





1, The wave functions for the nd-scattering can be found by
solving the Yaddeev integral equations 1 in the momentum space.The
‘ternels of these equations are expressed via the two-body t-matri-
ces off the enerpgy shell, These two-body t-—matrices depcnd both
on the initial and Tinal momentum and on the energy. For solving
the Faddeev equations are widely applied the methods which use
an approximate factoriuzation of the two-body t—matrices. Thene
methods allow one to obtain from the Faddeev equations a set of
one-~diriensional integral equations for a three-particle system,

In the effectiﬁe range approximation to the two-=body
interaction the t-matrix does not depend both on an initial and
on a final momentum, so one can extremely easily obtain the
one-~dimensional equations for the momentum representation of the
wave functions.

Skornyakov and Ter-iartirosyan (S™M) considered the nd-—
—~scattering in the zero approximation on the NN~interaction

range (ZANNIR). They obtained the one~dimensinnal intesral
equations for the nd-scattering amplitudes 2 + The lerrels of the
STM equations (STME) have a simple analytical structure which

i3 originated just from the kinematics of fthe system of threce
free particles.

For the S—wave nd-scattering in the douhlet stnte ( the total
spin equals S = 1/2 and the isotopic spin of the system equals

34 so do

T = 1/2 ) the STWE fall to have a unique solution
the equations in the approximation linear in the Nli-interaction

range (ZANNIR) ° .



For the quartet state ( S=3/2, T=3/2) the solution both of
the STME and of the equations in the ALNNIR is unique and thus
it is possible to solve these e:qua.tions numerically to find
the nd-scattering phase shifts.

2. The integral equations in the approximation linear in the

s « In ref, 6 such

interaction range were obtained by Danilov
equations for the quartet nd—scattering were obtained straight-
forward from the Faddeev equations, just the S~component of
the nucleon-nucleon t-matrix in the triplet state having been
taken into account.

( It would be remarked here, that for reason of the quartet
state symmetry the set of the Faddeev equations degenerates into
the single int egral equation for this state).

For the S—component of the nucleon-nucleon t-matrix

we might apprehend the following expression
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This expression is well-known in the effective range theory of

nucleon-nucleon interaotion and is valid if

A To << 1 and o /ZI =< 1 , (2
where o(,"‘z (F'_") is the deuteron binding energy and 'Co(F')
is the effective range for the NN-interaction in the triplet state.

The substitution of expression (1) in the Faddeev integral
equation for the quartet state should in fact allow one to reduce
this equation to the one—dimensional integral equation in the
momentum space for the function \F(P, P") s where P" is the
incident neutron momentum, However expression (1) has an extra
irrelevant pole at the energy X — —(% — oL)a’ which does not
relate to any physical state in the two-nicleon system. The
nucleon-nucleon t-matrix enters into the Faddeev equation as
the function t (ZP) where Zf, =E - (_))/4/) /.’D;La.nd E is
the energy of the three-nucleon system. So the straightforward
use of eq. (1) 1is seen to be impossible in the relevant Faddeev
equation. To obtain the correct equation linear in A(’o one must

make use of the followlng expression ( instead of (1) ):

£ =i i £r )]

This expression 1s equivalent to (1) 1f conditions (2) are
fulfilled and, on the other hand, does not contain the super-
fluous non-physical pole. Another way to tackle the problem

in question is to split the function \‘/ (P, PO) into two parts 2

VPP = Yolpp)+valpp), @

where ‘4/0 (P,Po) is the solution of the problem at T, = QO
( i.e.,the solution of the respective ST equation) and X!/j-(P’P")

is the correction due to the finite range of the NN-interaction.



We have followed here the second way.
3. For the quartet S-scattering of neutron with the initial

momentum Po on deuteron the equations in the ALNNIR for the

functions v ;
WO(P’ P") and ‘l.l/i(P, P") are as folllows © : ]
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Go(P:P)  _ dx ©
PP F2+/D'2+,opfx - X

E=E+i05  %p= % - (3/4)p*. D

E ‘:—'o(.2'+(3/1{)f3°,” is the total energy of the system
in units F°%,
The function Y/(P’P’) in (4)is normalized by the condition
1 20" v
1F(Pm["c’):“".——‘”' (e - 1) , (8
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where %l is the nd-—scattering S—phase shift in the quartet
state.
The energy of the n+d system 1s positive (E > O) above the
deuteron break-up threshold. Therefore thg value of G'o (P,PQ
1s complex and one can split Go (P,PQ into the real and
imaginary part
9

