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1. INTRODUCTION '

In the last years many experiments have been performed with
heavy ions where the nuclei get very highly excited in deep—
inelastic collisions. One of the results of these investiga-
tions 1s the fact that macroscopic nuclear properties change
with varying excitation energy and that this modification in-—
fluences the reaction process (fission), On the other hand,
various theoretical attempts have been undertaken to describe
the temperature dependence of such nuclear characteristics like
density distribution, size and shape of the nucleus, going out
from the nucleon-nucleon interaction where the temperature is
equivalent to the excitation energy of the nucleus. This change
of the nuclear properties is assumed to be a consequence of the
washing-out of shell-effects with ircreasing heating. In hlghly
excited fragments the number of available singlg—partlcle states
and their width become very large. Hénce, it is not -possible to
characterize the properties of separate nuclear/states. But, as-

“it was pointed out by Bozzolo and Vary recently'1 ,a realistic
nuclear equation of' state for finite nuclei, which has been de-
rived mictoscopically, would be of great importance for inter~
preting physical phenomeria in heavy-ion scattering and high-
energy particle-nucleus eollisions. A first step in this direc-
tion has been done by Bloch and di Dominics/za who have intro-
duced a theoretical framework to explain the thermal behaviour
of finite nuclel in the mean-field theory. This model has been

'extended to include the effects of superconductivity by Mosel

et al. ® On the basis of this refined formalism Sauer et al.

calculated average properties self-consistently using a pheno-
menological Hamiltonian with a Skyrme force for the nucleon-
nucleon interaction. In a very recent paper Bozzolo and Vary
employed a realistic microscopic effective Hamiltonian with the
spherical finite-temperature Hartree-Fock approximation (FTHF)

to evaluate the thermodynamic behav1our of the nuclei 0O -
and %%Ca. They found that the thermal response of these nuclei

is substantially greater than that obtainhed with zero-range

phenomenological forces, and that this effect is much more im-
portant for lighter than for heavier ions. Generalizing the re-

sults of the numerical calculations they gave a parametrization
of the temperature dependence of the excitation energy and the
rms-radius for each nucleus considered.
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In the present work we propose a quite other Wéy‘to explore
the dependence of the density distribution and the nuclear ra-
dius on exgitation emergy without explicit introduction of the
temperature parameter T into the calculational method. A col-
lective Hamiltonian with a realistic nucleon-nucleon interac-
tion describes the nucleus as a many-particle system comsisting
of A nucleons. The solution of the corresponding Schrddinger
equation can be utilized to investigate the variation of col-
lective nuclear properties with increasing excitation energy.
Of course, it is necessary to point out that in such a type of
calculation all the energy of the nucleus is concentrated on
one degree of freedom, especially the nuclear radius, while in
the Thomas-Fermi-Model, by which the temperature has been intro-
duced intoe nuclear physics, and in the Hartree-Tock approxima-
tion the excitation energy is distributed over a lot of single-
particle degrees of freedom. Consequently, one has to expect
a stronger energy dependence of the nuclear size than it is
given by the mean-field theory. This distinction will be. dis-—
cussed when the results obtained by the two approaches are com--
pared in Sec.3. Besides, there will be presented an example for
the construction of the interaction potential of two excited
nuclei and for the application of this formalism to the inteér-
pretation of inelastic scattering of ions leading to high exci-
tation of one of hem. The main results of this papet .are sum—
marized in Sec.4. .But before, the theoretical method used for
the calculations is described briefly in Sec.2. !

. . N
2. THE CALCULATIONAL METHOD

In this work the investigation is restricted to light nucleil
up to A = 16. In this range of nuclear masses it is possible
to describe the nuclear prorerties in the framework of the hyper-
spherical-function method *” . Utilizing this approach the wave
function ¥ of a nucleus with mass number A can be expanded
in standard hyperspherical polynomials according to

-(3A-4)/2

L S Xy, (P)Yg,(0)) (1

Ky

{iith the normalization condition [x . (p)dp =1, where K is an
analogue of the angular momentum cafied the global momentum.
The value of K characterizes the chosen approximation used
for the numerical calculation. In the present paper only the
1owegF order K=K . =A -4 is taken into account., The sub-
script y=[f]e LST denotes all othet quantum numbers of the
degenerate single-particle states. The collective variable p
is the hyperradius and the @; refer to the hyperspherical
angles. The hyperspherical harmonics YKy(®i) are the eigen-
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functions of the angular part of the Laplacian for the many- .
particlte system. They obey the equation AleKny})='-K(K4PI)YKQEEX
The radial part of the wave fumetion (I} is given by the eigen~ '
functions of the following operator eguation

