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1. INTRODUCTION

In recent’years, heavy-ion (HI) scattering of projectiles
of mass number A< 30 has already been, studied with godd reso-
lution/s/.Eventhough the experimental data have been analysed
rather successfully in the calculations of phenomenological mo-
dels, a microscopic description of these processes is of great
interest for both experimental and theoretical Ainvestigations.
Such a microscopic understanding of HI collisions may be foun-
ded on the calculation of the HI interaction potential using
a realistic nucleon-nucleon (N-N) interaction’!’/. Note that for
this purpose the folding model/2.4/ has proved to be a very con-
venient formalism, where the potential for HI scattering is ob-
tained by averaging an approptiate N-N interaction over the
nuclear densities of two colliding ions. In such an investi-
gation the nuclear structure information is embodied in the
nuclear wave functions that determine the ground-state and
transition densities, and it is possible to calculate not only
diagonal but also nondiagonal matrix elements of HI interac-
tions,so one can-consider either elastic or inelastic scat-
tering.

In the present work, within the folding model, elastic and
inelastic scattering of !2C ions from heavy spherical nuclei
has been studied with the ground-state and transition nuclear
densities calculated by the method of hyperspherical functions’3/
and the quasiparticle-phonon nuclear model”%.19/ for projectiles
and target-nuclei, respectively. The method of hyperspherical
functions (MHF) has first been applied to investigate elastic
and inelastic scattering of ions with A <16 in refs.”17.18/
‘'where the problem of possible excitation of the.monopole reso=
nance in these processes has been considered. Further, the fol-
ding-model calculations with nuclear densities computed by the
MHF have been performed in refs, "6-8/ Within the quasiparticle-
phonon nuclear model”’®.19/ (QPM) one can investigate a wide rangg
of nuclear properties of the excitations in complex nuclei,
including not only the low-lying excited states but also the
giant multipole resdnances. The nuclear wave functions calcu-
lated in the QPM have been applied to the description of various
nuclear reaction processes, such as the excitation of magnetic
multipole resonances in (e, e”)’154nd @,p')/lgéeactions, the
excitation of electric dipole states in ()/,y’)reactions/16 etc.
In ref./lz,and the present paper\QPM'és used in theifolding mo-

del to investigate HI ispgftering, . Wwwa 1
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2. DETAILS OF CALCULATION _ .
. The ﬂescrquion of the folding model and possible applica-

tion of nuclear microscopic models in the study of HI elastic
and inelastic scatterlng have been discussed thoroughly, for
example, in refs, /-1t should be noted that the knowledge
pf»the wave functions used in the nuclear density calcdlation
erables us to investigate nuclear structure phenomena observed
in the HI scattering. Usually, in such folding calculations
there are always two basic ingredients. One is the construction
of nuclear ground state and transitfpn densities within the

" microscopic mddels and the other is the choice of an appro-
priate effective N-N interaction between the projectile nuc-
Jleons and the target nucleons. At first we give, a brief desc-
ription of the nuclear density calculation in the MHF and QPM.

v

2,1. MHF and the Projectile Densities

Within the MHF nucleon density distributions for a number of
light nuclei have been calculated with the optimum fit to the
basic experimental data, such as the binding energy, monopole
resonance excifation energy, mean squared radius (RMS)} the
form factor of electron scattering /etc. In the K~harmonics
method/ ’the total wave function of a nucleus with A nucle OFS
is usually expanded in terms of K-harmomics polynomlals Y (0

. -L.(3a-9)

Y(1re, ... A)=¢& 2
. KY

/5/ , . .
where ¥ = [f]1 ¢ LST" ™", The hyperspherical harmonics are eigen-
functions of the angular part of the Laplacian

X (O (6), )

heére K 1is an analogue of the angular moméntum for £ = 3 and
is talled the global moment. The system of equations for the
energy and radial elgenfunctlons is written as

£ L(f 1) e
SGe o Sl WG I AU T I <§>_2“‘ W T @x (0,
aé £ -h2 Ky 1-12 V' 4RY Y Ky

(2)

