter $R / 2$ is absent therefore the structure of Hamiltonian in coordinates $\left\{\vec{R}, \vec{r}_{\mathrm{c}}\right\}$ and in the spheroidal ones is the same.

The Schrödinger equation for the mesic-molecule wave function $\Psi(\xi \eta \mathrm{R} \phi \Theta \Phi)$ in units $\mathrm{e}=\mathrm{h}=\mathrm{m}_{0}=1$ has the standard form

$$
\begin{align*}
& (\mathrm{H}-\mathrm{E}) \Psi(\xi \eta \mathrm{R} \phi \Theta \Phi)=0, \tag{12}\\
& \mathrm{H}=-\frac{1}{2 M} \frac{1}{R^{2}} \frac{\partial}{\partial \mathrm{R}} \mathrm{R}^{2} \frac{\partial}{\partial \mathrm{R}}+\frac{1}{M} \frac{1}{R^{2}}\left(\overrightarrow{\mathrm{r}}_{\mathrm{e}} \cdot \nabla_{\overrightarrow{\mathrm{r}}}\right)\left(1+\mathrm{R} \frac{\partial}{\partial \mathrm{R}}\right)- \\
& -\frac{2}{\mathrm{R}^{2}} \rho \Delta_{\overrightarrow{\mathrm{r}}}+\mathrm{V}+\frac{\mathrm{J}^{2}-2 \mathscr{L}_{\mathrm{Z}}^{2}}{2 \mathrm{MR}^{2}}-\frac{\mathscr{L}_{+} \mathrm{J}_{-}+\mathcal{E}^{2} \mathrm{~J}_{+},}{2 \mathrm{MR}^{2}}, \tag{12a}
\end{align*}
$$

where

$$
\begin{align*}
& \left(\overrightarrow{\mathbf{r}}_{\mathbf{c}}: \nabla_{\overrightarrow{\mathbf{r}}}\right)=\frac{1}{\xi^{2}-\eta^{2}}\left[(\xi-\kappa \eta)\left(\xi^{2}-1\right) \frac{\partial}{\partial \xi}+(\eta-\kappa \xi)\left(1-\eta^{2}\right) \frac{\partial}{\partial \eta}\right] . \\
& \rho=\left(1+\frac{1}{4 \mathrm{M}} \mathrm{r}_{\mathrm{c}}^{2}\right)=\left(1+\frac{1}{4 \mathrm{M}}\left(\xi^{2}+\eta^{2}-1-2 \kappa \xi \eta+\kappa^{2}\right)\right) . \\
& \Delta_{\vec{r}}=\Delta_{\xi \eta}+\frac{1}{\zeta^{2}} \frac{\partial^{2}}{\partial \phi^{2}}, \quad \zeta^{2}=\left(\xi^{2}-1\right)\left(1-\eta^{2}\right) . \\
& \Delta_{\xi \eta}=\frac{1}{\xi^{2} \eta^{2}}\left[\frac{\partial}{\partial \xi}\left(\xi^{2}-1\right) \frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta}\left(1-\eta^{2}\right) \frac{\dot{\partial}}{\partial \eta}\right], \mathscr{L}_{z}=-i \frac{\dot{\partial}}{\partial \phi} . \\
& \mathscr{L}_{ \pm}=\mathrm{e}^{ \pm i \phi}\left[\pm \mathscr{£}_{\xi \eta}+\mathrm{i} \frac{\mathrm{z}_{\mathrm{c}}}{\zeta} \frac{\partial}{\partial \phi}\right], \quad \mathrm{z}_{\mathrm{c}}=\xi \eta-\kappa, \tag{12b}\\
& \mathfrak{\rho}_{\xi \eta}=\frac{\zeta}{\xi^{2}-\eta^{2}}\left[(\eta-\kappa \xi) \frac{\partial}{\partial \xi}-(\xi-\kappa \eta) \frac{\partial}{\partial \eta}\right] . \\
& \mathrm{V}=\frac{1}{\mathrm{R}}\left[-\frac{2 \mathrm{Z}_{\mathrm{a}}}{\xi+\eta}-\frac{2 \mathrm{Z}_{\mathrm{b}}}{\xi-\eta}+\mathrm{Z}_{\mathrm{a}} \mathrm{Z}_{\mathrm{b}}\right] .
\end{align*}
$$

