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I. INTRODUCTION 

In recent years, heavy-ion (HI) scattering of projectiles
 
of mass number A.s 30 has already beery studied with good r e so-:
 
lution / 3 / 

. Eventhough the experimental data have been analysed
 
rather successfully in the ca-lculations of phenomeno l og i'ca l mo­

dels, a microscopic description of these processes is of great
 
interest for both experimental and theoretical jnvestigations.
 
Such a microscopic understanding of HI collIsions may be foun­

ded on the calculation of the HI interaction potential using
 
a realistic nucleon-nucleon (N-N) interaction/ l l Note that for
 
this purpose the folding model / 2 ,4 1 has proved to be a very con­

venient formalism, where the potential for HI scattering is ob­

tained by averaging an appropriate N-N interaction over the
 
nuclear densities of two colliding ions. In such an investi ­

gation the nuclear structure information is embodied in the
 
nuclear wave functions that determine the ground-state and
 
transitio~ densitie~, and it is possible to calculate ~ot only
 
diagonal ~ut also nondiagonal matrix elements of HI interac­

tions,so one can-consider either elastic or inelastic scat­

tering.
 

In the present work, within the folding model, elastic and 
inelastic scattering of l2C ions from heavy spherical nuclei 
has been studied with the ground-state and transition nu~lear 
densities calculated by the method of hyperspherical functions / 51 
and the quasiparticle-phonon nuclear model / 9 , l DI for projectiles 
and target-nuelei, respectively. The method of hyperspherical 
functions (MHF) has first been applied to investigate elastic 
and inelastic scattering of ions with A .:S 16 in refs. 117,18/, 

'where the problem of possible excitation of the. monopole reso~ 
nance in these processes has been considered. Further, the fot­
ding-model calculations with nuclear densities computed by the 
MHF have been performed in refs. /6-8/.Within the quasiparticle­
phonon nuclear model / 9 , l DI (QPM) one can investigate a ~ide rang~ 
of nuclear properties of the excitations in complex nuclei, 
inciuding not only the low-lying excited states but also the 
giant multipole resonances. The nuclear wave functions calcu­
lated in the 'QPM have been applied to the description of various 
nuclear reaction processes, such as the excitation of magnetic 
multipole resonances in (e , e,)/15~nd (P. p,)/19/reactions, the 

. . fl' d i 1 . (" . 1161exc1tat10n 0 e ectr1C 1pO estates 1n Y,YJreact10ns ~tc.
 

In ref. 112/and the present paper QPH is used in t lre 'folding mo­
...--__.• • __ ~4 __ ..... ",..".,..... _ ... 

del' to investigate HI ~~t&GJ'"i_qg.!,;~ \'"f.(fl:Tyr,' 
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,"'l 2. DETAILS OF CALCULATION ~ \. ," 

The descr i p t i on of the folding model and pos s i.b l e app Lica-: 
~ion of nuclear fuic~oscop~c models in ~he study of HI 'elastic 
ahd inelastic scattering have been discussed thoroughly~ for 
exhrnple, in refs. 11--3I.,It should be noted that the "knowledge 
p f, the wave functions used in the nuclear density ca"lc\llatibn 
epables us to investigate nuclear structure' phenomena observed 
in the HI scattering. Usually, in such folding calculations 
there ~e always two basic ingredients', One is the construction 
of' nuclear ground state and transit10n densities within the 
microscopic mddels and the other is 'the cbo i.ce of an appro­
priate effective N-N interact-ion between the projecti1e nuc-: 
,l~ons and the target nucleons. A~ first we give. a brief ~esc­
ription of the nuclear density calculation in the MHF, and QPM. 

~, 

,.2."1.	 MHF and the Projectil,e Densities 

I 

WitThin the MHF nucleon density distributions for a number of 
light nuclei have been c a l.cu La t ed with the optimum fit to the 
b~si~ experimental data, such as the binding energy, monopole 
reson~nce excitation energy, mean s~uared radius (RMS)} the 
form factor of ~lectron scatter~ngl 3(etc. In the K-·harmonics 
m~thod/5.14/the to~al wave function of a nucleufl with A nucl~oRs 
is usually expanded in terms of K-harmonics polyn~mials ~K/Oi) 

,	 1 
-,-(3A-4) 

'P (1: 2, ... , A) =.; 2 L X (.;) Y co. ),	 (.\ ) 

....·1 '" -il	 -, 
I	 .' 

