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1. INTRODUCTION

The three-body problem takes a kew position in the theoreti-
cal study of muon catalysis’!’/. Different methods esist for
a numerical solving of the problem. One of them is the adiaba-
tic representation in the three-body problem /_In this app-
roach, with the help of continuous analog of Newton method 73/
we have {ref.4%” ) first calculated the energy of a weakly
bound rotational-vibrational state {J =1, v = 1) of mesic
molecule dty with accuracy ~0.001 eV. Moreover, in this case
a high rate of resonance formation of mesic molecule dty was
first predicted in ref.’®’ However, in viey of the importance
of the problem, it is necessary to develop other, alternative
methods and, in particular, an approach, which does not require
any standard separat1on of variables.

In the first paper '/ we introduced new variables in the
three-body problem. Their advantage 1s that they correctly
describe adiabatic character of motion of nuclei in a mesic
molecule and provide a suitable representation for the asymp-
totic of solutions in all three channels of disintejration of
a three-particle system (a,b,c) into subsystem f{ac)+b, a+(bc)
and (ab)+c. In this way, new coordinates establish 1 clear re-
lation between all three sets of Jacobi variables aid prolate
spheroidal coordinates used in adiabatic representa:ion '3/ as
well as with the Fock coordinates on a 3—d sphere’®’ and dif-
ferent types of hyperspherical coordinates 710,11/

In this paper the three-body problem in the tota -angular-
momentum J representation/12/is formulated as a 3-d spectral
problem in new variables’?/ parametrized in prolate spheroidal
coordinates. We have determined the boundary condit:ons on
solutions of the discrete spectrum and have derived the cor-
responding Rayleipgh-Ritz variational functional. Such an ap-
proach does not require the separation of variables and essen-
tially enlarges the class of solvable three~body prcblems of
quantum mechanics. In this case we are able to apply some va-
riational-difference methods '3:14/ for solving the 3-d spect-
ral problem. These methods in a number of 2-d spectril problems
of quantum mechanics’/15/ nuclear physics/!6/and classical elect-
rodynamics 17/ have provided a higher accuracy of calculations
and shortened computer time as comp oxhe:—-pgnaach
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2. COORDINATE SYSTEM

Let us consider a system of three particles a ,b , and ¢
with charges and masses (eZ,,M,),(eZ,,M,), and{-e,M.), respec-
tively. We assume particle ¢ to be a negative muon; particles
& and b,nuclei of hydrogen or helium isotopes, and Z,M, >
2ZyMy. Such a system of three particles in a bound state is
called the mesic molecule.

In the c.m.s. of the mesic molecule we introduce the Jaco-
bi variables: radius-vector B ={RO®} connecting nuclei a and
b and radius-vector: ?c0={xe0yc0 2.} connecting the c.m. of
nuclei (c.m.n.) with muon. In this case the Hamiltonian of the
mesic molecule has the form (h=e=1)

Z Z Z.7
H=_2_1_.A,*0_§1__A§_* a S aZyp a
mg ‘e My It +yaﬁ) It +¥,Ri R
-1 -1 ~1 -1 -1 =1
m =Mc +(Ma +Mb) . Mo ”Ma +Mb R
(2)
v, =M/ (M_+M )y =M /(M M),

where m,; and M, are reduced masses of the muon and nuclei,
and ya,R and y R are distances from nuclei to their c.m.

It is convenient to describe the motion of muon in the body-
Iixed coordinate system constructed on spherical unit vectors
of vector R:

- > nd i 2> .
e, €@+ €, ~fgp. e =8p | (3)
since in this case its potent_’ial energy does not depend on

angles ® and ¢ *. Instead of r 3 we introduce the radius-vector
d 777
re=1ix,y,2z.}

e 2 > N
fredy =Dy (B@) {r o}, (R/R)T 1,j=1,23. (4)
Components of r are given in the body fixed coordinate system

"(3) which is usually used in passing to the prolate spheroidal
coordinates’/2: 12/ {ZFna} .