Here E is the energy of mesic molecule in the c.m.s., $M=M_{0} / m_{0}$ is the reduced mass of nuclei, the operators J^{2} and J_{+}are defined by (10a), (10c)*. The range of definition of indepen
${ }^{*}$ The operators $J_{ \pm}$differ from the standard lowering \widetilde{J}_{+}and raising J_ operators. Indeed, latter ones are defined in the coordinate system turned by angle ϕ around our axis $\vec{e}_{R}: \vec{J}_{ \pm}=$ $=\widetilde{e}_{ \pm} \cdot \mathrm{J}=\mathrm{e}^{\mp i \phi} \mathrm{~J}_{ \pm}, \widetilde{\mathrm{e}}_{ \pm}=\mathrm{e}^{\mp 1 \phi} \mathrm{e}_{ \pm}$. Then the operator J^{2} is expressed by the known formula $\mathrm{J}^{2}=\frac{1}{2}\left(\overline{\mathrm{~J}}_{+} \tilde{\mathrm{J}}_{-}+\tilde{\mathrm{J}}_{-} \tilde{\mathrm{J}}_{+}\right)+\mathrm{J}_{\mathrm{z}}^{2}$.
dent variables $\{\xi \eta \mathrm{R} \phi \Theta \Phi\}$ will be divided into two subrarges
$\Omega \times \Omega_{\phi \Theta \Phi}$
$\Omega=\{1 \leq \xi<\infty, \quad-1 \leq \eta \leq 1, \quad 0 \leq \mathrm{R}<\infty\}$.
$\Omega_{\phi \Theta \Phi}=\{0 \leq \phi \leq 2 \pi, \quad 0 \leq \Theta \leq \pi, \quad 0 \leq \Phi \leq 2 \pi\}$.
The volume element is of the form
$\mathrm{d} r=\frac{1}{8} \mathrm{R}^{5}\left(\xi^{2}-\eta^{2}\right) \mathrm{d} \xi \mathrm{d} \eta \mathrm{dR} \mathrm{d} \phi \sin \Theta \mathrm{d} \Theta \mathrm{d} \Phi$.
The binding energy-f $\mathrm{JV}(\mathrm{eV})$ of the mesic molecule in the state |n> with respect to the meson motion (usually, the ground state $n=1$ is of interest) is expressed in terms of the total energy E as follows
$\epsilon_{j v}=\left(E-E_{n a}\right) m_{0} 2 R y$,
where $E_{n a}=-\left(Z_{a}^{2} / 2 n^{2}\right)\left(m_{a} / m_{0}\right)$ is the energy of the muonic atom with reduced mass $m_{a}: m_{a}^{-1}=M_{a}^{-1}+M_{b}^{-1}, R y=13.6058 \mathrm{eV}$. Since $\mathrm{m}_{0} \rho_{r_{a}^{-1}}^{-1} \mathrm{~m}_{\mathrm{a}}$ the units $\mathrm{e}=\mathrm{h}=\mathrm{m}_{\mathrm{a}}=1$ are sometimes used.
In this case ρ should be changed to $\rho_{\mathrm{a}}{ }^{\prime 2 /}$:
$\rho_{\mathrm{a}}=\mathbf{i}+\frac{1}{4 \mathrm{M}}\left(5^{2}+\eta^{2}-2-2 \kappa(5 \eta+1)\right)$
and $M=M_{0} / m_{0}$ to $M=M_{0^{\prime}}^{\prime} m_{a}$. Then
$\epsilon_{J v}=\left(E-E_{n a}\right) m_{a} 2 R y$,
where $E_{n a}=-Z_{a}^{2} /\left(2 n^{2}\right)$.
3. THE SCHRÖDINGER EOUATION OF A THREE-PARTICLE SYSTEM IN THE REPRESENTATION OF TOTAL ANGULAR MOMENTUM

The Hamiltonian (12a) commutes with three operators: J^{2}, $J_{z}=-i \frac{\partial}{\partial \Phi}$ and the operator of total inversion of coordinates $\mathrm{P}_{\text {tot }}(\xi \xrightarrow{\partial \Phi}, \xi, \eta \rightarrow \eta, \mathrm{R} \rightarrow \mathrm{R}, \phi \rightarrow \pi-\phi, \Theta \rightarrow \pi-\Theta, \Phi \rightarrow \pi+\Phi)$. The eigenfunctions of these operators
$\mathrm{J}^{2} \mathrm{D}_{\mathrm{mm}}^{\mathrm{J}} \mathrm{J} \mathrm{\lambda}=\mathrm{J}(\mathrm{J}+1) \mathrm{D}_{\mathrm{mm} \mathrm{m}_{\mathrm{J}}}^{J \lambda}, \quad \mathrm{~J}_{\mathrm{Z}} \mathrm{D}_{\mathrm{mm} \mathrm{m}_{\mathrm{J}}}^{J \lambda}=\mathrm{m}_{\mathrm{J}} \mathrm{D}_{\mathrm{mm}}^{\mathrm{J} \lambda}$
$P_{t o t} D_{m m \mathrm{~J}}^{\mathrm{J} \lambda}=\lambda \mathrm{D}_{\mathrm{mm} \mathrm{J}_{\mathrm{J}}}^{\mathrm{J} \lambda}, \quad \lambda=\sigma_{y \mathrm{z}}(-1)^{\mathrm{J}}, \quad \sigma_{y z}= \pm 1$
are symmetrized and normalized Wigner D-functions
$\mathrm{D}_{\mathrm{mm}_{\mathrm{J}}}^{\mathrm{J} \lambda}=\mathrm{D}_{\mathrm{mm}_{\mathrm{J}}}^{\mathrm{J} \lambda}(\Phi \Theta \phi)=\left[\frac{2 \mathrm{~J}+1}{16 \pi^{2}\left(1+\delta_{\mathrm{m} 0}\right)}\right]^{1 / 2}$
$\left[(-1)^{m} D_{m m_{J}}^{J}(\Phi \Theta 0) e^{i m \phi}+\sigma_{y z} D_{-m m_{J}}^{J}(\Phi \Theta 0) e^{-i m \phi}\right]$.
The quantum number m is an eigenvalue of the operator of projection J onto the z-axis of the body-fixed coordinate system
$J_{z}=\frac{e^{i m \phi}}{\sqrt{2 \pi}}=m \frac{e^{i m \phi}}{\sqrt{2 \pi}}$,
$\sigma_{y z}= \pm 1$ is an eigenvalue of the operator $P_{y z}$ of reflection in the (yz) plane: $P_{y z}(\phi \rightarrow \pi-\phi)$:
$P_{y z} \Phi_{m}(\phi)=\sigma_{y z} \Phi_{m}(\phi)$.
$\Phi_{m}(\phi)=\left[\frac{1}{2 \pi\left(1+\delta_{m 0}\right)}\right]^{1 / 2}\left[(-1)^{m} e^{1 m \phi}+\sigma_{y z} e^{-1 m \phi}\right]$.