2 LL_+1) ' Ky
& K-k 2m Ky, (¢ 2ny ¥ , ,
L R E E+W ) LR W ¢ .
id 5 -2 T (E+ ,KT(P))%XKYQP) — AE Ky (‘p}xx‘y;ﬁi
K'Y ¢ Ky 2y

where the eigenvalues E are the correspanding energy levels

of the nucleus. In eq. (2} the matrix elements af the potent;a;
enmergy of the nucleon-nucleon interactiom are demnoted by W%’fpk
the value of the angular momentum Ly is determined hy the re-

lation L ;=T(+-E(3A - 6). TFhen, -the radial wave funCtions - (3%
)3 P) XKy P

are used to. ealeulate the matrix elements of the density opera-
tor. In the hyperspherical-funetion method the radial demsity
distribution takes the form

o4 16
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where the denéity of nuclear states (&iagaqal;magrix elements
of the density operator)} is normalized according to 7

42fp (RIRER = A . (%)
1r
and the rms-radius of each:s;ate can be obtained as follows

—_ 54 : ‘ N
g? .l IR AR , - )

e (RIRP AR

In this way one gets the nuclear size as a function of the exei-
tation energy of the nucleus, and it is possible to test the
vakidity of the caleutatiom by comparing the results for the ,
ground state with experimental data. Figure | shows the effec-
tive potential

2 L (L +.1) . .
VvV (py=D K K . WKy(p')‘,

eff 2m P2 KY

-~

the energy levels, and the first three radial wave funetions -
fqund by solution of eq.(2) for the coﬁfigurztion[sépfa> of
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Fig 1. Effbatﬁve potential from eq.(2) for the nucleus

180 and the corresponding. radial wave funetions of
the-first three energy levels. The horizontal lines
indicate the caleulated energy states.

the nucleus te O egploying the realistic nucleon-nucleon inter-
action potential B4 proposed by Brink and Boeker ' 1t is seen
that the shape of the potential gets broader automatically for
hlgher lying energy states. In the meari-field theory wheré os-+

‘cillator potentials are used for an effective description of

the interaction this behaviour is simulated by performing a ‘set
of numerical calculations for increasing parameter 'T which

‘corresponds to a hlpher excitation of the nucleus. Beésides,

this formalism gives the correct shape of the radlal wave func-
tion related to -the varlous excited states. T

s

.

-3. RESULTS OF CALTULATION

In..this sectlon the numerital results obtained for the nic-
leus 80 are presented and compared with that of ref. ! At
first it is of interest to have a look at the change of the
density distribution when the excitation energy varies. Fi-
gure 2_shows that this distribution gets broader and broader
when E* increases. Due .to the normalization condition (4) its
maximum valué décreases simultaneously. In the case of the

ighest excitation the demsity in the central region O};;Rnuc)

is so small that the nucleus no’ longer exisSts. Its matter is
dissolved in space what i% characterized by a very large tail -
of the density distribution function. Because. the nethod desc-
ribed, above does not contain the parameter T explieitly it
is necessary to convert the excitation energy E* into the tem-
perature T for the aim of comparlson with the results of other
authorsy This conversion was done in two ways using the pheno—
menological formula resulting from’the Thomas-Fermi-Model 7

s

energies.

{T in Me¥)
E*= 0.1 MeV ' AT® . @)
. . . . 717

and the parametrizjtion given by Bozzolo and Vary

- 2 i ) ’ P
= 0.185 MeV ' A(T-T,) For T>Ty (To= 1 Me¥). 62

The relations between E* and T following from egs.{®6),(7) are
represented graphically in fig.3.
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Fig.2. Radial density dis- Fig.3. Exgitation energy as
tribution of 180 computed with a function of nuclear tempera~
the nucleon-nucleon interac— ture for the nucleus 80. The
tion Bl at -waritous excitation dashed line refers to eq. (6),

' the solid one.to formula (7).

Then, the temperature dependence of the rms-radius is. can-
sidered for two parameter sets (B!l and B4) of the nuclebn-nuc-—
leon interaction and it is compared with that described by the
equation

‘ - v
rms (T) = 2.74 fm (1 + 5.6.107 Mev ™" T, | ®).
which results from the finite temperature Hartree-Fock method

In either case the calculation performed in the framework
of the hyperspherical-function method gives .a more rapid %nf_
crease of the rms-radius for increasing temperature than it is
predicted by FTHF. This is dempnstrated in flg 4. The distinc-
tior between outr- two calculations consists in dlfferent ground
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Fig.4. Temperatnre dependence
of the rms-radius of 0 for
two types of nucleon—-nucleon
tnteraction. The dJdashed and
solid curves show the results:
according to formulas (6) dnd
(7), respectivelu fcomp. fig.3},
in compar1 sorm with that of
ref. vV (thick dashed line).

2} Fig.5. Dependence of the rms=—-
: radii on excmtatzon energy for
a7 the nucletd %Cd,17), 1%0(2,2"),
' ~and 80(3,37), The dash-dotted
line vepresents the vesult of
aunolo and Vary 1’

2 W ® - %0 00 TN

state radii (for comparisen: rms = 2.54 fm) and in the |
strength of the energy dependence of the nucIear size. In par-
ticular, the potential Bl causes a- stronger increase of the
radius with energy than B4. ' .