£=(rg+T )/R ., m=(ry -1, )/R. ()

* The unit vectors é'x , gy , éz depend on angles ® and @
and form a right triple. The corresponding rotation matrix
D{®®d) is given in/2.12/ and differs from the standard one by

a cyclic permutation of rows.
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Here ¢ is the angle of rotation about the major axis of the
ellipse directed along axis €p , ryg and rp, are distances
from nuclei to the muon. Note that nuclei a and b are placed
at focal ellipse points {{=1, n=~11 and {é=1,9=1}, respecti-
vely. Owing to the scale transformation {(dividing by R/2 )

the position of nuclei in both the coordinate systems (4) and
(5) is fixed, i.e., is independent of R. This means that the
beginning of vector r, can be chosen equally well in the c.m.n.
and in the geometrical centre of nuclei ‘g.c.n.))

N - »

—rc + Kep, K=Y, Yy 6)

where -x2 0 is the distance between those centres, or in one of

the nucleil

I =1 +2y 8 r =r +2y @ ‘ :

Pa=Tet ~Y,%r b= Te? ybeR' (7
The volume element and operators V¢ ,.and ¥ » are defined

in terms of the coordinates {ﬁ,?c} by Ct%e relations

dr -1/8 R®dR sin®d® dd dr_

r

RN =Y ey e 9 9 J
Vr::o = (R/ 2) Vl‘ *(R‘/2) Vl‘ "(R/2) {e(;!)b‘;" +e<D 3-;7— +eR-§—z—} .

. - ) (8)
L, =@ (9 ey, @1 9 P _icte® £ ) -
Vi TR 8 TV R Gine ge e 1RO

ad (rc'Vr)

eg (L - 2 Tty

R R
where

5 . > -3 5 - >

§=_1[rcxvr.c]:e®ix +eq)£y+eR£z

is the muon angular momentum reckoned from c.m.n., projections-
. . I . .

of € and T--il?xy,] onto the axis ep being equal, i.e., £=f,.

The total angular momentum of mesic molecule is a sum of the

angular momentum of relative motion of nuclei L:—i[ﬁxvpg and £

d_) 48,0, (9)

2 3 > i d o) - .
J-=L+ & = eg -—+ctg®iz)+e®(—1a®

sin® 9@

ie., J;=8,.
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The Hamiltonian (2) in coordinates !R,rc} has the form

H:-_l__l._ﬁ_g2ﬁ_+i_.§_(?.

3
V—b )(1+R )'—
2Mp R® IR JR 2M RZ ¢ T IR

- 29
. J (10)
—aalafy oan v 2£-72+ = .
Zmy, | 4M,, RZ e BMgR2  2MR
Here
- ‘ : . 2 2
TPl % e d (L —-ictg® £ )1+ £ (10a)
sin® g0 a0 sin® 00

is the square of the total angular momentum of the mesic mo-
lecule,

» . 2
28.7 _ £,31 +£_.T++2£z

- = (10b)
2M0R2 2M R2
is the Coriolis-interaction operator,
Rime, - £=8 £if | e, —egtiey,
: . 3 (10c)
' = .V = a 1 . C @E
Te=ted=togt me o T 0T
bnd -»
are spherical components of £ and J. and
volp_ 2% - 2% +2 2.1 (10d)
R™ 2 4298 (T +2y 81 2P
¢ ¥R c bR

is the potential energy of mesic molecule.

Coordinates (4) of the vector i"c={xcyczc} are conm:_cted
with spheroidal coordinates {5) of the vector*l;-:{xy z} with the
origin in g.c.n. (see formula {(6)) as follows

X, =X={(Cos¢, yc=y-=Csin¢. Z,=Z-k

L= L(E5-DU-P)1%, 2 =€, a1

dr = dr=(£2~-92)d&dndé.

* In deriving (10) we used the relation:
25 > g, (2. 2 2
l'cA,,*c =(1, .V?c) +(r, V?c) +[rqxvrﬂc]
** Here {{¢z} are cylindrical coordinates of the vector P,
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Here the usual dependence on the dimensional parameter R /2
is absent therefore the Structure of Hamiltonian in coordinates
iﬁ,?c} and in the spheroidal ones is the same.