K’y’ .
=K+ ﬁé;.ﬁ and nyy (£). are the matrix elements of:

the N-N interaction potential/5.20/:

where £K

V= E Vi), V(rij)=f(rij)wm.
i<j -

(3)

%

With the wave functions calculated’;n the K—harmoqlcs method
one can obtain the "ground-state and transition densities for
‘a considered nucTeus of A nucleons /17.18/ In the present work:
we only consider the case of a131ng1e excitation of the nuc-
Teus-target, ,s0 the prOJec;11e is supposed to be in its ground

state beforé and after the collision. ‘Therefore, only the ground-

state density of the nucleus-projectile of the form

* oo (5A-18)/2
pol®) = 16}“((EA-.11)/2) » f 2.3 y (f)df )
Vol ((5A —-14)/2) pRISE “
: 2 (5 15)/2
N 8(4A - HT (54 - 11)/R) Fr (f"f 2y (8- % HEras
VT ((5A - 16)/2) ' £ 5A-18

is included into the folding calculations of this work.

2.2. QPM and the Target Densities

It is well known that in the inelastic HI scattering at bom~—"

barding energies ~ 10 MeV per nucleon, usually, the ‘low-lying
states of low multipolarities are excited (for example, 2%,
4%, 57,.. states of vibrational type tn a spherical nucleus),
so ohe needs to calculate within QPM, besides the ground-state.
density, the transition densities corresponding to such excita-
tions in thle nucleus-target.
tonian is the following

3,

‘H:H +H

av pair + HM +H

- (5)
where H  is the average field describing independent single-
partlcle motions; Hpair describes the monopole pairing inter-
action between the neutrons or protons; Hy, and Hg, are sepa-

rable multipole and spin-multipole interaction terms genérating’

the nuclear excitations. The one-phonon states with A7 = 17,

2%, 3=, 4%,... are generated by the multipole forces, whereas
the one<phonon states with A" = 1F, 27, 3%,... by the spin-

\ multipole forces. These effective forces include the isoscala¥
and isovector components :

\

> - A
Vi(ry, 1p) = —l—(K'é % K(;\) 4 ’ )" Y,\# 0. ¢, )r 2 A~ p Op #2)
(6)
g +» » (AL) (AL)" g - '
v, (rl,rz)——(K +Ky ’1’2)f [“ 1Y 0y ¢ )]Lw ‘2[”2YM(02’¢2)]1,M'

The general form of tHe QPM Hamil~
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The explicit form of the QPM Hamiltorian is glven in refs. /910(

Thé contributions of H, and H to ‘the ground-state den51ty
are negllglble/ /,so one has for this case

+ j+i’~-m-m”

H -H +H = S Ea a -1 3 a ()" x

0 av pair ) Iom om0 T

jm7T Jjj'mm°7 (7)

xa a’ a, ,a, ,

Jo j—m j’-m” j'm
where aJ and a, are the nucleon creation and annihilation
operators; dl £, j) 1is the set of quantum numbers for

a 51ng1e—part1c1e state with the energy E,
momentum projection m; 7= (n, p) is the isotopic index; G,

and Gp are the monopole pairing constants. In the single-par-—
ticle-basis calculation, the average field is taken as a Woods-—
Saxon potential. The potentlal parameter set used in the QPM

and the angular

and the G; wvalues are given in deta11 in ref. /1f/ After Bogo-

lubov’s transformatlon

a_ =ua j—(—)J“ va o, (8)
jm J Jm J j—m .

where a+] and e, are the quasiparticle creation and annihila-

tion operators, one can obtain the ground-state density for
a_heavy (spherical) nucleus yp the form:

2 2 .
() == 3 @+ DR @O v (9)
Y 4n J ]
Here R.(r) is the radial part of the wave function for a single-

partdicle state =(n, f,j). In further calculations the nuclear
densi'ties are normalized to