At the total inversion of coordinates the direction of z-axis becomes opposite.

In the total angular momentum representation the mesic-molecule wave function is specified by three quantum numbers $\left\{\mathrm{J}_{\mathbf{J}} \lambda\right\}$ and can be represented in the form
$\Psi_{\mathrm{m}_{\mathrm{J}}}^{\mathrm{J} \boldsymbol{\lambda}}=\Psi_{\mathrm{m}_{\mathrm{J}}}^{\mathrm{J} \lambda}(\xi \eta \mathrm{R} \phi \Theta \Phi)=\sum_{\mathrm{m}=0}^{\mathrm{J}} \mathrm{D}_{\mathrm{mm}}^{\mathrm{J} \boldsymbol{\lambda}}(\Phi \Theta \phi) \mathrm{F}_{\mathrm{m}}^{\mathrm{J} \boldsymbol{\lambda}}(\xi \eta \mathrm{R})$.
The eigenvalues $\lambda=+1$ of operator $P_{\text {tot }}$ determine the sign of a rotational state with given J.

In case of identical nuclei ($Z_{a}=Z_{b}, \kappa=0$) Hamiltonian(12a) commutes also with the inversion operator of the muon coordinates $P_{\mu}(\xi \rightarrow \xi, \eta \rightarrow-\eta, \phi \rightarrow \pi+\phi)$ and the wave function (19) is characterized by eigenvalues p of this operator
$P_{\mu} \quad \Psi_{m_{J} p}^{J \lambda}=p \Psi_{m_{J} p}^{J \lambda}$.
The values $\mathbf{p} \equiv \mathbf{g}=+1$ correspond to even states, and $\mathbf{p \equiv u = - 1}$ to odd ones.

The operators $P_{\text {tot }}$ and P_{μ} are connected with the inversion operator of nuclei $P_{n}(\underset{\xi \rightarrow \xi}{\mu}, \eta \rightarrow-\eta, R \rightarrow R, \phi \rightarrow-\phi, \Theta \rightarrow \boldsymbol{H}-\Theta$, $\Phi \rightarrow \pi+\Phi)$ by $P_{\text {tot }}=P_{\mu} P_{n}$ therefore, the eigenvalues p_{n} of the
operator P_{n} are also expressed through λ and p :
$P_{n} \Psi_{m_{J}}^{J \lambda}=p_{n} \Psi_{m_{J}}^{J \lambda}=\lambda p \Psi_{m_{J} p}^{J \lambda}$.
The values $p_{n} \equiv s=+1$ correspond to symmetric states, and $p_{n} \equiv a=-1$ to antisymmetric ones.

According to the Pauli principle, $p_{n}=(-1)^{I}$ where I is the total spin of nuclei. Then there holds the constraint on possible combinations of quantum numbers $\lambda=\sigma_{y z}(-1)^{J}$ and $p \equiv(g, u)=$ $= \pm 1$ at fixed $I:(-1)^{\mathrm{J}+\mathrm{I}}=\sigma_{y z} \mathrm{D}$.

Thus, the parity p of the rotational state $\mid J m_{J} \lambda p>$ turns out to be uniquely connected with the parity of the total spin ofnuclei I. A definite (g, u) -parity of the wave function $\Psi_{m J p}^{J X}$ allows one to narrow its domain of definition (13) with res ${ }^{\mathrm{p}}$ pect to $\eta: \Omega \rightarrow \Omega_{p}=\{1 \leq \xi<\infty, 0 \leq \eta \leq 1,0 \leq \mathbf{R}<\infty\}$.

The substitution of expansion (19) into eq. (12) and averaging over $D_{m m J}^{J \lambda}$ in $\Omega \phi \Theta \Phi$ leads, for a given set $\left\{\operatorname{lm}_{J} \lambda\right\}$ to the system of $J+1$ equations for $F_{m}^{J \lambda}=F_{m}^{J \lambda}(\xi \eta R)$ in the region Ω :
$H_{m m-1}^{J \lambda} F_{m-1}^{J \lambda}+\left(H_{m m}^{J \lambda}-E\right) F_{m}^{J \lambda}+H_{m m+1}^{J \lambda} F_{m+1}^{J \lambda}=0$,
where
$H_{m m}^{\mathrm{J} \lambda}=\gamma_{\mathrm{mm}}^{\mathrm{J} \lambda}\left\{\mathrm{T}+\mathrm{V}_{\mathrm{mm}}^{\mathrm{J}}\right\}$.
$\gamma_{\mathrm{mm}}^{\mathrm{J} \lambda}=\left\{\begin{array}{ll}1, & \text { at } \mathrm{m}=0, \\ 0, & \lambda=+(-1)^{\mathrm{J}},\end{array}\right.$ or at $\mathrm{m} \neq 0$ for any λ,
$T=-\frac{1}{2 M} \frac{1}{R^{2}} \frac{\partial}{\partial R} R^{2} \frac{\partial}{\partial R}+\frac{1}{M} \frac{1}{R^{2}}\left(\vec{r}_{c} \nabla_{\vec{r}}\right)\left(1+R \frac{\partial}{\partial R}\right)-\frac{2}{R^{2}} \rho \Delta_{\xi \eta}$,
$V_{m m}^{J}=V+\frac{2 m^{2}}{R^{2}} \frac{\rho}{\zeta^{2}}+\frac{J(J+1)-2 m^{2}}{2 M R^{2}}$.
$\mathrm{H}_{\mathrm{mm} \mathrm{m}_{1}}^{\mathrm{J} \boldsymbol{\lambda}}=\mathrm{T}_{\mathrm{mm} \mathrm{m} \pm 1}^{\mathrm{J} \boldsymbol{\lambda}}+\mathrm{V}_{\mathrm{mm} \mathrm{m} \pm 1}$.