\{ith the wave functions cel'cu l-a t ed jin the K-;-harrri'oqics"mE;!th~d, 
.:~ one can 9btain t.he rground-is.tat e and transition densit1es for ,,,0	 'a considered nuc'Teus of A nucleons 117,18/'. In the present w,9r~' 

we 9nly consio~r the cas~ of ~ single'e~citation ~f the nuc­
I'eus-rt ar'ge t , .so the 'projectile is supposed to be ill its ground 
sjat e before and after the ·c~llision. 'Therefore, only the ground­
state density of the nucleus-projectile of the form 

p (r) = 16r«5A_'U)/2) (.;2_,r1(5A-16)/2 2 
o .: /' - f

00 

--'~-----/X (';)d'; + 

," 

[]where y = f 
functions of 

~n£ YK~Y(~i) = 

KY Ky K Y I' 

151	 . . . 
( LST . The hype r spher i.ca I harmonics are eigen­
the angular part of the Laplacian 

-K(I,(	 + '£ -2)YK y(Oi), 

here K is an analogue of the angular momentum for £ ,= 3 and 
is taIled the global moment. The system of equations for the 

"~ energy and radial ~igenfunction; is written as , ,,\ 

• 2 ~KO\+ 1) 2m Ky(-L,_ - ,-,--(E +W (';))!X 
d'; 2 .; 2 t 2 KY 

K' , 
where 2 = K + ..M.=..§. and W Y (.;),

K 2 KY 
the ~-N interaction potential/5.20/: 

A 
V= L V(r ij), V(rij)=f(rij)WOT' 

i <j 

2 

/:	 2m K'Y' 
(,:,)=-, L W (';)x ,~.;), 

Ky tl2 K'Y'#KY KY K Y 
(2) 

are the matrix elements of, 

(3) 

Vrrr « 5 A -14):12) r .; 5A-13, ., 0 

S(A -A) rt (5A - 11)/2) 2(';2 2)(5A-'15)/2 
_r_...:::!.__ X+	 .' --- .' f .

.; 5A-'13 3ViTr«5A -,16)/2) 

is included into the folding calculations of 

2.2.	 QPM and the Target Densiti~s 

It is well known that in the inelas·tic HI 

2
(.;) d .; 

0 

(4) 

/ 

this work, 
\ 

.. 

scattering at bom-: 
bard i.ng energies - \0 MeV per nucleon, usually, the 'low-lying 
states of low mUltipolarities. are excited (for example, .2+, 3~ 

,,4+, 5-..., states of vibrational type i-n a spherical nucleus) f' - "'
 

so ohe needs to calculate within QPM, besides the ground-~tat~
 
density, the transition densitie~ corresponding to such excita­

tions in t he nucleus-target. The genera l form of tHe QPM Hami I>"
 
tonian is the following . , .
 

.H	 = H + H , + H M + H su , (5)av	 j!au .., 

where	 H is the average field describing independent single~' av .
 
particle motions; Hpair describes the monopole pairing iqter­
action- between the neutrons or protons; H and are sepa­M HSM 
rable multip.ole and spin-multipol~ interaction terms generating' 
the nue lear exci tat i.ons , The one-phonon s ta tes with ATT = \-', 
2+, 3 -; 4+" •• are generated by the mul tipole forces, whereas 
the one--phonon states with ArT = It, 2-~ 3+, ••• by the spin­

\ multipole forces. These ef.f ec't Lve forces i nc Iude the i so sca l'af 
and isovector components 

->	 -> 1 (A~ (A) -> -> A ) A Y (0 ¢)
VA(r1,	 r2) = "2(KO + K 1. ,T 1T2 )r 1 YAp. (0 1, ¢1 r 2 A_p. 2' 2 ' ,(6) 

o -> -> 1 (AL) (ALh -: A -> rI. )] A( Y (0 'ri. )]

YL(r1,r2~=2(KO +K 1 T l 7.:2)r 1 [Of YAp. (0 1 , 't'1 L~ r 2 O2 Ap. 2,'t'2 h-M'
 

3 .'\, 



v 

" 
The explicit form of the QPM Hamiltonian is given in refs. / 9,101 

The contributions of H
M apd HSM to 'the ground-state density 

are negligible ~I s~one has for, this case 
, ' 

+ _.l. 1 G ( _ )j + J - m - m ' H = H + H 1 Ej.ajmajmo av pair	 4 ,,' , T xjm T	 JJ mm T 
(7) 