The Schrédinger equation for the mesic-molecule wave func-
tion Y(qR 4O D) in units e=h=m0=1 has the standard form

(H-E) ¥(£nRp®D) =0

(12)
==l 1 9 p2d 1 1 o 1 IR
T RESR T ar T W el e VP (PR
2
_E__.pA4+V+ J2_2£z - £+J"+&J+. (12a)
Rt 2MR 2 2MR2
where
3 1 2 ] 2 3
.V = - - . - - =2
(r, 2) Fe [E-xn)(£°-1) FY; + (- &)(1-7n% pp I
pellagrd) =+ L2 n2o1-2xén 1 a2))
_ a2 2 g2 2
A,—-—Afn +é‘2a~¢:2. (= (=1 -y ).
1 A o 2 2 5 5
=t e (ET=D) e LY (1 n2) O e -.i 2
Dgp 52_,,2136(5 )a§+an(1n)an], . laqs'
té 3 (12b)
Ti . Z
S‘Bi:e [15‘3&] +12£3<.7;]' zczfn-x_
4 9 J
£, = ~k&) L ~(f-kn)
&n 52-772[(" rf)af ¢ n)an 1
voLlg. 2% _ 27

zZ 7L
R Zrn &2y %%

Here E is the energy of mesic molecule in the c.m.s,, M=M m,
is the reduced mass of nuclei, the operators J2 and J4are
defined by {10a), {10c)* The range of definition of indepen-

* The operators J+ differ from the standard lowering :f+ and
raising J_ operators. Indeed, latter ones are defined in the
coordinate system turned by angle ¢ around our axis ¢

:fi=
7 igh R

= 'é’t-.] =e P e’ 1d’e,; . Then the operator J2 is expressed

by the known formula J%= %—(j; I_+1 :f+ ) +J2z .



dent variables {£&nR 4O @) will be divided into two subrarges
Qxﬂ(ﬁ@q,

Q=115 < o,

Quep=105b<2n, 05O<n, 0<®g2nl. (13) \

The volume element 1s of the form

dr= 1 LRO(¢%n%)d¢ dn dR d o sin@dOAD . (14)

The binding energy-e;y (eV) of the mesic molecule in the state
iIn> with respect to the meson motion (usually, the ground
state n =] is of interest) is expressed in terms of the total
energy E as follows

€ ;,,=E-E_)m 2Ry, . 15)
where E__ ——(22/2n )(m /mo) is thle energy of the muonic atom with
reduced mass m, : m—1 =M;7l+M, , Ry = 13.6058 eV. Since-
mop’l? m, the unlts e=h=m, =1 are sometimes used.
r- » 00
2 / 2/

In this case p should be changed to p, : J
p&=§+ﬁd—(§9+n2~z ~2Kk (§7+ 1)) (16)
and M=M,/ mg to Mr:Mo,’ m,. Then

, =(E-E_,)m, 2Ry, ' (17)

where Ep, = ~Z>/(20%).

3. THE SCHRODINGER EQUATION OF A THREE-PARTICLE SYSTEM
IN THE REPRESENTATION OF TOTAL ANGULAR MOMENTUM

The Hamiltonian {12a) commutes with three operators: 72 .

J,==i J and the operator of total inversion of coordinates

Prot (€9%.8,741 , R R, $aredh , @sr—0 , Gon+ ). The eigen-
functions of these operators

2 JA JA JA
3 J)\ = .]'(J+1)Dmm v ID = mJDmmJ
J
JA IA ] (18)
Pov Dmmy=ADpmy + A=oy, (DY, o =t1
6 H

J
’ [(_1)11! Dim

are symmetrized and normalized Wigner D -functions

A ] %
D2t _pA (e@g) (211
J J 1672148 )

i —im ¢ (18a)
(080)e ™ ro D’ (8OO 1.
J Yz —mmjy

The quantum number m is an eigenvalue of the operator of pro-
jection J onto the 2z -axis of the body-fixed coordinate sys-
tem

im¢ eiqu
J = =m ,
venm NET
oy, =¥1 is an elgenvalue of the operator P - of reflection in

, (Bom=0):
PO o d>m<¢) ,

y
the (yz) plane:

mg -'—1m;!)
® (&) = 1 e, T
20 (148, ) %yz

At the total inversion of coordinates the direction of z -axis
becomes opposite.

In the total angular momentum representation the mesic-mo-
lecule wave function is specified by three quantum numbers
{Jm Al and can be represented in the form

J
vyl Re00) - 3 DI
J m=0 T

A JA
n n (206) Fo% (£1R). (19

The eigenvalues A = +1 of operator P .,
of a rotational state with given J.

In case of identical nuclei (Z e =2, k=10 Hamiltonian(12a)
commutes also with the inversion operator of the muon coordi-
nates P (£-€ ,p+-n ,dsn+ @) and the wave function (19) is
characterlzed by eigenvalues p of this operator

determine the sign

JA JA
P V¥ =p¥ .
u m yp me
The values p=g=+1 correspond to even states, and p=u=-1
to odd ones.

