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1. INTRODUCTION

Advances in the recently developed algebraic nuclear mo-
dels 1-8/ have introduced different semi-simple Lie groups for
the description of the collective nuclear properties. Although
the general properties of these groups are well understood there
always exist some computational problems:

1) the calculation of the direct action of the generators
of the group and of the physical tensor operators (angular mo-
mentum, quadrupole operator, Hamiltonian, etc.) on a given poly-
nomial basis;

2) an overlap integral computational problem;

3) matrix elements and Clebsch-Gordon coefficients (CGCs) of
simple Lie groups via certain canonical or noncanonical chains
of subgroups;

4) eigenvalue problem for different model Hamiltonians (In-
teracting Boson Model’® Interacting Vector Boson Model
(IVBM) 56" and other symplectic models).

All these problems are closely related to the diagonaliza-
tion of the model Hamiltonian and irs application to the inves—
tigation of certain types of nuclear properties.

In this paper we present an algorithm for the calculation
of the matrix elements of the I[VBM Hamiltonian in the polynomial
basis of Bargmann and Moshinsky (BM) 78’ This algorithm is
realized on a Computer Algebra System (CAS) 2.10/

In Section 2 of this paper we present the basic concepts of
IVBM and the BM basis. This Section also deals with a brief ar-—
gumentation of the advantages of the application of CAS to al-
gebraic nuclear problems.

All problems that appear in the presented algorithm are il-
lustrated in Section 3 on the comparatively simple example of
the SU(3)-quadrupole operator.

2. BASIC CONCEPTS

2.1. Some Algebraic Nuclear Problems

The calculation of the matrix elements of the operators of
the physical observables (angular momentum, quadrupole momentum,
Hamiltonian, etc.) plays a main role in the algebraic nuclear
models. These operators are constructed by means of boson crea-
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tion b and annihilation b* operators. The basic states of the
system are expressed as

" {rl
I[T]>=P (b)| 0>, (Z.1.1)
where P (b) is a polynomial in the creation operators bm,'0>
is the vacuum state of the system(b} |0>=0) and [I'] is a comp-
lete set of quantum numbers defining the transformational pro-
perties of the system. On the other hand the set[l'] is deter—
mined by the irreducible representations {(IRs) of the dynami-
cal group of the system G and its subgroups via the decomposi-
tion

G Gy O G2 D e X IBONSY. DO(2)
l’ylli y21'2 ¥ ool M,

i.e., the set [I'] includes the angular momentum L and its third
projection M. The extra labelsy , Y, --- appear if chain(2.1.2)
is not a canonical one. (8

The operators of the physical observables T
form according to the decomposition

(b,b*) trans-

G > G; 3 Gé') e (2.1:3)

where in the common case the subgroups in (2.1.3) do not coin-
cide with the subgroups of (2.1.2).

In this way the problem is reduced to the calculation of the
matrix elements

<][11!T[ﬁlﬂl1>:<0 P“‘Yb*)T[ﬁkbm*)Filq(mlo>. (210

The calculation of (2.1.4) can be carried out through a direct
application of the lemma of Racah’!!/ and the generalized Wigner-
Eckart theorem. However, in the common case, there are no expli-
cit analytical expressions for the CGSs (or the corresponding
IFs), which appear in this approach. For this reason, in a num-—
ber of cases, it is much more expedient to calculate {2.1.4) in
a direct way. The latter leads to a great number of similar but
very cumbersome operations. That is why, in this case, it is
more convenient to use the powerful instrument of CAS, and in
particular the universal CAS REDUCE-2 "127,

2.2. Interacting Vector Boson Model

y ’/ < °
TVBM "®®/ assumes that the collective nuclear motions can
be described by means of two types of vector bosons - p- and
n-bosons. The corresponding creation and annihilation operators
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satisfy the usual commutation relations

m - =
[p*™p, 1= [0*®,n, ] =8,

[P*m.nn]=[n*m,pn]=0, (2525 1=)
where
(P )*=p*™ = (-1)"p* ®*™)* =p
o —=m m
(n )*=n*O= (-1)Mp* . (n*T)*-p . (2.2.1b)
] —-m m