:\t( a~ a ~ a. / / a. / /,JrrjJ-mJ-m	 Jm 

where arm and a'm are the nucleon creation and annihilation 
operators; j '" en, r, j) is the set of quantum numbers for 
a single-particle state with the energy E, and the angular 
momentum projection In; T= (n , p) is the iiotopic index; On 
and Op ar~ the monopole pairing constants. In the single-par­
ticle-basis calculation, the average field is taken as a Woods­
Saxon potential. The potential parameter set used in the QP~1 

and the' 0T valu~s are given in detail in ref. / 1!1. After Bogo­
lubov's transformation 

a U a + (-) 
j-- m 

V a + 
(8)jm j jm' j j- m 

where a+ and a, are the quasiparticle creation and annihila­
. Jm Jm '.	 .tlon operators, one can obtaln the ground-state denslty for 

a,heavy (spher~cal) nucleus \n the form: 

1	 2 2
R (r ) = -,1 (2j + 1) [R. (r)1 V.'	 (9) 
o 417 j J J 

Here R.~) is the radial part of the wave function for k sirigle­
partAcle state j '" (n , e. j). In further calculations the nuclear 
densrties are normalized to 

417 f p (r)r2 d r = A,	 (10)o / 

where A is the mass number of the nucleus. Note that we have 
included into the ground-state-density calculation ~he effect 
of monopole pairing interaction between nucleons (7) unlike the 
shell model densities used in some other folding calculations / 2,41 

For the cai~ulation of the wav~ functions of var10us excited 
~tates in the nucleus-target the QPM Hamiltonian is transfor­
med into the phonon representation. In contrast with some other 
mi~roscopic models where the phonons are introduced in q pheno­

:.. menological way, within QPM the structure of phonons i~ calcu~ 
late~ microscopically, in the random phase approximation (RPA), 
and the phonons are superpositions of various two-quasipar­
ticle excitations (see (13». A short d~scription of this pro­
cedure is the following: after the transformation into the 
'space of quasiparticle and phonons 11~/the QPM Hamiltonian' can 
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t~: 

,s

n 

" I. ~ Ii 

/,
·,1 

<~-~ ~ 

pe written in the form' 
Ai Ai' 

... 

H';' + 
fjajmajm1 

jm 

A-Il + 

- L 
8 

~T +X T + 
1 -------- ­ [Q'.\t1 i + 

Ajj 'T (2 A+1)I1i;.(Ai)'lVAi ') 

L 
(-) 

Il 
Q, .

/\-Ill 

(11 ) 

~ 
l>x 

x[(-)
" 

Q 
A-Iii' 

+Q ,]+H
All i qph 

where 

X Ai 
T 

_ 
-

1'L 

j 1j 2 

A (+ ) 2 
[f., tL ". ] e. . 

~L_~:L_"":'l~ 
2 2 e , , -wA . 
J1J 2 I 

,t 

\ 

(A) , <A)K.o -K 1 
A' 

X 1 2 

Y 
n,p 

(Ai)=Y (Ai)+Y
n,p p,n 

(Ai)l _~J. 

(A) 

n :.!:. 
( A) 

I , (12)" 

~o1_-,__, + K 1 _ Ai 

1 a Ai
Y (Ai) = - -- X I • 

n,p 2 aw n,P w= w
Ai 

Since the magnetic excitations are 
in (II) only thjt contributions from 
account. Here f. j are the reduced 

J 1 2 A 

X p.n
 
2A + 1
 .. 

not considered in this work, 
H M in (5) .are t ake'n i nto 
single-particle matrix 

(z ) 
elements of multipole,operator.r YAIl(fJ,¢) (see (6»and Uj1j2= 

= u . v. ± u. v. ; f. and f. . are the energies of one- and two­J1 J2 J2 J1 J J1J 2 
quasiparticle states, r~spectively. The energy w~ of one-phonon 
s~at110~~'~0 is obtained by solving the fotlowinglRPA equa­
tlon 

<A) <A) 
K O + K 1 A. ,\ , K <A) K <A) A' A
 

( X 1 X 1) _ 4 O~. 1 X I X I
 1,n + p 2 n p	 , ' 2A + 1 (2 A + 1) 
(13) 

+ Ai. L Il Ai
 
Q AI i IJ'0 = :s I t/J [a+ a+] -'(-) ¢o" [a, , ,a . ], I 'I' ,
 

Il jj	 ji'- jlJ1 j'm' All JJ J m jm ,1'- Il 0 

where '1'0 is the phonon vacuum. In the one-phonon app r ox i.rna-: 
ti on , i.e., in the RPA, the contribution from H ph which desci 
r i be s the quasiparticle-phonon interactiorl9,101 \s absent, and 

'one has 'for	 an excited state in the nucleus-target: IA 17> = Q+ '1'. 
. de f i hI' .. . 1 AIL i 0Further, lf we eflne t e nue ear transltlon denslty as 

per) = <f[l oCr - rk)1 i> with the multipole expansion of the 
form k ' 

p (r) = ~ C A< Ji MiA Il I J r Mf > p A(r) Y'\1l (e, ¢),	 (14 ) 