4ﬂ_fpo&)r2dr= A, (10)

e
where A 1is the mass number of the nucleus. Note that we have
included into the ground-state—density calculation the effect
of monopole pairing interaction between nucleons (7) unlike the
shell model densities used in some other foldlng calculatlons/“4/
For the calqulatlon of the wave functions of various excited
%states in the nucleus- target the QPM Hamiltonian is transfor-
med into the phonon representation. In contrast with some other
microscopic models where the phonons are introduced in a pheno-
menological way, within QPM the structure of phonons ig calcu-
lated microscopically, in the random phase approximation (RPA),
and the phonons are superpositions of various two-quasipar-
ticle excitations (see (13)). A short description of this pro-
cedure is the following: after the transformation into the
'space of quasiparticle and phonons 7'%the QPM Hamiltonian can

4
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‘one has for an excited state in the nucleus- target:

b€ written in the form’ \
2()\i X)\i’
. T + A ¢
H= 3 qara -1 3 LAy v () e R
R J im  jm 8 Aii‘r et an i )\—#1
m T A DV (Y ) b
Aoy 4 .
(- Q Q 1.+ H
X - ) )\—[l.i, + ’\F" + qph' I3
where -
A 2
tr.” ufi? e | 4
XAiz 5* Sy 137 i,
T 2 _,2 ' )
re jﬂz A
A A
Kg)—K(l ) }\1
0.1 . '
(A1) M)+ Y (Ai) ] --2Ax1 n,p P (12)s
p p,n ) Y
',(0 + K /\l .
1-_‘.,_.._*.___.1..__ X
P.n
A§ 2A + 1
Yy (=L 4 x™ _ * .
n,p 2 Jdo n,p a):(u)\l

Since the magnetic excitations are not considered in this work,
in (11) only the contributions from H, in (5) .are taken into
account. Here fJ i, are the reduced 51ng1e-particle matrix
12 A (=
elements of multipole operator YA#(G ¢) (see (6)) and uj j =
1°2
are the energies of one- and two-

=u v, *fu, .3 €. and ¢
11 12 J2 Jl ' ijig
qu351part1c1e stdtes, respectively. The energy o,  of one-phonon

itat?uekul Ovls obtained by solving the f0110w1nglRPA equa-

<A> (M . RSO
0 ‘+x)_4_ﬁ.___1.~_.x‘x‘=1,
21 4 1 P 2 nop
Q¥ oo s 100 et ] ( )Ludl)ti ( Y
= a a -~ - 7’ a, ’, y N
Mei 70 i’ 77 im i m” A I 1 e A

where ¥y is the phonon vacuum. In the one-phonon approxima-
tjon, i.e., in the RPA, the contribution from H which descg
ribes the qua51part1c1e—phonon interaction/ 910/ “Jg absent, and
|A > = QA WO
Further, if we define the nuclear “transition den31ty as “H1

plr) = <f{ 2 8(r ~ )|1> with the multipole expansion of the
form k

PO = 2 Ox<h M AT M> 0, @Y}, (6, ¢, (14)
P -
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‘where 'the normalization constant Cy
we get

. ! ; . . 22/
is that defined in ref. 24

2 A v .
pAﬁ)=,<% HAE r;“S{r —«i)i YA(Ok’ ¢k)liJi> . (15)

matrix element (15) is as ae{ined by Brink

/Here the red%FeQ
‘In the case of single excitation ©of an even-

and Satchler

even nucleus target (J = A amd % = 0), after some transfor-
matlone one’ obtains -
Co+A=ly  jo+A+8/2 N PR PR
i (- ~on
p)‘(r) JEZJ 1 PRI Iy 11, %
VAT iRty F O, ? 2 (16)
. g -0, +A
. (+) A Af 2 1
xR OR ©Ou . b wé ) [Le () ] }
Jl J2 11]2 J1J2 J1J2

folding calculations,
been given to the macro-,

Tt should be noted that in some other
fon example in ref. /22/preference has !
scopic Tassie model 23/ in the nuclear transition density. calcu-
lation. Since it is just the tails of the transition densities,
which contiibute most to the folding 1ntegra1 for the potent1a1
near the strong absorption radius (17); and those microscopic
models which use an oscillator basis do not glve the densities
accurate enough for such large distapces. In the QPM the
51ngle particle basis is calculated by a numerical method/24/
using the code REDMEL /® E’/and the- calculated radial wave func-
_tions describe nuclear asymptotics correctly, so the nuclear
“trangition densities calculated within QPM are quite adequate
for the use in the folding model. .