The operators ﬁ and n are SO(3)-vectors. Moreover they trans—
form according to two independent IR[1]; of the group U(3) (p*
and 0* transform according to the conjugate IR of U(3) [1]] =
=[0,0,-1]3 =[1,1]3) * Thus it can be assumed that P— and n -bo-
sons belong to a "pseudospin'" doublet differing in an additional
quantum number ¢ = +]/2 (a "pseudospin' projection). Hence, in-
stead, of p, and n;, one can introduce the operators

u, (o= 2L) =Py i um(a - - é—):nm: [U*m(o). u (p)1=5(a,p) Bm.n ‘ {2.2.2)

It can be shown thatu (¢) transform according to the IR [ 1],

of Fhe group U(6), while the quantum numbers m and o define
their transformational properties via the chain

U(6) > U(3)xU(2)
S0(3) SU(2) (2.2.3)
0(2)
o LB
It has been shown in that the most general one- and two—

body Hamiltonian, which conserves the number of bosons can be
expressed in the following way

1
H= X h(a)!\0 (o) + % (2L +1) : L]("‘l)M
a L,J,M 143 Jf

L
=1V =(p.p;ip.p) [ A‘; (p.p) A_JM (p.p) +A“L(n,n) A_JM (n,n) |

+ 4VL(p.n;p,n)A;(p,p)Ajg(nm)

J
+ VE@.pinn) LA () AT () + A (p)A’, @)

* In this paper we use the notations of Vanages '3 for the
IR of U(r) and SU(r).
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2V epipa) (AT @p)AL, )+ AL (p) AT, (um)
(2L 2:8)

J
+ AL @AY () +AY (0.0) Ay GR)IT,
where h(g) and VI(p,0:x,v) are phenomenological constants and
L 5 LM s
AM (p,u)_mi, Clmlnum(p)un(a) (2,2:5)

(CLﬂ are the usual Clebsch—-Gordon coefficients 14). The ope-
raté%g A;(p.o)(36 in number)are S0Z3)-tensors {L = 0,1,2) and
generate the group U(6), which is a group of dynamical symmetry
for the Hamiltonian (2.2.4). The group U(6) includes the rota-
tional group SO(3) and the following chains of subgroups are
possible in IVBM

0(6) 4 SU(3)%8U (3) U(3)xU(2)

50(3)x80(3) U3 WU DxUC1)).

1

S0(3) (22460

SU(3)%0(2)
S0(3)x0(2)

On the other hand the operators of the other physical ob-
servables (angular and guadrupole momenta, transition operators
15 J
and 50 on) can also be expressed by means of (2.2.5). Thus'®
> 'y 2 .
Los~E 3 A2}  Q, =VES A%(0,0); 2.2.7
M i M ol ( )
are the operators of the angular and quadrupole momenta (in fact
Qy is only a part of the total operator(}ﬁ“ but the matrix
elements of QM and Q&“ coincide between states with an equal

number of bosons).
Further, one can introduce the 'pseudospin" operators

2 ) 3.0 0
T, :\g—Ao(p.n): e -—-\'—23—/\ (n.p) : T(,=-‘§(A (pp)-A"(a,0)) (2.2.8a)

and the number of boson operator

N =-v3 (A%(p.p) +A° (n.n)). (2.2.8b)

The remaining operators AF(pm) and AL(nJ)) (L = 1,2) can be
treated as vector and guadrupole transition operators between
states that differ in the number ofp- and n —bosons, but not
in the total number of bosons.

The operators Ly and @y generate the subgroup SU(3)/ generate
S0(3)< sU(3)/, while T, generate the sungroup SuU(2) (the addi-
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tion of N extends SU(3) and SU{2) to U(3) and U(2) respecti-
vely). In other words, the operators {(2.2.7, 2.2.8a,b) define
chain (2.2.3), which is equivalent to the right side of the
general scheme (2.2.6). This equivalence leads us to the con—
clusion that the calculation of the matrix elements of Al (a p)
and H can be carried out in the basis of BM 7.8/,

2.3. Bargmann—-Moshinsky Basis

The basis of BM is constructed with the help of two types
of vector bosons transforming according to two independent IR
of SU(3) with (A,x)=(1,0) and corresponds to chain (2.2.3).The
states of the basis can be written as

= PO (p n) 0>, 5
2ol
aLM aLm ( )

where |[0> is the vacuum state and PHL#)IS a polynomial in the
creation operators p, andn_. The labels (A,p) determine the IR
of SU(3), while L and M are the angular momentum and its third
projection, which determine the transformational properties of
the states along the decomposition SU(3) 2 S0{3) > 0(2). This
decomposition, however, is not a canonical one, i.e., in a given
IR(A,u) of SU(3) there can be more than one state characterized
by the quantum numbers (L,M).The quantum number ain (2.3.1)1is the
missing label that differs states with equal (L,M).