$y_{m m+1}^{J \lambda}=-\left(1+(\sqrt{2}-1) \delta_{m 0}\right)[(J+m+1)(J-m)]^{1 / 2}$.
$\gamma_{m \mathrm{~m}-1}^{\mathrm{J} \lambda}=-\left(1+(\sqrt{2}-1) \delta_{m 0}\right)[(J-m+1)(J+m)]^{1 / 6}$.
(20b)
$\gamma_{10}^{J \lambda}=0$ at $\lambda=-(-1)^{J}$.

The quantities $M=M_{0} / m_{0},\left(\vec{t}_{c} \cdot \nabla_{\vec{r}}\right), \rho, \Delta_{\xi \eta}, V, \zeta, \mathcal{L}_{\xi \eta}, \mathrm{z}$ are given by relations (2) and (12 ह).

The operators $T, T_{m m+1}^{J \lambda}$ and potentials $V_{m m}^{J}, V_{m m+1}^{J} \lambda$ can be written in a more convenient form by introducing the notation: $y_{1}=\xi \quad y_{2}=\eta, \quad y_{3}=R, \quad \zeta=\left[\left(y_{1}^{2}-1\right)\left(1-y_{2}^{2}\right)\right]^{1 / 2}$.
$T=-\frac{1}{r} \sum_{i=1}^{3} \sum_{j=1}^{3} \frac{\partial}{\partial y_{i}} a_{i j}\left(y^{\prime}\right) \frac{\partial}{\partial y_{j}}$.
$r=\frac{1}{8} y_{3}^{5}\left(y_{1}^{2}-y_{2}^{2}\right), \quad a_{i j}(y)=a_{j i}(y), \quad i, j=1,2,3$,
$a_{11}=\frac{1}{4} y_{3}^{3} \rho\left(y_{1}^{2}-1\right), \quad a_{22}=\frac{1}{4} y_{3}{ }^{3} \rho\left(1-y_{2}^{2}\right), \quad a_{33}=\frac{y_{3}^{5}}{16 M}\left(y_{1}^{2}-y_{2}^{2}\right)$.
$a_{12}=0, \quad a_{13}=-\frac{y_{3}^{4}}{16 M}\left(y_{1}^{2}-1\right)\left(y_{1}-\kappa y_{2}\right), a_{23}=-\frac{y_{3}^{4}}{16 M}\left(1-y_{2}^{2}\right)\left(y_{2}-\kappa y_{1}\right)$,
$T_{m m \pm 1}^{J \lambda}= \pm \frac{\gamma_{m m+1}^{J \lambda}}{2 r}\left(b_{1} \frac{\partial}{\partial y_{1}}+b_{2} \frac{\partial}{\partial y_{2}}\right)$.
$b_{1}=\frac{y_{3}^{3}}{8 M} \zeta\left(y_{2}-\kappa y_{1}\right), \quad b_{2}=-\frac{y_{3}^{3}}{8 M} \zeta\left(y_{1}-\kappa y_{2}\right)$,

$V=\frac{Z_{a} Z_{b}}{y_{s}}-\frac{2}{y_{3}\left(y_{1}^{2}-y_{2}^{2}\right)}\left[\left(Z_{a}+Z_{b}\right) y_{1}+\left(Z_{b}-Z_{a}\right) y_{z}\right]$.
$\rho=1+\frac{1}{4 M}\left(y_{1}^{2}+y_{2}^{2}-1-2 \kappa y_{1} y_{2}+\kappa^{2}\right), \quad V_{m m \pm 1}^{J \lambda}=\frac{y_{m m \pm 1}^{J \lambda}(m \pm 1)}{2 M y_{3}^{2}} \frac{y_{1} y_{q}-\kappa}{\zeta}$.
The systen of equations (20) in the region Ω is equivalent to the starting Schrödinger equation (12) in the region $\mathbf{\Omega} \times \Omega_{\phi}{ }_{\phi \Phi}$ Note that when no external field is present there is a $2 \mathrm{~J}+1-$ tuple degeneration in m_{J}, the projection J of onto the Z-axis of the space-fixed system.
4. BOUNDARY CONDITIONS FOR WAVE FUNCTIONS OF THE DISCRETE SPECTRUM AND VARIATIONAL FUNCTIONAL

We are interested in bound states of mesic molecules with total moment $\mathrm{J}=1$ and total parity $\lambda=+(-1)^{\mathrm{J}=-1, i}$.e., we consider the solutions $F \equiv\left\{F_{0}, F_{1}\right\}$ to the system (20) which are finite
in region Ω (hereafter indices J and λ will be omitted). In this case it is convenient to rewrite the system (20) in the form
$L F=E F$.