2.3. HI Interaction Potential

There are various types of the effective N-N interaction
which can be used in the folding calculations. For example,
in ref. the zero-range Skyrme forces’/26/and finite-range
forces in.the Gaussian form’27/have been used to describe elas-
;tlc scattering 80+ %0 at different bombarding energies. In
the present work we have chosepn the so-called M3Y effective
N-N interaction 8/ based upon a realistic G-matrix. In recent
years the M3Y interaction is quite successfully app11ed in, the
folding model to describe elastic and inelastic HT s€attering
_ (seey for example, refs.’/347 ). Our éarlier calculations’

" have also indicated thae the M3Y interaction is more appropriate

for the descrlptlon of elastic HI scatterlng in comparison
with the &- Skyrme forces. The HI scattering is characterized

h [V 5 A o a W

"y 7 £y

b3
by -the strong absorptlon/lg/ and most of the, avaIlable data
is sensitive only to the tail of the HI potentlal in the, vi~
qynlty,of some, strong absorptlon'radlus 4
t .
1/3

1/8 N
Ry =~ L5(ALT 4,7 (), .

(7

In such an approximation the, double- folded potential .may be
written as _ 2

1 ‘?
-» -
r,—r,),

g -+ - - - -
UF(R’) = fdr1dr2p1$r1) ‘p"2 (.r2) v (r 12= R+ry 1 <
where p, and Py are the nucleon densities in the nucleiA1 and’
A,, respectlvely, v(r ’
nucleons in A; and nuleons in Ay, The calculatlon of six-
ditensional integral (18) is. very complicated in the coordinate
space, but if we work in mofientum space, this integral is redt-
ced to a product of three one-dimensional integrals/%/ With '
the multipole expansion (14) one obtains, in the case of single
excitation'of a spin—zero target, the following exptression for
double-folded potential (18)

UF(R) = C)\U, (R) Y}:"“(OR, ¢R)’
where

UA(R)"=

fdkk JA(kR)v(k)p)(‘”(k)p(z’(k). €19)

2n% !
and | i 5
N

=.4n frzdrjk(kr)fk(kﬂ. (20)

The M3Y interaction’1,:%/ is

- 7999 ©Xp(-4r) 9134 Xp(-2.51)
4[' 251. kS

~v(t) - 262 8('12)'

. 3 . . 3 ‘
The inclusion of an explicit energy and density dependence in-

,to (21) generally leads to a better consistency of the calcula#

tional results with the experimental data (see ref. /297y, The.
elastic scatterlng corresponds to. A = O in these formulae. ’

Further, UA(R) is taken as a real part of the HI potential 1n§o}u
;he cross- section calculation. The imaginary part of the HI po-

tential is included phenomenologlcally so as to fit the data
for elastic cross—section. Usually/lzc the imaginary optical
potentlal is supposed'-to, have a Woods-Saxon form

AN

r (18

thé effective N-N interaction between °
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W) = - - , , (22)
1+ explr=R)/a 1
1/3 1/3

wheétre Ry = rg(A7° + A% ). Wyand ry,ay ate defined from the
best fit to the elastic- scattering data. In this case the ima-
ginary transition potential is defined by deforming ‘the Woods-
Saxon potential (22), i.e., ~

dW(r)

I
WA(X')‘= —-.BARV ,
dr
The deformation parameter {3; is obtained from the DB(EA) values
scaled according to BR::cqnmtlz/.Inwsome cases considered in
this work, for the sake of simplicity, the imaginary part of
the HI potential is supposed to have the same shape as the real
part (in both elastic and inelastic channels). In such a simple
approximation calculations have been performed with one adjus-
table parameter a equal to the ratio of the imaginary and real
amplitudes of the HI optical potential. -