7 In principle, the same result is obtained if the phenomeno-
logical formula (4) is used to convert E* into T, The most im-—
portant outcome which can be reported here is the fact that
for the temperature corresponding to the binding energy of the
nucleus eq.(8) determines a finite value of the rms-radius,
while according to the calculation presented here the nuclear
size goes to infimity. This i's equivalent to the dissolving -
of the nucleus mentioned at the begimning of this section and
reflects the physical situation in a more realistic manner.
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The reason for this behaviour is the treatment of the problem

'so that all excitation energy is assumed to be concentrated

only on one ‘degree of freedom — the nuclear radius. Although
this assumption means a very strong restrictiom on the lot ef
possible excitations of single-particle degrees of freedom in
the chaotic process of nmuclear execitation, the final result

is in good agreement with the reality. Finally, fig.5 shows

the dependence of phe rms-radius on the excitatien energy for
the nuclei 12¢€, 150 and 160 in comparisen with the result for
16 following from the relation .

2.74 fn (1.0056 + 6.51 1078 Mev ™Ry E*+

E*) e 9

rms(E *)=

+1.89 1072 Mev™

The curves }B1) and 1'€B4)correspond to the nucleus 12¢, the
functions 2B1) and 2(B4)refer to '°0, and the curves &Bl)and
3’(B4) represent the behaviour of the nueleus 80, The brackets -
contain the chosen parameter set of the nucleon-nucleon inter—
action., In either ease the thermal response of the nuclear ra-
dius gets substantially greater when the mass number A de=-
creases. This is im agreement with theé prediction following
from the calculation with a realistic microscopic effective
Hamiltonian in the mean-field theory. '

As ‘a next step it is interesting to consider the influence
of the change of the nuclear properties due to exeitation -on
the interaction potential of two heavy nuclei ‘and on the theo-
retical cross.sections for inelastic nucleus-nucleus scatteripg.
First of all this effect is expected to play.an important role
for the description of such processes in which giant resonances
at about 20 MeV get excited 'in the nucleus-nucleus collision.

To investigate the modification of the 1nteract10n potential,

of %0+160 at various total excitationm energies of the system
and for different distributions of this energyﬂbetween the frag-
ments, the folding potential with Skyrme forces was con-
structed using the calculated radial density distributions of
189. The result is presented in Fig.6. It is seen that the int

- teraction potent1a1 V00 for both the nuclei being in the ground

state is the deepest one. In principle, it gets flater with in-
creasing excitation energy of the system, but the potential )
V01+ 01+ for ‘both the fragments being in thée first excited state
is deeper than V0 0 for the combihation in which one nucleus

is in the ground state and the other is in the second excited
state, although the total excitation energy of the system is
higher in the first case. This behaviour may be explained by
the different structures.of the wave functions characterizing
séyveral nuclear states which determine the radial density dis-—

7
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Fig.6. fbld%ng potential with Skyrme forces for the
system %0+ 180 Dotted line: Vg, solid line: Vo0

dash—dotted Ztne. Yo+ g+ dashed line: Vg ot
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‘tribution of the nucleus and consequently the folding potential.

These interaction potentials were calculated for two types of
nucleon-nucleon interaction (Bl,B4) where in either case the
same dependence bn excitation energy was obtained.

A first attempt to desc¢ribe microscopically the angular
distribution of inelastic nucleus-nucleus scattering leading
to the ‘high excitation of one nucleus was undertaken for the
systems 12(}@}h3 3He)PzCo E1200+ = 20.3 MeV at the incident

+
1
)A 20, E4 0+

e
.The results shown in flgq 7 and 8 are in

108 MeV, and 2C (*He, *He®
/107

energy B4
€
E =65 MeV
at 450,

good accordance with the experlmental data. This means that
it is necessary to take into account the effect of nuclear ex-
citation im order to calculate cross sections of 1ne1ast1c
nucleus—nucleus scattering. >

Ve

. 4. CONCLUSIONS-
,

The predictions for the nuclear behaviour at excitation gi-
ven by the approach described above differ from results based
on mean—field theories. Especially, the present calculation
leads to a dependence of the rms-radius on excitation energ
so that the nuclear size goes to 1nf1n1ty when the exc1tat10n
energy of the nucleus reaches its blndln? energy, while the
mean-field theory predlcts a finite value. In agreement with
FTHF using a realistic microscopic effective Hamiltonian this

8
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Fig.8. Cross sections of the
<nelastic scattertng of

‘He+ 12C at B, = 65 MeV’'¥ )
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The curves have the same mean—
ing as in fig.7.

Fig.7. Angular distribution of:
the inelastic scatterzna of
ey G at By = 108 Melh

He
The solid line refers to the
present calculation, the dashed
line shows the result of a phe-—
nomenological description” 1V,
The points are. the expertmental
d&ta.v 
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method gives a greater thermal response of lighter than for

heavier nuclei.' The consideration of the modification of nuc—

lear properties for excited nuclei allows us to describe in-

elastic nucleus—nucleus scattering processes microscopically

in good accordance with experimental data. )
The authors are indebted to J.P. Vary for stimulating dis—

cussion at the beginning of this work. We wish to thank R.V.Jo-

los and Nguyen Dinh Dang for useful:. comments.
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