In the case of the most symmetrical IR of SU(3) (»,0) the
label a can be neglected; states with given L. and M appear
only once. The corresponding normalized states can be construc-—
ted only by the operators P, kOT M.

Z«é-m—l,) p?pL+M -20 pl-M

?E'(L+M—2?)I(F—M)'
29 o {2:3.2)
where p po 2p1p 1 and the range of ! is determined by the
fact that the exponents in (2.3.2) are all nonnegative integers.

U51ng (2.2.8a) one can test directly that the states(2.3.2)
have a "pseudospin" T=A/2 and T, -T. The states with Ty=-T
can be obtained by the substltutlon p 1

©, )
LM

transforming according to {0,1). This vector is given by the
vector product

w ©,1)
~(PE) = | amd " 12.3.3a)
]

(A.0) >___[ (LM (L-M) (L) 1L ) |
LM 2L =MOL L) 1A=L) 1 ’

The state can be constructed by an SO(3)-vector

that is,
A =p ng=Ryn, ; Ag=pn_~P_N;i A y=R0_PyBy - (2.3.3b)
The normalized states }Lﬁl> can be obtained from (2.3.2) by

I/,
substituting Pp>Aps A op and multiplying by [(u+1) 1] . These

states cvxre%powd To T= T, =0.

l/\,L\
The general state l( ii)"{a highest-weight SO(3)-vector
| a i /

with M=L ) can be constructed with the help of five elementary
permissible diagrams (EPDs), which are the highest—weight states
of S0(3)-multiplets belonging to the low-lying IRs of SU(3).
These EPDs are of the following type:

|(1.01>>. ‘(01) G (2,0)>
I 00

(0,2) a.1) (2.3.4)
' b '
00 1 ];>

)

We have already given explicit expressions for the EPDs p2 and
Ay. The remaining EPDs are expressed as
2 P o R A e
A ——A Bt 2/\11\ 1.. pen (p-n) (2.3.5)
(P ‘<(p>n)) 1A0 "IhAJ,

Then the general BM states can be written as

A,p) Vimith O 20— . -1—(/\+u—1-—2a—ﬁ) 4

Lo )™ @) ©2)* A%)0>,  (2.3.6)

a LL

where*
0 if A+p-L even

q - £2.%.0)
f 1 if A+p-L odd.
It should be noted that because of the relation

2. #° - (2.3.8)
b4 B A, %A

the EPD z in (2.3.6) appears at most linearly. The ranges of a
and L in (2.3.6) are determined by the fact that the exponents
in (2.3.6) are all nonnegative integers. Thus « runs the values
in the range

max{O—(u—L)k a<mm1 (p=8), v—()\cu—-L Bt (2.3.9)

* The states (2.3.6) differ from the states (3.8) from 8 in
the definition of the label @ and coincide upto a phase factor
(-1
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The BM-states with an arbitrary third projection of the an-
gular momentum can be obtained from (2.3.6) with the help of

the well-known formulae
('\.u)>
aL L {2.3,10)

(A, p1) [ 2L"M (L+M)1 ]‘/: LL-M
aLM (2L) 1(L-M) ! o

It can be shown that the BM-states are also a complete set
for the IR(N,T) of the "pseudospin" group SU(2) generated by
the operators (2.2.8a). This is due to the fact that in chain
(2.2.3) the groups SU(3) and SU(2) are mutually complementary;
the IR (A,p) of SU(3) determines the IR (N,T) of SU{2) by means
of the following relations

N =A+2p; T=§-. (2.3.11)

where N is the number of bosons and T is the "pseudospin" of
the state.

At last, it should be pointed out, that the states (2.3.6)
are neither nornalized nor orthogonal in the additional label @,
i.e., one has

<()\.u) (A,p) )
ata ks L1, i SR

A v 5 g
where fi;FlL) are the so-called overlap integrals. An explicit

expression for the overlap integra]s in the case of the BM-basis

is given by formulae (2.4) of '°.