The operators P,,, and P are connected with the inver~
sion operator of nuclei P,(€-¢ ,n+-3 ,RsR , ¢+~ B-2-0 ,
¢.r+d) by B, =Pu P therefore, the eigenvalues p, of the



operator Pn are also expressed through A and P:

JA JA A
P ¥ =p, ¥ =>\p\I'J .
myp my P me

The values p, =8=+1 correspond to symmetric states, and
p, =a=-1to antisymmetric ones.

According to the Pauli principle, pn=(—1)1 where [ is the
total spin of nuclei. Then there holds the constraint on pos-
sible combinations of quantum numbers A=o__(-1)’ and p =(g,u) =
= #1 at fixedl : (-1)7*1 -0 p. e

Thus, the parity p of the rotational state |Jm;Ap> turns
out to be uniquely connected with the parity of the total spin
ofnuclei I, A definite (g,u) —parity of the wave function ‘I’;)‘p
allows one to narrow its domain of definition (13) with res?d
pect to n:0»0p={lg§< o, 0751, 0¢g R<os .

The substitution of expansion (19) into .eq.{12) and avera-
ging over Di’n’:\n in Q499 leads, for a given set [Im;A}l to the
system of 317 equations for F:]'\z F;Jn}‘(‘f" R) 1in the region Q:

IA JA JIA A IA A
Hmm---ll'.'m—f"(lﬁlmm.E)Fm +Hmm«l—lFm-f-l =0, (20)
where

JA JA J
H =ymm,{T+mef .

1, at m=0, A=+,(-1)J, or at m¥ 0 forany A ,
o {
mm

0, at m=0, A=—(=1)°

el 1.3 R 3 1L .V, )d4R-D) - 2 pA (20a)
T o R2IR T or T M RE e VIR~ eels,
2 _ 2
Vim=v+ 2,; e, J(J+1)2 2m '
R ¢ 2MR
HJA TJA
m mtl mmtl mmt1l °
: A IA
JA ynfmtl JA Ym mt1 Z¢
it omrr i VaaT T —@EDSE,
w mtl 2MR 1 2MR
_ %
yA (V2 -8 I Fme DT -m)]
m m+1
(20b)

y 1=_(1+(\/§'_1)8m0 )[(J-m+1)(J+m)]% ,

mm-
JA _ (= J
Y10 =0 at A==(-1)",.
8

The quantities M=Mgy/mg, ,(?c Ve) e s Ag VL C, £§n »Z2  are
given by relations (2) and (12b). ; .

The operators T | Tn{mil and potentials Vg ,V T 4+, can be
written in a more convenient form by introducing the notation:

2 o, Y%
B=€ vpmn. vgRL LG DAY, (200)
13 ¢ 9 E
T:-—-— 2 2 2 9
T j=1 j=1 ayi au(Y)ay R
20d
r=-é-y;’(y12—y2). au(y)=aji ., i,1=123, (20d)
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3 2 y
=Lyl s Lyleoyg), ag= oG-yl

4 4
3 (y2 -8 _a-y2yy -
a,=0, a, =-1_6§M—(y1-1) (vy =x¥g)3p5= =~ 7o 17V, )y, =&y, ),

IA - (20e)
Y + d J
JA -+ Jmmtl (bl___+b2._
mm*1 2r d 1 dyg °
ve y3
bl =8'%"C(Y2"KY1>- bg"_a“g(yl _Ky2))
v -~ 9 a 1(1 \’ 2
- - e VAV TA) T
me V + v Cz+ oMy 2
3 3 (20f£)
Z,7y 2
vV =22 - {(z.+2)y, +(2,-Z)y,]
2 .2 a’ "» 71 b a’ g .
Vg ¥, (v v
1 JA y o, Y ¥p~K
2 2 _ mmti =
p=1+m(yl+y2 -1-2Ky1y2+£)v meﬂ_—-ﬂz—-(mtl)-—l—g—- .
8

The systen of equations {20) in the region {1 is equivalent
to the starting Schrddinger equation (12) in the region 0xQ 4ae
Note that when no external field is present there is a2J+1-~
tuple degeneration in mj,the projection J of onto the Z -axis
of the space~fixed system.

