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Introduction 

The fragmentation (strength dis t r ibu tion) of single-particle 
states in atomic nuclei is intensively studied experimetolly/l-)/ 

and theoretical ll/4- B/. Th e experimental data have been reported 
/9-13/ on the fragmentation of deep hole states in spherical ana de­

formed isotopes of Nd, Pm,and Sm. Change or the strength function of 

subshells while passin8 from spherical to deformed nuclei hn.O been 

studied within the quasiparticle-phonon nuclear mOdel / 11/Tho l'r'lOllull­
t ation of some subshells in i s ot opes of Sm, Gd, Yb. and Lu hUll boon 
cal cula t ed in ref./15/. 

Tbe experimental da t a on the f r agment ation of single-JlurUoJ. 
states in de f ormed nu clei are very scarce. The fragmentolll>n of 10w­

spin s tates in the energy interval up to 2 MeV has been n LullJ lId 
/16-20/ in isotopes of Hf , Re. W and Os. The exoi ta tion 01'01,111 U\! O Li­

ons of K.1L c 1/2- and )/2- states in (d,p) and (0< ,1.) T"'''lHonn 111 
1B3w turned out to be c onsiderabl y less than in 179Uf , 1Il~W .UlI,I 1B7W• 

An increase in the 1/2- and )/2- state fragmentation :III 11l:lw 1/\ oom­
parison with other nuclei has be en explained in refu '/16- 19/ by II 

sharp increase in 1B3w of the hexadecapole detonlillt.1011 .A, • Aooor­
ding to the data/21 / for 183w filt --0.075.:t0.Ol0, for 1II?,HI4,I06w 
fi" --O.056.:t0.006, Le., does not differ greatly. lL WflU "hoWTl in 
ref./20/ that the spectrum of 18>ae oan be uurfioiontly woll deocri­
bed with }'t --0.06. 

In view of the afore-mentioned anomaly in the excitation of 
JT

K -1/2- and 3/2- states it i8 i .ntereating to oo.loulnLo tho frogmen­

tat ion of the eubsbelle )P'/2 and )Jl"" in tungoten iaotopes within the 
quasipartiole-phonon nuclear model. In the present pap~r .e investi­
gate the fragmentation of aubshello of the uphorlo61 basi. oauBed by 
the quadrupole and hexadecapole deformation and quasipartiole-phonon 

interaotion. 
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1. Basic formulae of the model 

Within the quasiparticle-phonon nuclear model one calculates the 
fragmentation of one-quasi particle, one-phonon and quasiparticle-pho­
non states and the nuclear state character is t i cs resu lting from this 
fragmentation at low, intermediate and high excit ation energie s . The 
model Hamiltonian includes an average field as the Saxon-WoodS poten­
tial, pairing interaction and separable multipole and apin-roul tipole 
iaoscalar and isove ctor i ncluding charge exchange interactions. The 
general description of the model Hamiltonian for deformed nuclei is 
given in refs./22 ,2)/. The model takes into aocount the secular equ­
ntion solutions in the r andom phase approximation for one-phonon s ta­
tes an<l the model Hamiltonian is reduced to the f orm 

HM =:: L E..'l.O<;5" "',1>' + H". + H,,'l ( 1 ) 

qli 
in which the terms are separated, corresponding to free quasipar ticles 
[und phonons and t o the interaotion of qU6aiparticles with phonons H~1. 
Here Eq: is the quas iparticle energy, O<;/i 1s the quasiparticle cre­
ation opertor; to descri be the sin.gle-particle states qli , ~ "':!:.1 we 
use the asymptotic quantum numbers N K? A (H or K= J\+Y., ,Hor K '" J\ -~) 
and the quantum number of the K-projoction of momentum onto the sym­
met ry axis of a nucleus. 

Since formulae for describing the fragmentation of one-quasi par­
ticle states have been derived in ref .1 4/, we shall rest rict oursel ­
ves only to those necessary for our treatment. The nonro tati onal state 
wave function of an odd-A nucleus io 

t~ (Kit) = ~ L JI Cq.vC<;'(i +I D1·(K.)~~Q~' lt , (2) 

~ 1~ . ~i~ 
~hGre ~ is the ground state wave function of the relevant doubly

<i;; Is t heveo nucleus, v is the state number, creation operat or of 
" {,honon with mul tipol arity A and 'projeotion r ' • is the root nwn­
IIlIr of the seoular equation in the RPA. The wave func tion ( 2) satis­

LIlli the normalizat ion condi t i on . 
A secular equation f or f inding energies ~\I of the states of de­

r" n pod nuclei described by the wave function (2) has the form 

'(li } ) 1<'1.") 
(J )-0.e(1' ) ' d.tl 'E.,' - , .) &0". - .;; 

~• .j- w"r" - -Z." 
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where 

rCiS) = <'f:o<.,~ H"9 0("9 " Q~;t: » '.l => f~J'i . 