Further, when convenient, we shall also use the following
notations for the BM-states (2.3.6)

1) A +p-L —even

(A,ﬁl) E\P
aLL
L=?1+%; 2T = f+2r +1

ii) A +p-L-odd

()\.ll) = 5 lp .1 a>

eL L i (2.3.13b)
L=?1+ F2+1; 2T=?142r41

e
S (2.3.13a)

The integers PI,PQ »7 and a coincide with the corresponding
exponents of the different EPDs in (2.3.6).

3. MATRIX ELEMENTS OF THE SU(3)-QUADRUPOLE OPERATOR -
AN EXAMPLE OF THE GENERAL TECHNIQUE

In this Section we are going to discuss in detail the gene-
ral technique of calculating the matrix elements of the SU(3)-
quadrupole operator Q (2.2.7) between the states of the BM-ba-
sis. First of all it should be noted, that, by definition, the
operator Q; is an U(2)-scalar and transforms as a tensor of
second rank in the space of the angular momentum. Thus, taking
into account the tensorial structure of Q,, one can write di-
rectly

A, p) (Ap)
(k). k
Qo = E+as L—l (3 I)
=0,*1 3 -
S5 ::g-m a+s L+k L+k

and the problem is reduced to the calculation of the coeffi-
cient a(k),

The operator Q, can be expressed in terms of the p— and n -
boson operators (2.2.1a,b) in the following way

~

Ng=-SRgig w I R BT RIS AN 3.2

For further calculations it is more convenient to employ Fock’s
representation, where the creation operators are treated as
independent variables and the corresponding annihilation opera-
tors are presented as differential operators, i.e.,

b o | W d . e L [P
pm Sec iy = 1)m dp Ty Ay R 1) (}n_m' (3.3a)
—m

The vacuum state of the system is determined by

B0 (=i 2 (0> o n et 2 105 e
P* 0. = ( {9 3 10> =n*=(=1) 0>= 8, (3.3b)

-m o

The action of the annihilation operators on the EPDs (2.3.4)
is given by:

* .
PPy Ml b
Pohy =0, o003 =8, _(9;

*9 .
H;p =28, Py +28, ¢ Pg +2Bm4p_1.



pnj A =28 ! (nOA1 ~n1Ao) + 26[“'0 (n.1 A, -nA_, )+2‘§m"1 (n_lAD-nOA_l);

m,

Pz =8, 1Pyny+8, oy —Ay ) +8, _1®PoRe —Py 0y —Ag )

p, =0
nrﬁ l:am.O Ryt am,—l Py
(3.4)
n* p2 = 0
m
n;\ A = gam;l B +25m'0 (plA-l =340 Al) +28111,—1(2'.)"‘-—1 —p—~1A0);

g 5 .
g =B, 4 DY =80 PyPo * 8y 1 (B Py ~Pp)

m m

The next problem is that, in the general case, when the ope-
rator (3.2) acts on the basis of BM (2.3.6) some of the terms
that appear in the r.h.s. of the corresponding equations are
linearly dependent and must be transformed into linearly inde-—
pendent fundamental blocks by means of the following substi-
tutions:

“p s 2
22 = ézA,f ~p A

1 2.
AlA_.lﬂ:Z—(A +A0)v
2
= Al SR 1] - :
Ajz _§-p1A0 3 pA —P_A
- o, D> 2 UM
PPy~ p1A0 ol Mp1p—1 1

p,(B-1) =F%n -z

poAl.—, plAO -2}

2 22,2 T v 2 fan s Lpt K,
p Az ==P A A —p P AjAy - =P Az BB+ Bo

10

4 _ 42,2 ,9 TaBa - BAR 4 H A 242 _ By
p Af= 45 A2 A% —2pA% A 6 A 4p_ A" +4p p_ AA; ~dp p A°A;

0,8 4 ~BAg+P (0

where the fundamental blocks appear in the r.h.s. of (3.5).

In this way the general technique of calculating the matrix
elements of any operator in Fock”s representation leads to the
calculation of the commutator

<0|P(u*)S(u)10:>=<0\[P(u'*),S(U)110>=<0l[P(%E).S(U)IIO*'. (3.6)
o
where S(u) and P(u*) are some polynomials in the creation and an-
nihilation operators (2.2.2).