Go (PP) = G (o, p)+ ot G¥pop)
wheré
P+ Pl PP -E
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(10)

1) ‘
G pp) = o
and

@ P+ p’lQE
GApp) = O (——57)



with the wlde—spread designation

@(m): 1 ¢’€3c>0

0 v# x=<0
$o0 the kernels of equatlons (5) are possessed at £ = 0 by the
logarithmic singularities of which the posltions on the (’D, P')

plane are determined by the equations

preptEpp-E=0

in the domain,where 0 = P, P/ é ’Q;LE—-' B

To treat correctly these "moving" singulgrities we have
applied, for solving equations (5) at E=>0, the interpolation
method that was consldered in ref. 7 .

We solved eqs. (5) at different energles of the incident
neutron above the deuteron break-up threshold to get the values
of the quartet nd-scattering S-phase shifts.

4, Figure 1 shows the dependence of W dtg ({&e S) (F—)
( 8/ is the quartet S— phase shift as defined in (8) ) on the
incident neutron c.me.s. energy ¥K l(F—-z) « Curves 1 and 2
relate to the zZero and linear in the triplet effective
range approximatlon, respectively.

The following experimental values were used in our
calculations:

oL = o.2m6 ¥l ; Y, = 1.75F ,

Fig.l.
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Deperndence of K cfg (Re 8) (F'—i) on KQ(F'- )

( S 1s the quartet nd-scattering S—phase shift and K’“
is the incident neutron c.m,s. energy). Curve 1 is for
the zero approximation on the NN-interaction

range (ZANNIR). Curve 2 1s for the approximation linear
in the NN interaction range (ALNNIR). Curve 3 is from

ref, 1 +« The experimental data 8 are plctured here as the
circled points. '



The calculated data below the deuteron break-up threshold
were taken from ref, © ( the threshold is situated at
Ka’:%d&: 0_O7I7F'1on the energy axis). The part of curve 1
at cecnergies above the threshold is taken from ref. 7 .
As one can see from fig.l the theoretical results for
v\otg (Red) 1in the ALNNIR (curve 2) fit well the experimental
data 8 ( the latter arc represented by the circled points on
figel),In the ZANNIR ( curve I) we have only qualitative agreement
between the theoretlcal results and the experimental dependence

of Kctg (Re 8) on K< . In the ZANNIR the quartet scattering

length is equal to CL1{= 5.09 259 . This value diverts
considerably off the experimental one (Lq: 6.35+0.02 F 10 .
In the ALHNIR we have a‘l = 6,06 F 6 .

For comparison wilth our results in fig.l there is drawm
the curve 3 exhibiting the dependence of K (j{‘g (Re S)
on Ka which has been obtalned by solving the Faddeev equation
for thc case of the two-body squarc well potentlals 11 + The
calculations with the potentials of Yamaguchl typec produce

analogous results 12 y S0 do the ones with the soft-core poten-—
tials 12 .

Eqs. (5) in the ALNNIR are correct if, strictly speaking,
eonditions (2) are fulfilled, i.e. if in the wave functilon
the important momenta are of the value ’3 = fs s Where F)—’Zo/\<i
and ﬁ is the greatest of the characteristic momenta of the
system p+d at a fixed energy. These conditions are fulfilled for

the quartet nd-scatterlng below the dcuteron break—up threshold 6 .

10

The correction 1K(_ (p}p. is small enough in that case as

comparcd with \//o (/D’P°) 6,

Above the deuteron break-up threshold the important momentum
-range for the wave function ‘%o (,D) PO) is /I)$ F)M\/—E"
as results from ref. ! . Not always the value of '5'10 1s small
then ,and, for example, at the incident neutron lab.energy

En = 14.1 NeV the value of P %o 1s of the order of unity.
30 the condition (2) is violated and the correction /}Vi (P’ P°)
to the /‘]bo (PJ/DO) ( see (4) ) appears, in our calculations, to
be of the order of the function \//a (P, P") itself.

However, the ALNNIR in the form of (5) provides good
agreement for the calculated quartet nd-scattering S-phase shifts
with experiment both below and above the deuteron break-up
threshold.

We may consider the scheme used here for calculations as
a species of an optical model adjusted to the nmi~scattering
problem. From this point of view 1t seems to be more reasonable
to insert into the relevant Faddeev equation just the expression
(3) for the nucleon-nucleon t-matrix and not to make the
splitting (4) of the wave function into two parts.
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