5 
i.• 

<, 
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If: 

':where 'the -norma Li.z a t i on ctmsta~-t ,i; 'that defined in ref :/2<CA' 
~e get 

o A \ 
p,(r) = <J II ~ r-"'o-(r -r)i Y,(O ,¢ )1'[ J > ( (5) 

1\ r' k k 1\ k k i 
k 

IH~re the redufle~ m~brix element (IS) is as defined by Brink 
and Satchler 21. In the case of single exc\tation of an even­
even nucleus target (J = A and J, = 0), after some .t r ans f or-: 
•• r 1 
mat ions one' obtains " 

£2+ A-£1 j2+ A+ 3 / 2 . j 1 j 2
 

PAr = -,1, ~ L_.' (-) Jc J>:
 
r :) x1--"",' 1	 1 2
() 

V.4TT Jl"'-J 2 2 ( + s , ) 
( .1 

2 2 (16 )
J 1 J 2 

• (+) Ai Ai ) [1 + (_)£2-£1+ 
A 

x R': (r) R. (r) u . (If!. ' + ¢, J'	 J. 
J1 J 2 J 1J 2 J1J 2 J1 2 

It should be noted that in some other folding calculations, 
fOL example in ref. 1221 preference has been given to the macro- { 
scopic Tassie model / 23! in th~ nuclear transition dens{t~ calcu­
lation. Since it is just the tails of the transition densities, 
which contbibute ~ost to the fOlding int~gral for the p~tential 
near the strong abso rp t fon radius (17); and those'microscopic 
models which use an oscillator basis do no~ give the densities 

, , ' 
accurate enough for such large d i.s t auce s . In the QP~" the 
single-particle basis is calculated by a numerical method 1241 

us ing the code REDMEL 125~ and t he-, calcula ted radial wave func­
,tions describe nuclear asymptotics correctly, so the nuc l ear 
't.ran~ition dens i t i es calculated \¥ithin QPM are quite adequate 
for the us~ in the folding model. 

2.3. HI Interaction Potential 

There are various types of the effective N-N interaction 
which can be used in'the folding calculations. For ~xample, 
~IJ. ref. 181 the zero-range S~rme forces/ 26 1 and finite-range 
~orces in, the Gaussian form 27/have been used to describe elas­
,rtic scattering 160 + 1130 at ,different bombarding energies. In 
"the present work we have chosep the so-called ~3Y effect~ve 

' . . 1281 b d 1 . . "'"' .~ ~nt~ract~on ase upon a rea ~st~c u-matr~x. In recent 
years the M3Y interaction is quite successfully applied in,the 

,	 folding model to describe elastic and inelastic HI stattering 
(see, for example, refs. / 3 , 4i ). Our earlier calculations/121 

have also indicated tha~ the M3Y interaction is more appropriate 
for the description of elastic HI scattering in comparison 
with the q-Skyrme forces. The HI scattering is characte r i'z.ed 

N N 

,6 

, ~ 'lj	 :.'''Ii,~'6"'- .. ~ 1: '..r.' '\'"	 y",: .' # 
'\ ~ "{,!l>	 ~'. 

,"'" l'
'. "",t I"	 , " 

• t:..." '1"'" 
1i51. 

'bx,the strong absorption/t.~1 and most of the,avarl~Ql:'data 
....	 J 

, is sensitive 'only to the tail ,of the HI Jpotential in th~ vi· 1~ .
'l.... ,.~,,	 I" 

i'i: c.Fniey.of some, strong 'absorption' radius	 J, 
.1l:, I 

1/3 1/3 ,
jP.t;~ i'j.,\'ll~. 5 (A 1 1; A 2 ) (em) ~	 p7)Refit 

!1 

In such an approximation the, double-folded po t en t i a I -may be 
'written' as ,. 

..... ~ ~ ~ ..... ..... ........ ..... 
UF(R') = J dr 1dr 2Pl(r. 1) P2, 

(r 2) v (r 12 = R + r 2 -' r1). i OS}'", 
I 

if 

'­
.:,~ where P and P are the nucleon densities in the nuclei A 1 and'

1 2
ff.;~~ A 2• respectively; val ), the effective N-N i nter-ac t Lou between'
 
l nucleons in A1 and nuc1eon& in A2. The calculatjon of six­


difnensional integral ()8) is.ve<ry complicated in the toordinate
 
•.r~~ 

~J. space', but if we work in motaentum space, this integral is redu­
ced to a product of three one-dimensional integrals II;!. With' 
the multipole expansion (14) one obtains, in the case of single " 
e'xcitation'of a spin-zero target, the folluwing expression for 
dou~le-folded potential (ISr 

'r ~ 

Ur(R) = CAUA (R) Y:,...«(}R' ¢R)' 

I'~''I: 
where 

'~~> , 
.' 1 2. - ,-(1)'-(2)	 

, 

! UA{R) = - J d k k J A( k R ) v (k ) P A (k) PO' Od •	 (19) 
II .~ \. 