The rank of the determinant () i8 equal to the number of one-quaai ­
particle terms in the wave function (2). To oa loulate the fragmenta ­
tion of the one-quasiparticle state '\P we introduce the function 

J;o (~) '" e (~ )/ 9'l- (1) (4) 

for whioh the foll owi ng condition holds 

C-~ =- ClJ;('{)\ 
(5)

't.v ~'l ~ ~!~ 
Here 

" It~1-) r(~'a-) 
(6)

II 'J- ~. + 1.rJ¥, -lv 
q and 4"' run over all single-particle s tate s with given Kit exol u­


di ng ~. , t he rank of determinant (6) is less by unity than that of 

de terminant (J). The s trength function des cribing the fragmentat i on 

of the one-quaSiparticle state q. has the form 


91• = d..t (£90 - ~~) bff - L . 

C1~(1) '" I (C~.v/~ (1d) ~ ~ 1m ~-( ~+i o/.t) - ~ 1m. e,. (1~1 ~) .(1) 
v e(~-tlAh.) 

where 
L'1 

~g(~v-iJ '" :..rr (1t- t l + (tV,")l , 

l:!. is the energy interval of averaging. 

We are interested in the fragmentat ion in a deformed nuoleus of 
a certain aubsbe l l ~y of the spheri oa l basis. As 1u known the 8ingl e­
particle wave f unc t i on of the Saxon-Woods potential tor R deformed 
nUCleus is expressed through the s ingle-particle wave funotione f/,,~. 
of the spherically symmetri o Saxon-Woods potential 

ql( (p<f.t =I. a.",) J ..~ (8) 
..Ij 

with normalizat ion L (a!~/~ j-+ '1 . 

'II(. 
The strength fun ction desor.1bing the fragmentation of the aubshel l 
"tj entering into the ona-quasipart.101e state q. wi tb K. 1(. is 

'j.K.. "I q.,K.C /l. ( ~.K.)2C2S r ( OJ) =L a...~ q..v f(kt) '= a."l] ~.. (~ ).
" J L V (9 ) 

3 



To calculate t he fragmentation of t he subshell tt1j one should sum are expessed as a superposition of s tates of the spherical basis, as 
over all one-quasi particle s tat es with given val ues of K?- and then one oan see from f ormula (8). 
over all values of K., , i. e. , Oonsider the fr8~entatlon of the JP1/2 and JPJ/2 subshells 

Which show up in t he ( d,p) reaotions on the t ungs t en isotopes . The.stl~ ('() ;: L 5~·tjK.,('l) • (10) 
s t rengt h fragmentation of these subshells due to a stable deformat i on 

'I. i s exemplified in f ig. 1. Most part of the neutron subshell 3PJ/ 2 
S . (1)) = "" .s '10.!\, (t} ) • (11 ) strength is oonoent rated on s ingle-partiole states 5014, 510t and 

n~ l ~ n~ l 5)0'. The JP1/2 subshell strength is ooncent rated mainly on two Is­'1.K.. .. 
vels 501. and 521 •• The largest contribution to the normali zation of 

red with the current ones obtained from the exper1Jnentnl .tuto , in­ sta tes 770+ and 761. oomes f rom the 1j15/2 subshell thus giving a ve­
ry small oontribution to t he (d,p) oross s ecti on with exoit ation of 

In calculating the spectr oscopic s trengt h fUnctionu which oro compa­

stead of S~'\~{~J we use for t he (d,p) reactions 
lcw-spin states. In oase of the subshells )P1/2 and JpJ/2 as well as 

s~~t"(tt) = (a.~i~~/C;' ('l) (12) in oases calculated in refs/14,15/, the f raglilent a t ion of subshells 
of the spherioal basis due to a s t able deformation turned out to be 
essential. The n~ strength is distributed over a number of s1ngle­and for the (d.t) reactions 
particle s tates in the energy interval Of 6T10 MeY. 