The operator L is given in the matrix form
$L=\left(\begin{array}{cc}T & T_{01} \\ T_{01}^{*} & T\end{array}\right)+\left(\begin{array}{ll}V_{0} & V_{1} \\ V_{1} & V_{2}\end{array}\right)$.
$\mathrm{T}_{01}=-\frac{1}{\tau}\left\{\mathrm{~b}_{1} \frac{\partial}{\partial \mathrm{y}_{1}}+\mathrm{b}_{2} \frac{\partial}{\partial \mathrm{y}_{2}}\right\}, \quad \mathrm{T}_{01}^{*}=\frac{1}{\tau}\left\{\frac{\partial}{\partial \mathrm{y}_{1}} \mathrm{~b}_{1}+\frac{\partial}{\partial \mathrm{y}_{2}} \mathrm{~b}_{\mathrm{z}}\right\}$.
$\mathrm{V}_{0} \equiv \mathrm{~V}_{00}^{1}, \quad \mathrm{~V}_{1} \equiv \mathrm{~V}_{01}^{1}, \quad \mathrm{~V}_{2} \equiv \mathrm{~V}_{11}^{1}$.
Quantities $T, r, b_{1}, b_{2}, V_{00}^{1}, V_{01}^{1}, V_{11}^{1}$ are defined be relations (20).

Boundary conditions for the functions $\left\{\mathrm{F}_{\mathbf{0}}, \mathrm{F}_{1}\right\}$ follows from the finiteness of solutions (21) on the boundary $\partial \Omega:\left\{y_{3}=0\right\}$, $\left\{y_{1}=1\right\},\left\{y_{2}=-1\right\}$ and $\left\{y_{2}=1\right\}$ of region (13). In view of that the coefficients \mathbf{a}_{ij} of operator T vanish on $\partial \Omega$, a correct formulation of boundary conditions requires to study the behaviour of
 $\lim _{1}\left|r V_{i}\right|<\infty, i=0,1,2$ the requirement for F_{0} and F_{1} to be fi$y_{3} \rightarrow 0$
nite at $y_{3}=0$ reduces to the boundary conditions
$\lim _{y_{3} \rightarrow 0} y_{3}^{5} \frac{\partial F_{0}}{\partial y_{3}}=0, \quad \lim _{y_{3} \rightarrow 0} y_{3}^{5} \frac{\partial F_{1}}{\partial y_{3}}=0$.
From relations $\lim _{y_{1} \rightarrow 1} \tau \mathrm{~V}_{0} \mid<\infty$ and $\lim _{\mathrm{y}_{1} \rightarrow 1} \tau \mathrm{~V}_{\mathrm{i}}=\infty, \mathrm{i}=1,2$ we get
$\lim _{y_{1} \rightarrow 1}\left(y_{1}^{2}-1\right) \frac{\partial F_{0}}{\partial y_{1}}=0, \quad F_{1}\left(1, y_{2}, y_{3}\right)=0$,
whereas from $\lim _{\mathrm{y} \rightarrow+1}\left|r \mathrm{~V}_{0}\right|<\infty$ and $\lim _{\mathrm{y} \rightarrow+1} \mathrm{~V}_{\mathrm{i}} \mid=\infty, \mathrm{i}=1,2$ it follows
that

$$
y_{2} \rightarrow \pm 1 \quad y_{2} \rightarrow \pm 1
$$

$\lim _{y_{2} \rightarrow \pm 1}\left(1-y_{2}^{2}\right) \frac{\partial F_{0}}{\partial y_{2}}=0, \quad F_{1}\left(y_{1}, \pm 1, y_{3}\right)=0$.
We set the range of definition $D(L)$ of the operator L as follows:

The functions $u=\left\{u_{0}, u_{1}\right\} \in D(L)$ provided that:

1. $\mathrm{u}_{\mathrm{i}} \in \mathrm{W}_{2}^{2}(\Omega), \quad \mathbf{i}=0,1$;
2. $L u \in L_{2}(\Omega)$;
3. The functions u_{0} and u_{1} obey the boundary conditions(22)-(24);
4. For any two functions $u=\left\{u_{0}, u_{1}\right\}$ and $v=\left\{v_{0}, v_{1}\right\}$ there hold valid the relations
$\lim _{y_{3} \rightarrow \infty} a_{i 3} W_{y_{i}}^{k}=0, \quad i=1,2,3 ; \quad k=0,1$
$\lim _{y_{1} \rightarrow \infty} a_{11} W_{y_{1}}^{k}=0, \quad \lim _{y_{1} \rightarrow \infty} a_{13^{W}}{ }_{y_{3}}^{k}=0, \quad k=0,1$,
where
$W_{y_{i}}^{k}=u_{k} \frac{\partial v_{k}}{\partial y_{i}}-v_{k} \frac{\partial u_{k}}{\partial y_{i}}, \quad i=1,2,3, \quad k=0,1$.
Here $W_{\mathcal{Z}}^{2}(\Omega)$ is the Hilbert space of the functions whose secondorder derivatives belong to the space $L_{2}(\Omega)$; the latter being the Hilbert space with weight r, i.e., if $u \in L_{2}(\Omega)$ then $\int_{\Omega}{ }^{r}\left(u_{0}^{2}+u_{1}^{2}\right) \mathrm{dy}_{1} \mathrm{dy}_{2} \mathrm{dy}_{3}<\infty$. The scalar product for functions \mathbf{u}, $v \in L_{2}(\Omega)$ is defined by:
$(u, v)=\int_{\Omega} r\left(u_{0} v_{0}+u_{1} v_{1}\right) d y_{1} d y_{2} d y_{3}$.