I 271 2 
<11'	 -» 

t
 and	 L '\' 
,
 

I 

rAOtJ = A'TT J r 2d r j'A (kr ) fA (kr),	 (20) 
J.> 

;,It. 
~l~J 

The M3Y interaction / 1;21 is	 
\', 

~'il 

.~~ .v(t) = 7999 exp(-4r), _ 2134 exp(-2.5r) _ 2620(r ). (2I) I .	 \ 
4r	 ?5r \ . 12 

ill''-i~ 

I 
The inclusion of an explicit enexgy and density dependence in­

,to ~21) generally leads to a better consistency of the calcula~ 
t i onal r esu l t s with the experimental data (see ref. 129/). The, 
elastic scatt~ring corresponds to, A '" 0 in t he se formulae. 

•.~iFtl1;-ther, UA(R) is taken as a real part of the HI .potentLa l, ,inta: , 
~he cross-section calculation. ,The imaginary part of the HI po­
tential is included phenomenofogically so as to fit the data 'I" 

for elastic cross":'section. Usually 11,2/, the imaginary optical 
p~teritial is supposed' -to, have a Woods-Saxon form ~;\ 

,-{?	 1 i l 

). 
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W(r) = 7" -,----- , (22) 

1 + exp l Ir l.RJ/a ]
v 

where Rv = rv(A~/3 ,+ Al~3), Wvand are defined fr?~ ther v' a v 
best fit to the elasti~ scattering data. In this case the ima­
ginary transition potential is defined by deforming 'the, Woodp­
Saxon potential (22), i.e., 

I dW(r) 'I', .,".. I i-W, (r ) = _.{3 ,R -­ (23)
I\. \ I\. V dr ' .. f Ii 

, ... 1 

. I 
The deformation parameter (3 A is obta i ned from the D(E A) values 
scaled according to {3R = const'/12/. In, some cases considered in 
this work~ fo; the sake of'simplicity, the imaginary part of 
the HI potential is supposed to have the same shape as the real 
part (ip both elastic and inelastic channels). In such a simple 
approximation calculations have been performed with one adjus­
table parameter a equal to the ratio of' the imaginary and. real 
amplitudes of'the HI optical potential. 

~' 

2.4. Coulomb Interaction 

HI reactions are characterized by th~ strong Coulomb inter­ r ,
action between the two ions, The Coulomb field plays an impor­
tant role in the excitat:i:,on of low-lying nuclear states, es­
pecially, the electric states of low multipolarities / 1-3 / . In 
the el~stic channel the Coulomb term of the HI potential to 

.~a gooti approximation / 1,21 may be treated as a simple Coulomb 
Q~interaction between two charged spheres.l2l. Note that in some 
if" 

" applipations of the folding model to the inelastic HI scattering 
the 'Coulomb excitation form factor is phenomenologically inclu­ r 

, 
ded into the calculation from the 'collective model wi.th the 
charge deformation parameter extracted from the analysis of the 
measured cros~-sections. In the pre?ent work the Coulomb term 
of the HI transition potential is calculated microscopically 
by the same folding formulae as for the nuclear part (18), only 
instead of nuclear transition densities and the M3Y interaction .,1· 

{n these formulae stand the charge transition densities and the 
Coulomb interaction between two protons, respectively. The charge' i, , ~J'ground~sfate densities of the two ions are' the proton parts of 
(4) and (9). The charge transition density of the nucleus-target I

,!
. 

is calculated by formula (16)., In the calculation of phonon am­
plitude ljJ.Ai and ljJ ..Ai. (see (13» the isoscalar and risovec t or l' 

]1] 2 .] 1 J2. ( A ) ( A) , 
constants of effect~ve mult~pole forces KO and K 1 (6) have 
been chosen so as ta satisfy the following relation 

8 .f 

. + 'TT 00 A+ 2 (A) (A) 2 
,B (EA;'O ... x ) '" (2A + 1) I Ir d r l e P A(r)+e p A(r)] I ,(24)

exp g •s . 0 • n n , p P. 

where. B, (EX). is the measured transition probabilities for 'the, 
lowest e:icited state wi.th spin A and parity TT; P A(r) and P i\(r) 
the neutron and proton' parts of CI 6); e (A) and e(A)n'the effecfiv'e 
neutron and proton charges in the nuclens/l0/(f8~ states with 
A>'2 e (A) = O. and e (A) ,f, e).