~ K ( ~ K.. )2. C2­sq· o(!?) '" a 0\. ~4' 0 ('T) . (13)"4 ~ tlJ p l 
Pig. 1. Strength dis tribution of the 

1.0 ,(Onlj )2 3P1/2 and )PJ/2 subshells over 
single-particle states in the 

wbere U'l and "'I are the Bogolubov t ransformation oOllr.r1o:l~/Iln. Then 
t he s t rength functions(12 ) are substituted in~o formulao ( 10) and (11) 


5011 Saxon-Woods potential with ~L ­. n and t he relevant fUnctions a re S,,\j (~) nnel • The 0.8 denoted by S'nl) (1) 
parameters of the single-parti cl e potential and the 00110 LeUI LII of re­ 0.6 
sidual effeotive interactions are the parameters of the t.jull n:l portiole­

0.4phonon nuclear model. The cal cul ations have been made \lf1 Lll t hl 8ingle­
particle energies and wave fUnctions of the Saxon-WOOd. po LunL)ul 
with scheme A-181 whose parameters are presented in ref . I ?)/. The 
equilibrium deformation parameters are P:l- -0.24 and f'r --0 .0) . Til 
pairing constants are determined from the difference of nuolear mas­

0.2 
5301 

0.8 
ses , they are given in ref /2J/. In calculating deformed nuclei wo 
have used the multipole pbonons wi th A ~ 7, the multipole-mu1t i pole 0.6 
interaotion constants are given in ref./23/. The oaloulatlono have 0.4 .5011 

5211 particle c& phonon states, that is easi­been performed with II -0.4 KeY. 
ly seen in the wave function (2). In0.2 
.the mcdel of independent quasipartiole.2. The results of calculations and disoussion 

,-" '. .1 ! • the strength of the quaSiparticl e q.
The 8ubshells of the epherical bas i s nY are (2J+1)-tuple de­ 10 15 stat. of a defcrmed nuoleua is conoent­

generated. Due to a stable quadrUpole deformation th~ spherical sym­ E MeV . rated on one level and the qUAsipar­
metry i. ohanged by the ax1al one, and the angul.ar momentum is not 

tiole-phonon interaotion leads to its 
as correct quantum number any more as its projecti on K. Each subshell 

fra~entation desoribed by formula (7).
is spUtted into twioe degenarated le,..ls. The 1\~ strength is dis­ The fragmentaticn of the nlJ subshell of the spherical basis in a de­
tributed over many s i ngle-particle levela of the deformed basis with formed nuoleus is desoribed by formulae (9)-(11) in which allowance · 
the values of X from 1/2 to j. The s ingle-particle wave functions is made for the fra~eDtat10n due to a .table quadrupole deformation 

3p•
I Jt2 -0 .24 and ~It --0.03. The arrows 
I denote the posi t ion of sub­
i5101 

I 

shells in t h e spherioal basis. 
The dashed lines denote the 
Permi level oorresponding to 
183w. 

Now ws oonsider the fragmentation 
due to the quaSiparticle-phonon inte­

3p1/2 .n raotion and restrict ourselves to the 
ooupling of a quaaipartiole w:i.th quasi­

and quasiparticle-phcnon interaction. 
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We have cal~lated t he strength funct i ons S"\j l'l) and spectro­	 exhausted in the energy region belc.... 2 KeV, whereas in 165, almost 

scopi c factors S ftlj ('l) for the neutron JP1/2 and 3PJ/2 subshells in 50% and in 167 W up to 60% of the total eubshell strength is in the 

isotopes of 18J,1 85, 187w• The functions 5 ,.!j ('!) pra.ct ically coincide same excitation region. As to the strength funotion of 501 t , ....hich 

wi t h the spectroscopic f actor s of the (d,p) reactions for stat es 501i almost coincides with the strength tunct ion S3p~ t'(). one can see 

and 501f. The strength functions of the Jp'/2 subshel l are ehown in from the figure that it glves "l predom:lnent contribution to the 3P1/2 

fig. 2. The 501. state contributes greatly to the total strength strength and therefore its behaviour defines that of the subshell as 


function JP1/ 2 ' The location regions of the )p, /2 stre.ngth in t hree a whole. 


nuclei are close t o each other and amount to 6-7 MeV. Inside this re­
 1 
gion the strength distr ibution turns out to be different in different 
isotopes. Thus, in 183w the s trength function Jpl/2 is characterized 
by one l arge peak i n the region of 2.4 MeV, which exhausts a large 
part of the aubshell s trength. In 185W and 167W one can eas ily see 
two princi pal peaks in the strength funotions JP1/2' If in 185W and 
187W almos t JO% of t he subshell strength is in the excitation energy 
region less than 2 MeV, then in 183w about 20% of the subehell 
strength is exhausted in t he same energy region. The behaViour of 
the strength funct i on S 3Py, also differs in 183., as compared with 
185Wand 187W since the ma~ atrength of 501. in 183w is in the ener­
gy region higher than 2 .IIo\eV. 