2.4. Coulomb Interaction

HI reactions are characterized by the strong Coulomb inter-
action between the two ions. The Coulomb field plays an impor-
tant role in the excitation of low-lying nuclear states, es-—
pecially, the electric states of low multipolarities/l"a/.ln
the elastic channel the Coulomb term of the HI potential td
a good approximation’1?/ may be treated as a simple Coulomb
interaction between two charged spheres’2/, Note that in some
applications of the folding model to the inelastic HI scattering
the 'Coulomb excitation form factor is phenomenologically inclu-
ded into the calculation from the collective model with the
charge deformation parameter extracted from the analysis of the
measured cross-sections. In thé present work the Coulomb term
of the HI transition potential is calculated microscopically
by the same folding formulae as for the nuclear part (18), only
instead of nuclear transition densities and the M3Y interaction
{n these formulae stand the charge transition densities and the
Coulomb interaction between two protons, respectively. The charge’
ground-state densities of the two ions are the proton parts of
(4) and (9). The charge transition density of the nucleus-target
is calculated by formula (16). In the calculation of phonon am-
plitude ¢?§ and wfﬂ (see (13)) thé isoscalar and ‘isovector

172 ¢

. . A A
constants of effective multipole forces Ké ) and_K% )(6) have
been chosen so as to satisfy the following relation

8

4
{

s

W

o w Jp ) 2
"Bexp(E’\; Og.rs. S A) = (RAs ) ({r gr[en upn,)\(r)*'ep Pp’)\(l’)]l {24)

where.B; (EX).is the measured transition probabilities for ‘the
lowest excited state with spin A and parity =3 P A® andp_ ()
the neutreon and proton parts of (16); e™ and e 'the effecfive

neutron and proton charges in the nucleas/lo/(fgr states with
5 A N, e
A> 2 e%)= 0.and e;)é e ).

3. RESULTS OF CALCULATION AND SOME DISCUSSIONS

The transition folded potential U)(R)(19) musf, generally,
be used in the coupled channel calculations for the descrip-
‘tion of inelastic HI scattering. However, as it has been shown
in other folding calculations/1.2/, a qualitative agreement
with the experimental data can be reached in the distorted-
wave Born approximation (DWBA), especially, in the descrip-
tion of the lowest 2+, 3-/excited states in the nucleus—target,
which have a strong one-phonog‘structure/&gﬁoﬂ In the presént
work all calculations have been performed within the DWBA using
a modified version of the code DWUCK /3%/The imaginary potential
parameters have been defined from the best fit to the elastic
data usinﬁ an optical model program with the search package
MINUIT/al.The phonon amplitudes ¥ and ¢ have been calculated
by the code RPAS 732/ yhich performs the RPA calculations within
QPM. .

In this work we consider elastic and inelastic scattering
of 12C ions from some heavy spherical nuclei at different bom-
barding energies. The nuclear ground-state density for '°C has
been calculated in the MHF with the N-N potential V7J20( This
calculation gives the mean squared radius RMS = 2.325 fm, the
binding energy E, =83.1 MeV and minimum in the form factor of
elastic electron scattering/!® ¢ = 4.1 fm~! compared to the
experimentgl data (RMS (exp.) = 2.294 fm,E} (exp.) = 92.2 MeV
and q (exp.) = 4.1 fm~1) for !'2C nucleus. The -structdre of"
the low-lying excited states in the nuclei-targets has been
calculated with the sets of constants (x{V, «{})) which repro~
duce the excitation energies ard the reduced transition proba-
bilities shown in the table.

Id the description of various excitations in the nucleus-
target, from the point of view of QPM, it is important to know
how (K%b,lék)) influence the calculated inelastic cross—sec=
tions. Theoretical study of the’ same nuclear states excited
in different reactions enables us to choose the most appro-

tpriate set of (Kém, KQ)) for the calculation of the wave func-

tions of excited states with spin A and parity # (see the
ttable). The results of the microscopic DWBA calculation for