- n p 

3. RE'SULTS OF CALCULATION AND SOME DISCUSSIONS 

The transition folded potential UA(R) ( I9 ) must, generally, 
be used ~n the coupled channel calculations for the descri~-
't i on of inelastic HI scattering. Howev,er" as it has been shown 
in other folding calculations 11,2/, a qualitative agreement 
with the experimental data can be reached in the distorted­
wave Born approximation (DWBA), especially, in the descrip­
tion of the lowest 2+; 3~'excited states in the nucleus-target, 

. . 13 I .
which have a strong one-phonon structure ,9,10. In the present 
work all calculations have been performed within the DWBA using 
a modified version of 'the code DWUCK/30~The imaginary potent~al 
parameters have been defined from the best fit to the elastic 
data usinr an optical model program with the searth package 
MINUIT / 31 .The, phonon amp l.i.tude s ljJand ¢ have been 'Calculated 
by the code RPAS / 32/which performs the RPA catculation~ within 
QPM. 

In this work ~e consider elastic and inelastic scattering 
of 12C ions from some heav~ spherical nuclei at differen~ bom­
.bard i ng energies. The nuclear ground-state density for 12C has 
been calculated in the MHF with the N-N potential VT / 20 / . This 
calculation give? the mean squared radius RMS = 2.325 fm, the 
binding energy E b =83.1 MeV and minimum in the form factor of 
elastic electron -scattering / 131 q = 4.1 fm- 1 compared to the 
expar imerrt a.l data (RMS (exp , ) = 2:294 fm,E 

b 
(exp , ) = 92.2 MeV 

and q (exp . ) = 4.1 fm -1 ) for 12C nucleus. Thestructtire of' 
the low-lying excited states in the nuclei-targets has been 
ca l cu l at ed wi t h t he sets of constants (K ~A), K (A» which repro­
duce the excitation energies arid the reduced fransition proba~ 
bilities shown in the table. , 

Irl the description of various excitations in the nucleus­
target from the poiqt of view of QPM, it is important to'know 
how (K ~A), K~A») influence the c'aLcu La t ed i.ne l as t i.c c ros s-ssec-' 
t i ons . Theoretical study of the' same nuclear states excited 
in differenc reactions enables us to choose the most appro-

I priate set of (KciX) , K(t» for the calculation, of the waye func­
tions of excited states with spin A and parity rr (see the 
,table). The results of the. microscopic Dl~A caloulation for 

~;\. 
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/, d

" ,Tabl,'e
" 

The ~tructure of the low-lying excited states in, the r 
nuclei-targets calculated in the/ RPA ,1 . 

-," \".~-------------~----------------------
1<	 IJ ~~ \ .. toJIlT (fytI2VJ, B~ElI")'\ ( e1. b") RMS(fm) , ' 
Target 2lJr ---------,-:---"----------,. 

expt. ~alc. expt. calc • .... ._. ...,.....__• ...L-...~	 ~_~---- '~l~~l1, • 
9 0Zr 2+ 2.19, 2.63 0.06 .' 0....072 0.074 . 

I
' 

4.313
3 - 2.7,5 2.72 0.074, 0.108' O.On 

~t 
'142Nd 2+ 1.57 1.75 0.34- ,0.47 0.348 

4.932 "' 
3""' 2.08 2.07 0.24 0.22	 , , 

I· '\.1'44 Nd 2+ 0.696 1.15 0.40 ,0.51 0.479 4.$"'46 ..t 
"	 1.51 1.81 0.26 0.282 1.,3 ­

.-. 
2'08'l'b 2+	 4.086 4.64 0.30 ! 0.02 °.301 ! i ; 3- 2.61 2.64 0.69 + 0.05 0'.695' 5.58S 

" 5- 3.194 3.2 0.046:0..006 0.0:;4	 \ .., 
"\t 

12C~44Nd	 Fig. L. The inelasti·.J cross-sec­ , f 
I 

tions for 12 C +' 144;.'M at 70: 4 MeV1r/
'1:1' 70.4MeV	 ,~ " calculated with differe~t sets 

of isoscalar and,isovector cons­ I

I tants (see detw;:ls in Sec. :3/. I 

" 
'I_ -, 

~'10~	 ,. 
f	 . " 

t 

12 144.. ' 1331 .
C + 'N'. at 70.4 MeV WIth '"I 

differen,,'.set;s of (KJA), K\A)) . 
are shovn in fig.l. The dash­
dotted curves correspond to 
the K n and K r which generate. the /!tlf lowest 2 + and 3,- one-phqnon 

