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Bop6eA 11. E4- 8445 

npHM9H9HB9 M9T0ll8 Bbl'IHTSHH~ 6nHlKSAweA CHarynsq>HOCTH 

llnH aaanH38 peaKilHA (d,p) HS nerKHX HllPBX 

noKaaaHO, 'ITO M9TOll Bbi'IBTSHHH 6nHlKaAweA CHHrynsq>HOCTB MOlKeT 

6bl-i'b ycnewso npaMeses 11ns o6pa6oTKH llBHHbiX o (d,p) peaKilHHX. 

nony'leHH851 npB 9TOM HHij!OpMSilBSI 0 CTpyKType Slll9P B llSnbseAWeM yJKe 

MOlK9T 6b1Tb HCnonb30B8H8 llnSI 6onee actJtjle'itTHBHOrO HCCnellOBSHBH M8X8-

HH3M8 peaKilBA TpBlliiilHOHHbiMH M9TOll8MH. 

, 
0penp11HT 06i.e,lliiHeHJiorO IIHCTIITyTB QepHIIIX IICCJie,llOBBHidl. 

,lly6Ha, 197 4 

Borbely I. E4 -8445 

Application of the Singularity Subtraction 
Method for ~.p) Reactions on Light Nuclei 

The applicability of the singularity subtraction 
method t~ the analysis of~,p) reactions is demonstrated. 
Using the structure information given by the subtraction 
methadone can make "traditional" mechanism studies more 
effective. 

Preprint. Joint Jaetitute for Nuelear Reeeareh. 
Dubna, 1974 

For various transfer processes it has been attempted 
to extract the strength of the nearest singularity to the 
physical region in the cose plane using the analyticity 
of the differential cross-section at fixed energy/1 - 7 /. 

In this paper I apply the singularity subtraction method 
to (d,p) reactions on light nuclei and using the resulting 
structure information I perform some mechanism studies. 
On the whole a new scheme for analysingnuclear reaction 
data emerges. 

To save space I give here only a simplified description 
of the singularity subtraction method, the reader is re­
ferred to ref. I 61 as concerning the general background 
and the details of the method. 

For (d,p) and (d,t) types of reaction the transfer pole 
(at z = zP ) is usually the nearest singularity to the 
physical region in the Z= cose plane. Therefore the pole 
determines the asymptotics of the expansion coefficients 
of the differential cross section according to a set of 
regular functions. Using this fact one can determine 
the strength of the pole singularity as follows. First 
of all, one should remove the pole from the differential 
cross section by a suitably chosen factor and using the 
least squares procedure should fit the obtained result 
according to some set of polynomials. These polynomials 
might be the well known orthogonal polynomials B ( z) n 
which are orthonormal with respect to the weights of the 
least squares procedure. Then one has: 

2 d a N+l 
(z -z) - = 2 a B (z), 

p dU n= I n n 
(1) 
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where only the significant terms are included into the 
sum. If one removes only the interference term of the 
pole with the background amplitude then one has 

da P N 
(z -z)-d = -- + ~ b B (z)"' 2 A B (z). (2) 

p n z -z n=1 n n n n n 
p 

Here the Bn(z) polynomials differ from that in (1) but 
this is of no importance. From (2) it follows that if one 
analyses (zP-z )da/dO -P/(z -z) with a guess strength P, 
then at the correct strenguf the An coefficients with 
n > N become insignificant. To increase the effectiveness 
of the method all these are carried out not in the z =cosO 
plane, but in a new variable received by the so-called 
optimal conformal mapping /8,9/. 

I do not maintain my previous statement that the results 
of the subtraction method are necessarily free of any 
systematical error 161. The determination of the value 
of N in the expansion series of{2) involves an assumption: 
in some cases within their errors the bn background coef­
ficients might obey the same (recurrence) relation which 
the pole contribution coefficients obey and which assures 
that the pole contribution is not present in the highest 
order terms of the expansion series of (1). As a conse­
quence, one determines a wrong value of N. One should 
especially be aware of it if the background singularities 
lie near to the pole and if one is able to extract only the 
lowest order coefficients from the experimental data due 
to their large errors. Mostly it is of academic interest, 
but in some unfavourable ca~es one virtually can get 
wrong results. 

One can also determine the strength of the pole by 
inserting Z= z P into the right-hand side of formula (1). 
This is the continuation method generally used by other 
authors / 1- 5 /. This procedure has some practical dis­
advantage, which I discuss later. 