The condition (25) provided a sufficiently rapid decrease of the functions $F \in D(L)$ at infinity. It may be verified that the operator L is self-adjoint, i.e., $L=L^{*}$ and $D(L)=D\left(L^{*}\right)$. This is the reason to assert that the spectrum of operator L is real.

Now let us present the variational formulation of the problem (21)-(25). Consider a bilinear form $a(u, v)=(L u, v), u, v \in D(L)$ That the operator L is self-adjoint means that $a(u, v)=a(v, u)$. Then using the conditions (22)-(25) we get
$a(u, v)=\int\left\{\sum_{k=0}^{1} \sum_{i=1}^{3} \sum_{j=1}^{3} a_{i j} \frac{\partial u_{k}}{\partial y_{i}} \frac{\partial v_{k}}{\partial y_{j}}-\right.$
$-b_{1}\left(u_{0} \frac{\partial v_{1}}{\partial y_{1}}+v_{0} \frac{\partial u_{1}}{\partial y_{1}}\right)-b_{2}\left(u_{0} \frac{\partial v_{1}}{\partial y_{2}}+v_{0} \frac{\partial u_{1}}{\partial y_{2}}\right)+$
$\left.+r\left[\mathrm{~V}_{0} \mathrm{u}_{0} \mathrm{v}_{0}+\mathrm{V}_{1}\left(\mathrm{u}_{0} \mathrm{v}_{1}+\mathrm{v}_{0} \mathrm{u}_{1}\right)+\mathrm{V}_{2} \mathrm{u}_{1} \mathrm{v}_{1}\right]\right\} \mathrm{dy}_{1} d y_{2} d y_{3}$.

The variational functional of the problem (21)-(25) is given by the relation
$R(v)=a(v, v) /(v, v)$.
Stationary points F of this functional are eigenfunctions of the problem (21)-(25) and then the eigenvalues may be calculated by the formulae $\mathrm{E}=\mathrm{R}(\mathrm{F})$.

When $J=0$, the system of eqs. (21) is simplified to (see (20)):
$(T+V) F_{o}=E F_{0}$.

The range of definition of the operator in the l.h.s. of (28) may be given by means of the same conditions for $D(L)$ if put $F=\left\{F_{0}, 0\right\}, F \in D(L)$. Then the variational functional of problem (28) results from (27) if the potential V_{0} is replaced by V defined by relation (20)

5. CANONICAL FORM OF THE SCIIRÖDINGER EQUATION

Equations (21) contain cross serivatives. This makes difficult to discretize these equations and to annly offontive numerical methods.

Cross derivatives may be eliminated by the introducing of new-variables 7
$x_{1}=y_{1}, \quad x_{2}=y_{2}, \quad x_{3}=y_{3} \sqrt{\rho}$,
Where $x_{3} \equiv \mathbb{R}$ defines the hyper-radius of a three-particle system: $R_{G}=\vec{M}_{0} R$. Partial derivatives are expressed in terms of new coordinates
$\frac{\partial}{\partial y_{1}}=\frac{\partial}{\partial x_{1}}+\frac{x_{3}}{\rho} \frac{x_{1}-\kappa x_{2}}{4 M} \frac{\partial}{\partial x_{3}}$
$\frac{\partial}{\partial y_{2}}=\frac{\partial}{\partial x_{2}}+\frac{x_{9}}{\rho} \frac{x_{2}-\kappa x_{1}}{4 M} \frac{\partial}{\partial x_{3}}, \quad \frac{\partial}{\partial y_{3}}=v \bar{\rho} \frac{\partial}{\partial x_{3}}$.

Upon inserting (30) into (26) and performing some computations we arrive at a new variational functional without cross derivatives
$\bar{a}(u, v)=\int_{\Omega_{H}} 1 \sum_{k=0}^{1} \sum_{i=1}^{3} a_{i} \frac{\partial u_{k}}{\partial x_{i}} \frac{\partial v_{k}}{\partial x_{i}}-$

$$
\begin{align*}
& -\bar{b}_{1}\left(u_{0} \frac{\partial v_{1}}{\partial x_{1}}+v_{0} \frac{\partial u_{1}}{\partial x_{1}}\right)-\bar{b}_{2}\left(u_{0} \frac{\partial v_{1}}{\partial x_{2}}+v_{0} \frac{\partial u_{1}}{\partial x_{2}}\right)+ \\
& +\bar{r}\left(\bar{v}_{0} u_{0} v_{0}+\bar{v}_{1}\left(u_{0} v_{1}+v_{0} u_{1}\right)+\bar{v}_{2} u_{1} v_{1}\right\} d x_{1} d x_{2} d x_{3} \tag{31}
\end{align*}
$$