) .
5, %




Table

The structure of the low-lying excited states in the
nuclei-targets calculated in the] RPA

gqénUMVyﬂ

3

of isoscalar and isovector cons-

F 3 : 2N
w n(MeV), B(EAM)" (e*b?)
Target 2% A - LA RMS(fm)
expt. ealc. expt. calc,
(. s /
9%, 2t 2.19 2.63 0,06 50,072 0,074
3~ 2.75 2,72 0,074, 0,108' 0,071 *4+313
142y 2* 1.57 1.75 0,31 50,47  0.348
3" 2,08 2.07 0.24 0,220 4-932
Ldgy + 0.696  1.15  0.40 50,51 0473 , ¢
" 3" 1.51 1.81 0.26 0,282 ‘
208, 2* 4.086 4.64 0,30 *o0.02 0,30,
3" 2.61 2.64 0,69 + 0,05 0,695 5.588
. -~ 3,194 3.2 0,046+40,006 0,054
i
12~ 14 Fig.1. The inelasti: cross—sec-
C+ Nd g. e &
B 1 f SRR 704MeV tions for 128C . 14444 at 70.4 MeV
o {UUL AN Ave caleulated with different sets

tants (see details in Sec.3).

the «
?
lowest

“‘*Nu

and « "

at 70.4 Mev’®
d1fferenr sets of (K(A) KQJ)
are shovn in flg 1.

w1ph

The dash-
dotted curves correspond to

one-phaqnon

which generate, the”
2% and 3°

states with the energies Wt =

= 0.696 MeV,, wg+ = 1.51 MeV'
ard the reduced
bab111t1es BEZ; 0%, 2%4) =

= 0.975 e b2

BE3N0* ., 3=
= 0,332 ¢°p respegtlvely The
dashed curves . .correspond to

ransition pro-

F

P

S veay g G T e

e

= -

]
L
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&

-

§

1.9 MeV and B(E21) = 0.411 e®p2, BE3™Y) =
1 o
= 0. 257e2b3; and the solid curves (o?+ = 1.15 MeV, ®, - = 1.81 MeV
’ 1

and, BGEET) 0.479 ¢ BZ;}XE3T) 0.282 ezb From various complla-
tions of the experimental data’33, 3@’for nycleus '*4Nd ‘one has .
Ly ; (exp.) = 0.696 MeV, w4 -(exp.) = 1.151 MeV andXKEE#)ex

= 0.40e°b%, 0.516%b? B(D3¢)

,wét = 1.25 MeV, o, =

0.26¢e b3,As one can see, goad

agreement of the calculated ‘cross- sectlons with inelastic data
is provided by the sets of constants (x ()) giving tHe 5
cdlculated 'B(EA)-values close to the measured ones, but the
calculated excitation energies w)n are somewhat hlgher than
the experimental data (see also the Table). Numerous calcula-
tions within QPM/1%.35/have shown that good agreement with the
data for both the excitation energy and BE X) ~value can be

‘reached by including into the nuclear wave function more compli-

cated two-phonon components which allow for anharmonic effects
in the collective excitation.

The effects of interference between the Coulomb and nuclear
excitations are of spec1al interest, because the form of the
Coulomb interaction is known and the infdrmation about the nuc-
ledr interaction may be obtained by extracting accurately the
reélative phase between the Coulomb and nuclear contributions
to the inelastic data’133%/ ye have considered these effects
on the same example of 120 + 144Nd at 70.4 MeV. As one can see
from Fig.2 and upper part of fig.3, the contribution from the
Coulomb part of the HI transition folded potential is dominant
in the case of 2? excitation in !%%Nd-target, whereas the nuc-
lear and Coulomb parts are comparable (see the lower part of
Fig.3) for the 37 excitation. Our calculation has shown that
the interference in this case reverses the phase of the oscilla-
tions at forward angles. This is comsistent with the experimen—
tal-data analysis performed in ref./33/usihg the phenomenologi-
tal collective model.

Further we consider theé elastic and inelastic 12C scatterlng
on 28 Pb at 98 MeV and 116.4 MeV, -902Zr at 98 MeV and Nd isotopes.
at 70.4-Mev/33.37-39/ 0 the whole, our calculation glves a good
descrlptlon for these data (see flgs .4,5), the only exception
is the case of 2" excitation in Pb iﬁduced by ion !2C at
98 MeV when the calculated inelastic cross~section underesti-g
mates the data by a factor of about two (see fig.4b). 'This fact
is not understandable ‘within the folding model’38/The calculated ,

i

elastic cross—sections shown in fig.4a for system 12g , 208 py -
.at bombarding energies 96 MeV and 116.4 MeV /37%oint to some

advantage of the nuclear ground-state densities used in this
work compared to the shell model densities used in some other
foldlng calculations 72/, (It is impossible to fill the observed
maxima in the elastic cross-sections with the shell model densi-

11
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Fig. 2, The contrnbutzons from
Coulomb U§ and nuclear UN
parts to the' HI'transztzon fol-

ded potential for the, &7

exczta—

tion in N4 induced by 120 Ton.