Pig. 2. 	Fragmentation of the neut­
ron JP1/2 subshell in

5 (~)MeV-' 183JPv;z 
W 	 18J,1 65,187. and the spect­

0.6 rOBoopic strength functions 
~JP~(~) (dashed curves) 

in these nuclei. 

The strength functions S'y"",- ('1.) 

~S l ) calculated in 16J,1 65,1 67wlp ¥$. 't 
are shown in fig. J. The location 
regions of the JPJ/2 strength are 
somewhat larger than of the 3P1/2 
strength and amount to 7-8 MeV. In­

1 side the location region in 183w 
187- W 	 the strength ia distributed rather 

uniformly whereas in 185., and 187. 
0.4 there is a large conoentration of 

atrength at small excitation ener­0_2 
gies. COl!Iparing these curve. one 
can see that in 163w less thaD. half 

o 2 4 6 ~.Me V (.-4OJ) of the )PJ/2 streIl8th 1s 
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0.4 

0.2 

0.4 

0.2 

0.6 rS3P (~ ) MeV 
1t2 

1 	 Pig. 3. Fragmentation of the neut­5 (7 )MeV ­
3py.

2 18~ ron 3P3/2 subshell in0.6 
16J,1 85,167, and the spect­

roscopio strength functions 
S3p1/.1. ('{) (dashed curves) in 

these nuclei. 

It is seen from figs. 2 and J 
that the spectroscopic strength 
functions g"lj for the JP1/2 and 
3PJ/2 subshella are mainly dsfined 
by the fragmentation of partiole 
statss 501. and 501'. In 183w the 
single-partiole energies of states 
501. and 501. are by 2-3 MeV above 
the Permi level. With increasing 
mass number in 185,167, they appro­

aoh the lI'erm1 level. The regulari ­
ties of the fragmentation of one­

6 2. MeV 
quatiiparticle states in deformed 
nuclei have been studied in re!./4{ 

It was shown that t he fragmentation inoresses with increasing dif­
terenoe between the single-particle and Permi level. This regularity 
is observed in the tungsten isotopes. The fragmentation of states 
501' and 501' in 183r appeared to be atronger than in 185,167•• Mo­
reover, in the energy interval up to 2.3 MeV, in which the (diP) 
crOS8 seotions have been mea8~d/16/ the sum strength of the8e in 
183w wa8 found to bo less than in 165,167,. 

In rsf./16/ ths experimental cross section of the (d,p) reac­
tion ( Ed -12 MeV, 8 -90) with excitation of JI! ",4/1- and 3/2- states 
are summed in the energy intervals (1.¥.-2.J) loIeV in 16>" (1.1.;.2.0) 
MeV in 165. and (0.7.;.'.8) MeV in 187,. The sum oross ssctions are 
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represented for two caseSl a) ~ 6'"(~~oOJ'b/lr) for peaks with the cross 
~-,\­

sections hlgher t han 100 }<~/s.. and b) 2::. 6""" for all peaks with 
". ~-, Ji ­

1.1 whlch i s considered to be the upper l~t. The cross sections 
have been calculated/16/ using the single-particle wave funotions of 
the Nils son potential with rtf .0 without taking the fragJllentation in­
to account. The ratio of the sum experimental cross sections to the 
theoretical ones was obtained: 0.55 for 183w. more than 0.65 for 185w 
and 0.9 for 187". It was assumed that the discrepancy between theory 
and experiment can be removed by introduoing a l arge hexadecapole 
deformation responsible for the fragmentation. 