4. BOUNDARY CONDITIONS FOR WAVE FUNCTIONS
OF THE DISCRETE SPECTRUM AND VARIATIONAL FUNCTIONAL

We are interested in bound states of mesic molecules with
total moment J = 1 and total parity A= +(—-1)J=-1,i.e., we consi-
der the solutions F={Fy,F;} to the system (20) which are finite

9



in region € (hereafter indices J and A will be omitted).
In this case it is convenient to rewrite the system {20) in
the form

LF=EF, @21

The operator L is given in the matrix form

T T \" v
Lo o), o Vi)
1 T Vi Y,
d 1 J d
Ty =~ 21 -—~+b S-SR TR R N PSR- N
01 13y v, | 0l 7 '3y 3y, ®

1 v! are defined be rela-

Quantities T ,r , b ,b_, 00’V01’ 11

. 1272
tions (20).

Boundary conditions for the functions {Fy,F;1 follows from
the finiteness of solutions (21) on the boundary a0 {y3_0¥ ,
{y;=11 , Iyg=—land {yp=11 of region (13). In view of that the
coeff1c1ents ajj of operator T wvanish ondfl, a correct formula-
tion of boundary conditions requlres to study the behaviour of
fuuciivus Vi, i - 0,i,2 (Z0) near the boundary dii 82T Since
lim |rV | <eo,i = 0,1,2 the requirement for Fy and F; to be fi-
y340 ,
nite at yg = O reduces to the boundary conditions

dF
lim yg 0 .9, lim yas—i-&:O

;20 Vs yg-0 0 9y ‘ ; (22)
From relations lim i7V {<e and lim - TV, ome, io= 1,2 we get

y,~1 y,+1

1 1

- ___Q = .
lim (y ;1) 3y 0. F (l.yz,ya) 0, , - (23)
y 1 ’ 1
1
whereas from lim {7V _|< = and lim rV |= , 1= 1,2 it follows
y,» 1 y, > *1

that 2 2
. 2 dF '
lim (1—}’2)—-—9=0, Fl(yl,i'l- y3)=0‘ (24)
Yoo 1 y,

We set the range of definition D(L) of the operator L as
follows:
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The functions u={ugu,;}< D(L) provided that:
Lou SWEAQ), i-01;

2. Lue L, (Q);
3. The functions ugyand u,; obey the boundaryconditions(22)-(24);
4. For any two functions u={ugu, ! and v=tvy,v;} there hold va-
1lid the relations

lim Wy =0, i=1.2,3; k=01
y3—boo

k (25)
lim a W, =0, lim a W® =0, k=01,

11y, 13 Yg

yl—»m yl—boﬂ
where

P
wh -u 2k -v, UK 1,23, k=0,1.
ay

Here W:(Q) is the Hilbert space of the functions whose second-
order derivatives belong to the space LJ{}); the latter being
the Hilbert space with weight r, i.e., if uGLz(Q) then

ar (u§+u?)dy1 dy2dy3< o . The scalar product for functions u ,

v €L2(Q) is defined by:

(u,v) :é r(uov0 + ulvl) dy1 dy2dy3 .

The condition (25) provided a sufficiently rapid decrease of the
functions F < D(L) at infinity. It may be verified that the ope-
rator L is self-adjoint, i.e., L=L* and D(L)=D{(L*). This is
the reason to assert that the spectrum of operator L. is real.

Now let us present the variational formulation of the prob-
lem (21)-(25). Consider a bilinear form a(u,v)=(Lu,v), u,v C D(L).
That the operator L is self-adjoint means that a(u,v)=a(v,u).
Then using the conditions (22)-(25) we get

a(u,v) = {é 2 2 aj; Juy _av -
Q k=0 i=1 j=1 dy; 9dy Y

b ( .aVI ) -b av N
-b, any + Vg =t a Uy ==L+ v, ay2) (26)

+r[Vou0v0+ Vi (o vy +vguy) + Yy u v I dy, dy, dyg.

11




The variational functional of the problem (21)-{25) is given by
the relation
R(v) =a(v,v)/(v,v). 27)
Statiomary points F of this functional are eigenfunctions of
the problem (21)-(25) and then the eigenvalues may be calcula-
ted by the formulae E=R(F).

When J= 0, the system of egs.(21) is simplified to (see
(20)):

(T+V)Fy <EF,. (28)

The range of definition of the operator in the l.h.s. of (28)
may be given by means of the same conditions for D(L) if put

F={Fg,0} , F< D(L). Then the variational functional of problem
(28) results from (27) if the potential V, is replaced by Vv

defined by relation {20).