In the case of the Q; -operator (3.1), using (3.2) and (3.4)
and (3.5), in the notations (2.3.13a,b) one obtains:

A+ p - L —even

Qylly,fo.ra >= (4r+2a+?2—|’1)l bl 78>

+ 12rp 1I!’1+1,?2,r—1,a> +6aA20! ?l,Pz.r,a -1> (3.7a)
Adp~-L ~pdd
Qoz |P1,F.2,T_a >=_(?1—22 —47-—2a—-3)Z|21,P2, T, a >-—
—-3(4r +a+2)A0lf’1c-1. ?2 g
~6rp A |0 +2,0 ,r—-l,a>—6rz!f1+2. F2—2,r-1,a+1>
e 7 (3.7b)

s 3 wy o S
+97A0|F1+3, P2—2,r-1,a+1,+3rA0||’1+ 3,0,2,7-1,a

—6ap_ Ag |0y, 0y+2,7,a~1>+3aAy | £,+3 ¢

g1, @~ 13

On the other hand, in order to obtain the coefficients in
(30.1) one has to calculate the action of the operators L_,and
L7, on the states (2.3.13a,b). The operator L_; is of the fol-
lowing type (2.2.7).
11



(3.8)
L_, ==poP2, + P_4Pg - BgRZ + n_jn5 .

Then with the help of (3.4) and (3.5) one obtains:
A+ p= L —even
L, 1?1.?2 ,r.a:»:-flz]f']-l, ?2 -1, r,a> +(Yl» 32 )Aolfl.?z-—l.r_aN

L?'ll?l,??,r,a>.~. £ |¢,, 0, -, 7r,a +1>

= 1' 2
(3.9a)
L@ 200N I BgRir > 4 (@26 -Dp_y |l 1 7 a>
9?1(71 -1 Vx—2. bosr+Lya>;
At p =L -odd
L__lz'l’l, FB,r_u = %—(V]—?z w1) 10y +1, Po—1,r,a+ 1>
+ él—'(f’ﬁl’gfl)A% Pi+1, b=, ria>- (04 Py + 1) p_, [y, Poelirias
—-f’l‘p] -—1,?2 +1.0r% v
LEIZWI .Pe,r.a\— ‘le‘(P‘ —72 +1) + 9] (?1 +1) lZ1?1.f2-—2,r.a+l‘-
*]Zl—(Plbrpzt 1)(4?1 !3) 'é—(PIO PZ)(Pl —rz"l)*AU‘p“lvfg—znrcuA 1>
(3.9b)

+ 2 ( +ly D @P 4 2 B D) AS 141 fy=2ura> + (0 =121y =2,0 el a>

Aoyl + D@2+ Aglly By o ria
—l’l(?,Pl 4 2?2 *“)AOH,Y' ; 1 ?2 L

Hence the comparison between the l.h.s. of eq. (3.1) (or (?.7a,b))
and the r.h.s. of eq.(3.1) (or (3.9a,b)) gives the expressions,
given in the Appendix, for the matrix elements in «(3.1) of the
SU(3)-quadrupole operator '2.18/,

12

4. CONCLUSIONS

The general algorithm of the application of CAS to some
group theoretical nuclear problems is illustrated on the example
of the SU(3)-quadrupole operator. All basic characteristics of
this approach appear in more complicated problems, for example,
the calculation of the matrix elements of the IVBM Hamiltonian
in the BM-basis. The latter will be discussed in /177,

APPENDIX

The matrix elements of the SU(3)—-quadrupole operator are of
the following type:

3(2)=0; a® _ B(A+pu-L-2a-8) . 8(2) - 12a

1 0 (L+2)(2L +3) e TR

a). 6BA+u~L-2a-B)(u~2a-B)
’ (L+1) (L +2)

all), _ 12aB(L-p+2a+1) 68 _ 6Q+u-L-2a-f)(u-2a)
9 (L+1) (L+2) L+l (L+1) (L+2)

a(1) _ 12_¢Z_(L—u+2a)_
1 (L41) (L+2)

£V 8(A+p-L-2a-B) (= 2a-B) (u-2a=-F-1)
1 (L+1) (2L +3)
aG -4 L(lirl) =3(L-t +2a+ B)°
(L+1) (2L +3)

—S(hsunb—2anpg) L) ~8-2a)° | o0 4. 04,
2(A+p-L—-2a-~-f8) L+ 1) (3L £3) +2p~4a+ 28

a(“1)= 12a(L=p+2a)
-1 (L+1)(2L4+3)
where, according to (2.3.7), B is equal to O or 1.
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