Using the speotroscopic factors S"lj shown in figs. 2 and :3 we 
have caloulated the sum cross sections of the (d,p) reaotion 

__ ~ PWUC.IC 

.... - '" 3 s . '-"I.I ... 	 - L-.. HJ (14)
J'al1,% - 2.j+i. 

for excitation of 1/2- and 3/2- states (E.i .12 MeV, U "900 ) in 
183,1 85,187W in the same energy intervals over which the experimantal 
data are sUIIDDed. 'rhe cross sections have been calculated by the DlfUCK 
program, the values of S)<j are taken in the interval. 0.1 MeV. The ex­
perimental data for cases a) and b) and the reaulta ot our Galoula­
tions for the ratios of the cross sections in different tungsten iso­

topes are given inthe table.It is seen trom the table that the re­
sults of caloulations describe correotly the tendency of t .he cross 
sections to inorease in excitation of 1/2- and 3/2- states in 18lr 

as oompared to 185,1 87... .A good agreement is 0 bt&ined in sUlllllling the 
exper1Jnental. data in o&se a). Thus, the frapentation of aingle-plU'­
tiole states due to the Quasipartiole-phonon interaotion is respon­
sible for the experimental.ly observed anomaly in the oross seotions 
of the (d,p) reaction with excitation ot 1/2- and 3/2- states in the 
tungsten isotopea. 

Table. Comparison of theoretical 
caloulations with experiment The anal7sift ot rela­

tive difterence of energies 

Ratio Experiment 
a) b) 

Calculation 
of state. 541. and 532t in 
18~e baa shown/20/ that 

in caloulatione baaed on 
O(I&3W) 

6"('8' ......) 
0.57 0.80 0.52 the Nileaon model. tor the 

proton aystem in the giTen 

6"('Uw) 
.(''''\41) 

0.41 0.62 0.37 
region one .hould take a 

hexadecapole deformation 
in the interval trom -0.02 

8 

to 	-0.06. In this paper the spectros oopic factors C2U2 f or t he 541+ 
state were calcuJ.at ed wi th ~4--0.045. We have oalculated the spect ­
roscopic factors ~ for excitati on of t he 541 . s t a te in 183ae with 
f3't --0.030 The results of our calculations are in agreement with the 
experimental data and results of oaloulat ions in ref./ 20/; this ~es­
tities to t hat the cal oulations can be made with f3" ..-0.03. 

The calculations with large values of IP1 ! and taking into ac­
count their change in the W isotopes would probably l ead to an addi­
t ional improvement of the agreement between theory and experiment. 

The results of our calculations and their comparison with expe­
riment show that the quasiparticle-phonon nucl ear model desoribes 
correctly the frapentatlon of single-particle states with jll.1/2­
end 3/2- in the t ungsten isotopes. 
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HryeH ~HHb BHHb, B.r.ConoBbeB E4-85-439 
~parMeHTa~HH no~o6onoqeK B H30Tonax BOllbQpaMa 

B paMKax KBa3Hl.!aCTHHo-tl;loHOHHOH ~w~enH H~pa paccqHTaHa l!>par­
MeHTa~HH ITO~o6onoqeK 3p 112 H 3p312 B H30TOITaX BOllb¢paM~, _ 
183,185,187-y,: H B 183 Re ~H HH3KocrrHHOBbiX cocToHHld I I 2 H 3 I 2. 

ITonyqeHo npaBHllbHOe onHcaHHe o6Hap~eHHOH 3KcrrepHMeHTanbHO 
aHOMallHH B ceqeHHHX peaK~HH THITa (d,p) H(a,t) ~llH Jl2- H 312-
COCTOHHHH B H30TOnax BOllbQpaMa. 

Pa6oTa BbmonHeHa B lla6opaTOPHH TeopeTHl.!eCKOH tl;lH3HKH OK~H. 

ITpenpHHT 06beAHHeHHOro HHCTHTYTa RAePHNX HCCneAOBaHHA, ny6Ha 1985 

Nguyen Dinh Vinh, V.G.Solovies E4-85-439 
The Fragmentation of Subshells in Tungsten Isotopes 

The fragmentation of the 3p112 and 3p3/2 subshells in tung­
sten isotopes and the spectroscopic factors of the one-nucleon 
transfer reactions in 183 · 185 • 187 W and 183 Re for the low-spin 
112- and 312- states is calculated within the quasiparticle­
phonon nuclear model. The experimentally observed anomaly in 
the cross sections of the(d,p) and(a,t) reactions for 112-
and 312- states in tungsten isotopes is described correctly. 

The investigations has been performed at the Laboratory 
of Theoretjcal Physics, JINR. 
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