Here we have adopted the notation
$a_{1}=\frac{1}{4} \frac{x_{3}^{3}}{\rho}\left(x_{1}^{2}-1\right), \quad a_{2}=\frac{1}{4} \frac{x_{2}^{3}}{\rho}\left(1-x_{2}^{2}\right), \quad a_{9}=\frac{1}{16 M} \frac{x_{2}^{5}}{\rho}\left(x_{1}^{2}-x_{2}^{2}\right)$.
$\bar{b}_{1}=\frac{x_{3}^{3}}{8 M} \frac{\zeta}{\rho^{2}}\left(x_{2}-\kappa x_{1}\right), \quad \bar{b}_{2}=-\frac{x_{9}^{3}}{8 M} \frac{\zeta}{\rho^{2}}\left(x_{1}-\kappa x_{2}\right)$.
$\bar{r}=\frac{1}{8} \frac{x_{3}^{5}}{\rho^{3}}\left(x_{1}^{2}-x_{R}^{2}\right), \quad \bar{V}_{0}=\vec{V}+\frac{1}{2 M} \frac{\rho}{x_{3}^{2}}$.
$\overline{\mathrm{V}}_{2}=\overline{\mathrm{V}}+\frac{2 \rho^{2}}{\mathrm{x}_{3}^{2} \zeta^{2}}, \quad \overline{\mathrm{~V}}_{1}=-\frac{1}{M} \frac{\rho}{\mathrm{x}_{3}^{2}} \frac{\mathrm{x}_{1} \mathrm{x}_{\mathrm{p}}-\kappa}{\zeta}$.
$\vec{V}=\frac{\sqrt{\rho}}{x_{3}}\left\{Z_{a} Z_{b}-\frac{2}{\left(x_{1}^{2}-x_{2}^{2}\right)}\left[\left(Z_{a}+Z_{b}\right) x_{1}+\left(Z_{b}-Z_{a}\right) x_{g}\right]\right\}$.
Equating the variation of the functional 31) to zero we obtain the cyctom of onc. (2!) in the こancaical füu
$\left(-\frac{1}{r} \bar{L}+\vec{V}\right) u=E u$,
where
$\bar{L}=\left(\begin{array}{cc}\bar{T} & \bar{T}_{01} \\ \bar{T}_{10} & \bar{T}\end{array}\right), \quad \overline{\mathrm{V}}=\left(\begin{array}{cc}\overline{\mathrm{V}}_{0} & \overline{\mathrm{~V}}_{1} \\ \overline{\mathrm{~V}}_{1} & \overline{\mathrm{~V}}_{2}\end{array}\right)$.
$\overline{\mathrm{T}}=\sum_{\mathrm{i}=1}^{3} \frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{a}_{1} \frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}}, \quad \overline{\mathrm{T}}_{01}=\overline{\mathrm{b}}_{1} \frac{\partial}{\partial \mathrm{x}_{1}}+\overline{\mathrm{b}}_{2} \frac{\partial}{\partial \mathrm{x}_{2}}, \quad \overline{\mathrm{~T}}_{10}=\overline{\mathrm{T}}_{01}^{*}$.
The scalar product is given by
$(u, v)=\int_{\Omega_{H}} \bar{r}\left(u_{0} v_{0}+u_{1} v_{1}\right) d x_{1} d x_{2} d x_{3}$,
$\Omega_{H}=\left\{1 \leq x_{1 \leq \infty},-1 \leq x_{2} \leq 1, \quad 0 \leq x_{3}<\infty\right\}$.
It is not difficult to verify that the wave functions of discrete spectrum (32) satisfy the boundary conditions (22)(25). Equation (32) in the well-known hyperspherical coordinates is presented in ref ${ }^{/ 7 /}$.

CONCLUSION

Using the variational functional (27) one may construct effective difference scheme for the numerical solution of a threebody problem with the Coulomb interaction. In new coordinates $\{\xi \eta \mathcal{R}\}^{/ 7 /}$ this functional takes a convenient form. So, to minimize it the finite-element method 13,14 seems to be worth-while. The accuracy of calculations in this case may be estimated on the basis of general finite-element theory. Equation (32) can be used for describing collision processes in a three-body system since the asymptotics of its solutions is put in accord with the physical boundary conditions in Jacoby variables ${ }^{7}$.

The necessity to solve, with a high accuracy, the threebody problem in the total-momentum representation arises not only in the problem of muon calatylis, but also in describing experiments on the weak μ-capture $20 /$ in the hydrogen, which occurs in the mesic molecule pp μ in states $J=0,1$, 21.22. The energy and wave functions of these states may be found by minimizing functional (27) at $\kappa=0$. Besides, functional (27), for a corresponding change of the potential energy, can be utilized for solving the three-body problem in which interaction between particles possesses only axial symmetry 'see, e.g., ref.). Note that Hamiltonian (10) may be useful for introducing of various coordinates in the three-body problem, which have dimensional parameter, e.g., elliptic-cylindrical, toroidal, etc. Moreover one gives possibility to determine easily some asymptotics in the same problem.

The authors are grateful to L.I.Ponomarev and S.S.Gerstein for initiating this work and useful discussions.