V states with the energies (,)21 = I, 
• II~ J;	 = 0.696 MeV» (,)3+ = 1.51 MeV 

and the reduced transition pro­
bab Ll i t i e s D(E2: 0+ ... 21.) = {
= 0.975 e~b2~ D(E3;--O+ -,,3"1)= 
= 0,,332 e b ~respe~t,ively. The f20 40'00 tll 6CmCcJeg) dashed curves,corres~ond to • 

~ 
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'1 1 

~ .~' " ~ -

/u'2+ = 1.25 MeV, (,)3- = 1.9 MeV and B(E2 t)'= 0.411 e 2t 2, B(E3't) '"' 
1 2 3 1 . • 

= 0.257e b ; and the so I i.d curves (')2+ = 1.15 MeV, (,) _ = 1.81 >}1eV 
. 2. , '1 3 1 

and, D(E2t) = 0.,479 e b2, B(E3t) = 0.282 e2b~ From various compila­
tions of the experimental data / 3 3 , 3 41 for nqcleus 144Nd ~ne has 
'(,)2+ (exp , ) = 0.696 MeV, (,)3-(exp.) = 1.151 MeV and D(E2t) 'I = 

1 2 2 ' 2 2 1 . exp 
= 0.40e b , 0.51e b ,; B(E3 t) = 0.26e 2b3.As one can see, good 

agreement of the calculated,cross-sections with inelastic data 
is provided by the sets of constants (KbA); KC: ) ) giving ttle ~/ 

calculated 'D(EA)-values close to the measured ones, but the 
calculated excitation energies WA" are somewhat higher than 
the experimental data (see also the Table). NJmerous calcula­
tions within QPM/10,35/have shown that good agreement with the 

- data for both the	 excitation energy and D(E A) -value can be 
'r~ached by including into the nu~lear wave function more compli­
cated two-phonon components which allow for anharmonic eff~cts 
in,the collective excitation . 

The effects of interference between the Coulomb and nuclear 
excitations are of special interest, because the form of the 
Coulomb interaction is known and the inf~rmation about the nuc­
lear interaction may be obtained by extract{ng accurately the 
.relative phase. between the Coulomb and nuclear contributions 

,\ to the inelastic data 11,3,3f)!, We have considered these effects 
on the same example of 1.2C + 144Nd at 70,.4 MeV. As one can see 
from Fig.2 and upper pgrt of fig.3, the contribution from the 
Coulomb part of the HI transition folded potential is dominant 
in ~he case of 2~ excitation in 144Nd-target, whereas the nuc­
lear and Coulomb parts are comparable '(s ee the lower part of 
Fig.3) for the 31 excitation. Our calculation has shown that 
the interference in this ca~e reverses the phase of the oscilla­
tions at forward angles. This is consistent with the experimen­
tal-data artalysis perfonned in ref. 1331 us i.ng the phenomenologi­
cal collective model. 

Further we consider th~ elastic and' inelastic 12C scattering 
on 208 Pb at 98 MeV and 116.4 'MeV, ,90Zr at 98 MeV and Nd fso~optig.. 
at 70.4'MeV J 3 3, 37 - 39 / , On the whole, our calculation gives a good 
description for these data the only exception(see !igs.4,S),
is the case of 2+ excitation in 20 Pb induced by ion 12C at 
~8 MeV when the calculated inelastic cross-section underesti-? 
mates the data by a factor of about two (see fig.4b). 'This fact 
is not, understandable 'within the fo~ding model/38~The c~tculated 
elastic cross-sections shown in fig.4a for system 12C + 208 Pb 

.at bombarding energies 96 MeV and 116.4 MeV ,/37~oint to some 
advantag~ ~f the nuclear'ground-state densities used in this 
wqrk compared to the shell model densities used in some other 
folding calculations 12/, (It is impossible to fill the observed, 
maxima' in the elastic cross-sections with the shell model densi­. 

'. 
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F{g.2~ The contriP~tions from 
Coulomb U X and nuc lear U f 
parts to the'H1 transition fol­
ded potential for the, 2 t exci.ta­
tion in 144Nd induced by 12 C ion. 

-, 

10' 
12C-.!""Nd 

~2 

12 C+1lo4 Nd 

1264 

1 
i 
J 
,] 
i -D' 

10 ~ 

j 

... 