AN
The influence of the micréscopic’stfuoture of the wave func-
tions; for considered nuclei on the calculated cross—sections
is discussed. Theoretical-investigation of the interference ~
« between the Coulomb and nuclear excitations using microscopic
charge and nuclear densities gives results consistent with™the
phenomenological analysis of these processes.

10’

Fig.3. The interference bet-—
ween Coulomb and nuclear zn-
ieractions ln the case of 21
and 3, excitations in TNd.

3 20 JI‘Z"Nd
F Ofan —
. N TV 70.4MeV
2 N\  —-—Coulexcitation anly
I =-—=Nucl excitation tnly
——Coul-Nucl.exc.
oL
ar
0
&t
81
B
Di
I
-
L “

. i
8 6 ndeg)

ties not renormalizing the strength of the interaction - the

dashed lines in fig.4a).

’A. CONCLUSION

The microscopic nuclear models (the method of hyperspheri-
cal functions and quasiparticle-phonon nucledr model) are ap-
plied:to study the elastic and inelastic heavy-ion scattering

within the framework of the folding model.

Results of our cal-

culations reproduce the experimental ddta in most considered
cases and this 1ndlcates the valldlty of further application
of the MHF and QPM to the HI scattering.
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Fig.4. The calculated elastic and inelastic cross-
sections of 12¢ scattering on 208 py,,
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Jao Tuen Kxoa, lUuruxosa K.B. E4-85-143
MuxkpocronHyeckoe H3yyeHHe ynpyroro

H Heynpyroro pacCefHHUs TKeJIbIX HOHOB

Meron runepcdeprnyecKHx PYHKIMHA ¥ KPASHYACTHYHO—GOHOHHAA |
MOZENb NPUMENIOTCS OJIT MHKDOCKOMHYECKOro HM3ydeHHsa ynpyroro'
H Heylupyroro paccefiiufl Takenmx uoHon. lloreHuuan ssaumomeHcT—
BHSI TAXENLIX OO PACCUMTHIBAETCA B paMkax $oJimMHr-Momesu
¢ abderxTunuem MIY uyion-iyxaonHsiM p3anmMogeHc TBHEM.OBcyxmawtes
HHTeDpDepe UM MeXOY KYMONOHCKHMM W fAepHhM BSauMomeilc TBHAMH
U TIPOABIEHHE MHKPOCKONHYACKONH CTPYKTYPbl BOJIHOBLIX GYHKIHIR
‘inep B HccllenyeMblX peaxiuuax.

Faﬁon& BHIIOJIHEHA B ITa6opaTopuu Teopequecxoﬁ busuxu OUAH |

gﬂpeﬂpﬁgr ngenuﬁeunoro HHCTHTYTa AREPHMX MccnenoBanwit. Jly6ua 1985
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Pao Tien Khoa, Shitikovd K.V. E4-85-143
Microscopic Study of Elastic

and Inelastic-Heavy-Iop Scattering '

The me;hod of hyperspherical functions and the quasi-
particle-phonon nuclear model are applied for microscopic
study of elastic and ifielastic heavy ion scattering. The
heavy-ion interaction potential is calculated within the
folding-model using the M3Y effective nucleon-nucleon inter-
action. Contributions from the nuclear and Coulomb parts of
the heavy-ion potential to the excitation of low-lying one-
phonon states in nuclei-target and the influence of isosca-
lar and isovector affoctive forces used in the phonon calcu-
lation have bacn considarad. Somo effects of the microscopic
nuclecar wavoe functiona usad In the density calculation are
also landicntad.

Tha inventigation haa becen performed at the Laboratory
of Theoratlcnl Phynles, JINR,
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