5. CANONICAL FORM OF THE SCHRODINGER EQUATION

Equations (21) contain cross serivatives. This makes diffi-
cult to discretize these equations and tn annly offortive nu-
merical methods.

Cross derivatives may be eliminated by the introducing of
new-variables 7

Xi1=V¥1 ,» Xg=Yo , X, =y3\/_P—, (29)

where_{asﬂ defines the hyper-radius of a three-particle system:
ﬂG=\/M0ﬂ. Partial derivatives are expressed in terms of new
coordinates

9.9 KX -ky, g

6)'1 611 p 4M (9x3

d _ (9 xs _x_&—KX1 ad , ad cv,b—_a._. (30)
dy dx, p 4M  Jxg dy, 8x3

Upon inserting (30) into (26) and performing some computations
we arrive at a new variational functional without cross deri-
vatives .

- 13 '
au,v)= [ {zzaiﬂ&_a_v.!-
O, b0i=1  Jdx, Jx,

12

éul
axz

0 ) +

< év éul - év
-b, (ug—L + v~—21) —b, (u lyv
1(06x1+ oaxl) 2 (Ug5-
- - - — 31
+7(V, u% + VY (uOvl +Vou ) + V2u1 vl}dxldxzdx3 .

Here we have adopted the notation

3 3 5
1 X3 o 1 X 2 1 x 2 2
8=+ =22 -1, a,-L Za(1-x®), a_-_L_ E3(g2_,2)
17 5™ 274 2 ST T p T
- 3 3
_x3 ¢ X3 £
bl-—s——- ;—2—-(8 -Kxx)- b2=—8 ':E(Xl—sz).
1 x5 2 _ 2 1
s _1 33 _ i 5.1 o .
7 =3 P (Xl le). VD—V+2M ", .
3
- - 2 - -
Vo=V 2Ly Ll NTyex
X2 PTTW R T
3 3
T Ve, __2
V~-x:{ZaZb E-x—;_——x-—é—)—[(zl+zb)x1+(zb—za)x2}}.
1 2

Equating the variation of the functional 731) to zero we obtain
the cvatom nf ane 121) 1. #hn :

P S TR -
—ia mlete LOMLLLALGL LUl

(—fi-i: +\7)u =Eu, (32)
where
- T Toy - Vo v
L= _ , v - :
T,y T v, v,
T-3 20 d 7 5A b, T T
i=1 0%, 16xi B 13 lox 28x2' o "o

The scalar product is given by

(a,v)=[ 7 (uOv

+-u1v1)dx1dx2dx3
QH

0

Qy=11<%,< », -1<x

H <1, 05X3<N¥.

s

It is not difficult to verify that the wave functions of
discrete spectrum (32) satisfy the boundary conditions (22)-
(25). Equation (32) in the well-known hyperspherical coordi-
nates is presented in ref’7?’/.
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CONCLUSION ~

Using the variational functional (27) one may construct ef-

fective difference scheme for the numerical solution of a three-

body problem with the Coulomb interaction. In new coordinates
{fnfR}/7/this functional takes a convenient form. So, to mini=-

mize it the finite-element method '13:!14/seems to be worth-while.

The accuracy of calculations in this case may be estimated on
the basis of general finite-element theory. Equation (32) can
be used for describing collision processes in a three-body
system since the asymptotics of its solutions is put in accord
with the physical boundary conditions in Jacoby variables '7/
The necessity to solve, with a high accuracy, the three-
body problem in the total-momentum representation arises not
only in the problem of muon calatylis, but also in describing
experiments on the weak pu —capture’?0/ in the hydrogen, which
occurs in the mesic molecule ppp in states J = 0,1-21,22/
The energy and wave functions of these states may be found by
minimizing functional ‘27) at « = 0. Besides, functional {27),
for a corresponding change of the potential energy, can be
utilized for solving the three-body problem in which interac-
tion between particles possesses only axial symmetry ‘see,
e.g., ref. 18’y Note that Hamiltonian (10) may be useful for
introducing of various coordinates in the three-body problem,
which have dimensional parameter, e.g., elliptic-cylindrical,
toroidal, etc. Moreover one pives possibilitv to determine
easily some asymptotics in the same problem.

The authors are grateful to L.I.Ponomarev and S.S.Gerstein
for initiating this work and useful discussions.
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