-'-Coulexcitcrtion cnly 
---N..d,excitation tnly 
-Coul.-~c1,exc. 

70.I,MeV 

\ 
\. 
\ 

f 3­ '\ 

'0' 

ff 

/ (151MeV) ,
 
Fig. 3. The interference bet­I \ ~
 

ween Coulomb and nuclear in­

terac~ion; in the cas~ of 21
 r./" " ,\~~\:,-:---::;~_and 3 excitations in l~d. 20 40 60 00 Bcm(deg) 1 

/' 

ties not renormalizing the strength of the interactioQ - the 
dashed lines in fig.4a). 

i. CONCLUSION 

The microscopic puclear models (the method of hyperspheri­
cal functions and quasiparticle-phonon nuclear model) are ap­
plied·to study the elastic and inelastic heavy-ion scattering 
with}n the framework of the folding model. Results of our cal­
culations reproduce the experimental data in most considered 
cases and this indicates the validity of further application 

I,	 ". 'of the MHf and QPM to the HI scatter~ng. 

12 

-..	 ::, 

The influence of the microscopic' st~uoture of the wave func­
tions)for cQnsidered nuclei on the calculated cross-sec~ions 

is discussed. Theoretical~investigationof the interference / 
~	 between the Coulomb and nuclear excitations using microscopic 

~harge and nuclear densities gives results consistent with"the 
phenomenological analysis of these proces~es. 
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Fig. 4. The calculated elastic and inelastic cross­
sections of 12 C scattering on 208 P b. 
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JJ:ao THCII I(xon, IIIHTHKoBa K. B. E4-85-143 
MHI<POcl<ofJHtfeCKOe HsytfeHHe vnpvr or-c 
H aeynpyror-o pacceauaa TlllKeJIbIX HOHOB 

MCTO,u ('Hnepcc1lepHtteCKHx <l>ym<~HA H I<DaSHttaCTHttHo-<l>oHoHHaH >, 
Mo,uenb npHMCIH1UlTCfl ann MHKpOCI<onHtteCKO('O HsytteHHll ynpyroro' 
H aevnpvr-or-o paccemmn Tfl1KenblX HOliOD. Ilo-r eanaan aaaaxoneac t-­

DHfl rnxensrx 1I01l011 paCClIliTbIBaeTCll D paxxax <!Jon,uHHr-Mo,uenH 
C SltJljJCI<TliIlIlbIM M3Y IlYI<JIOII-IIYI(!lOlllibIM D:3 BHMo,uelic TBHeM .06-cYJK,IJ;alO+cH 
liH'Tep<pepelflJ,Hfl MCll(AY I<ynoIlOIlCI<HM H fl,uepIlblM DsaHMop;eikTBHHMH " 
Ii npoaaneuae MHl<pocl<orrHtlecl<oA C1'PYI(TYPbI DO.rIHOBblX <!JYHKI~lij;f 

"RAep B Hccnep;yeMblx paaxuarrx. 

ra60~~ B~nO.rIHeHa B na60paTopHH TeopeT~tteCKoA <pHSHI<H OHHH 
'f'll 

,!nperip~~T Q~l>e,D;HneHHOro HHCTHTYTa lIAepm.DC Hccne,IJ;OBaHHR. ,UytSHI} 1985 
Ji !! 

;1. "j':Jl ".-:,,~"J'( 

<f ~'f 

~j 

,(I. 

':IJ f(M':}' 

('I' " 

~~ 

jj, d'~ '''~ 
'~1. <'iii:, 

1!),•• , 
'i li .... 

pgo~Tie~~khoa, Shitikoy~ K.V. E4-85-143 
Microscopic SJ:udy of E1'asttc 
and Ine1astic'Heavy-Ion Scattpring 

The method of hyperspherical func,tions and the quasi­
partic1e-pnonon nuclear model are applied for microscopic 
study of elastic and inelastic heavy ion scattering. The 
heavy-ion interaction potential is calculated within t~e 

folding-model using the M3Y effective nucleon-nucleon inter­
action. Contributions from dIe nuclear and Coulomb parts of 
the heavy-ion potential to the cxcitation of low-lying one­
phonon stutes in nuclei-target and the influence of isosca­
lar Dnd Lsovoctor offoctivo forces used in the phonon calcu­
lation have huun cone idcrcd , Some effects of the microscopic 
nuclear wavo funutlonn usod in the density calculation are 
also indic:nto<l. 

l'ho involltlp,l\t lon hOB bean performed at the Laboratory 
of TheoroeJ.c:nl Phyn LeN, JINR. 
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