REFERENCES

1. Ponomarev L.I. Third Int. Conf. on Energing Nuclear Energy Systems. Helsinki, 6-9 June 1983; Atomkernenergie, 1983, vol.43, p. 175
2. Vinitsky S.I., Ponomarev L.I. Part.Nucl., 1982, vol.13, p. 556 .
3. Vinitsky S.I., Gocheva A.D., Puzynin I.V. JINR,

P11-82-315, Dubna, 1982; Melezhik V.S. et al. Comp. Phys., 1984, vol.54, p.221.
4. Vinitsky S.I. et al. JETP, 1980, 79, p.698.
5. Gocheva A.D. et al. Phys.Lett.B, 1985, vol.153, p.349.
6. Vinitsky S.I. et al. JETP, 1978, vol.74, p.849.
7. Vinitsky S.I., Soloviev E.A. JINR, P4-85-299, Dubna, 1985.
8. Komarov I.V., Ponomarev L.I., Slavjanov S. ソu. Spheroidal and Coulomb Spheroidal Functions. "Nauka", M., 1976.
9. Fock V.A. Izv.Akad.Nauk SSSR, ser.fiz., 1954, vo1.18,
p.161. (Norske Vidensk, Sels.Forh., 1958, vol.31, p.138).
10. Macek J.H. J.Phys.B, 1968, vol.1, p.831; Fano V. Phys. Today, 1976, vol.29, p. 32.
11. Simonov Y.A. Jad.Fiz., 1966, vol.3, p. 630 (Sov.J.Nucl. Phys., 1966, vol.3, p.461); Whitten R.C., Sims J.S. Phys.Rev., 1974, A9, P.1588; Pelikan E., Klar H. Z.Phys.A, 1983, vol.310, p. 1536.
12. Vinitsky S.I., Ponomarev L.I. Jadern.Fiz., 1974, vol. 20, p.576; Sov.J.Nucl.Phys., 1975, 20, p.310.
13. Bathe K., Wilson E. Numerical Method in Finite Element Analyses. Prentice-Ha11, Englewood Cliffs,N.J., 1976.
14. Strang G., Fix G. Theory of the Finite Element Method. Prentice-Hal1, Englewood Cliffs, N.J., 1973.
15. Kaschiev M.S. et al. Phys.Rev.A, 1980, vol.23, p. 557.
16. Karpeshin P.P. et al. Jadern.Fiz., 1982, vol.36, No.2, p. 336 .
17. Fedoseyev A.I. et al. NIM, section A, 1984, vo1.227, No.3, p.411.
18. Tihonov A.N., Samarsky A.A. Equation of Mathematical Physics. "Nauka", M., 1972.
19. Counrant R., Hilbert D. Methods of Mathematical Physics. GITTL, M. -L., 1951.
20. Martino J. Preprint DPHN-HE, 91191, Gif-sur-Yette, Cedex, France, 1984.
21. Zeldovich Ya.B., Gerstein S.S. JETP, 1958, vol.35, p.821.
22. Bakalov D.D., Vinitsky S.I. Jadern.Fiz., 1982, vol.32, p.720; Bakalov D.D. et al. Nuc1.Phys., 1982, vol.A384, p. 302 .

SUBJECT CATEGORIES OF THE JINR PUBLICATIONS

Index
1. High energy experimental physics
2. High energy theoretical physics
3. Low energy experimental physics
4. Low energy theoretical physics
5. Mathematics
6. Nuclear spectroscopy and radiochemistry
7. Heavy ion physics
8. Cryogenics
9. Accelerators
10. Automatization of data processing
11. Computing mathematics and technique
12. Chemistry
13. Experimental techniques and methods
14. Solid state physics. Liquids
15. Experimental physics of nuclear reactions
at low energies
16. Health physics. Shieldings
17. Theory of condenced matter
18. Applied researches
19. Biophysics

Касчиев М.С., Виницкий С.И.

в представлении полного момента
Уравнение Мредингера системы трех частиц в представлении полного момента J сведено к системе J+1 трехмерннх диффеерендиальных уравнений в вытянутои сфероидальной системе координат. Для соответствупщей трехмерной спехтральноя задачи с неразделямимися переменными построен вариационный функционал Рзлен-Ритща и получены граничиые условия для волновых фунщцй дискретного спектра. Предложеннаи форкулировка ориентирована на применение вариационных и вариационноразностнъх методов численного репения задачи трех тел.

Работа выполнена в Наборатории теоретической физики оияи

Сообщенве Объепиениото института ядерны исследовании. Дубна 1985

Kaschiev M., Vinitsky S.I. E4-85-467 Schrödinger Equation for a Three-Particle System in Spheroidal Coordinates

The Schrödinger equation for a three-particle system in the total-angular-momentum J representation is reduced to a system of $J+1$ three-dimensional equations in prolate spheroidal coordinates. For the corresponding three-dimensio nal nonseparate spectral problem the Rayleigh-Ritz variational functional is constructed and boundary conditions are found for the wave functions of discrete spectrum. Final formulation of the problem is adapted for applying variational and variational-difference methods for numerical solving of the three-body problem.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

[^0]: * The unit vectors $\vec{e}_{\mathbf{x}}, \vec{e}_{\mathrm{y}}, \overrightarrow{\mathrm{e}}_{\mathrm{z}}$ depend on angles Θ and Φ and form a right triple. The corresponding rotation matrix $\hat{D}(\Theta \Phi)$ is given in $/ 2.12$ and differs from the standard one by a cyclic permutation of rows.

[^1]: * In deriving (10) we used the relation: $r_{c}^{2} \Delta_{r_{c}}=\left(\vec{r}_{c} \cdot \nabla_{\vec{r}_{c}}\right)^{2}+\left(\vec{r}_{c} \cdot \nabla_{\vec{r}_{c}}\right)+\left[\vec{r}_{c} \times \nabla_{\vec{r}_{c}}\right]^{2}$