Once the strength of the pole is found, one has to 
calculate the spectroscopic information from it. For this 
purpose the formulae of the peripheral model can be 
used / 1 0 

• 
1 2 I, with no cut-off one gets back the pure 

pole. 
The result is: 

4 

( zr-zf.d .. !L__. _5_ m;c 4 

dO 8rr2 E ·E 
i f 

kc 

k i 

2}8 + 1 

(2J + 1)(2J + 1) 
A a 

2 2 
Gx GB, (3) 

where I consider the A + x ... B + y ( x =a+ y , B =A+ a) trans­
fer process with zero orbital momentum in the x vertex. 
E. (Er) and ki(kc) are the CM relative kinetic energy 
and momentum in the initial (final) state; m and J de­
note the mass and spin of the corresponding particle; 
G~ and G~ are the vertex constants containing infor­
mation on the structure of particles. The differential cross 
section is measured in mbjsr, while the vertex constants 
in fermi. The Ge .(q) decay amplitudes {here q is the 
relative momentufu in the vertex, e is the orbital mo-... ... ... 
mentum, while j = e + Ja ) have the following connection 
with the vertex constants: 

2 (x) 2 
G = [G (. )] 

X 0 J lK X ' 
a 

2 eB 2 2 . 2 
G 8 = ! (-1) Ge ; Ge =! LGe i" (tK 8 )J. 

E B B B jB B B 
(4) 

where iK denotes the wave number corresponding to the 
binding energy. If the wave function of the corresponding 
particle in the decay channel characterized by the quantum 
numbers of e and j has the asymptotic behaviour of 
A exp( -Kr)/r, then e i 

Ge i < iK )= Aei h y;,-; 11 c , (5) 

where J1 is the reduced mass. Later on I use the notation 
G = G; G2

8 
As it follows from ( 4), the sign of the residue is deter­

mined by the parity of the orbital momenta in the vertices. 
The residue itself is the sum of contributions with different 
possible orbital momenta in the vertex, so determining 
its value no information could be received on the number 
and values of these orbital momenta. 
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It cannot be regarded as a disadvantage ofthe subtrac­
tion method because, as a consequence, the method becomes 
very effective in extracting structure information and 
extremely insensitive to other factors. Note that in 
favourable cases the resulting structure information is gi­
ven with such a small error which was unfeasible untill 
now (see/6 ,i land the results discussed later).If one wants to 
learn something about the orbital momenta in the vertices 
and about the mechanism of the reaction, then one should 
make some additional analysis with the well-known met­
hods (like the peripheral model, DWBA and so on) fixing 
the structure information given by the subtraction method. 

In this paper I study the 16 0(d,p) 1i0(0.87)E.rl3.3MeV/IO/ 
and the 9 Be(p, d) 9 Be(0.0,2.9)E = 17, 21, 25, 29 MeV.· II-' re­
actions in the above descrlbed way. At the end I briefly 
present the. results for the 3 I P( d, p)32 P Ed= 10.0 MeV 
reaction 12

· 

Table 1 

Results for the 16 O(d,p) 17 0 (0.87) reaction: a) ex­
pansion coefficients in formula (1) (note that they 
are uncorrelated and have an rms error of ± 1) and 
x2 values when fitting terms only up to the given index 
are included. b) the guess strength for the pole ( G in 
fermi 2 ) when the corresponding coefficient disappears 
in (2). ------------,----------

2 ell> I I ~(i'" 
(z,.--z) ""i Jl i \"2t>--z) ,lJt 

. __ a.. .... - __ ! ~~"L+-~--r~~-
9 62.4 I J6.~ . ' 

10 I 28.4 15.2 ' 

I I 0.425 

4.6 I O.Jl5 j' 0.019 

J • .., I o. 591 o. OJ6 

I " ,. ,./ i 

l ----------- ---

11 ! :'9.5 

12 I -2.5 

lJ 1 5.8 

14 I -J.5 __ . __ L ____ _ 

4.7 0.010 
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I give more details for the I6 0 case to illustrate 
some problems in connection with the application of the 
method. The coefficients in the expansion series of (1) 
and the guess strength of the pole when the corresponding 
expansion coefficients in (2) disappear, are presented in 
Table 1. In this case the typical error for the experimen­
tal points (there are 46 of them) is ± 3%, but this is an 
estimated value mainly coming from various corrections. 
This implies, firstly, that the value of the errors is 
fairly uncertain, secondly, that there is a strong corre­
lation present in the data, which was not taken into 
account during the analysis. 

Therefore, x 2 as a function of the number of fitting 
terms in formula (l) does not reach its expectation value 
Nr (the number of degrees of freedom in the fit) at 
N + 1= 11 after a steep decrease, but continues decreasing 
with a considerably slighter slope. The sudden change 
in the steepness makes it clear that after it one fits only 
the statistical noise and some systematical error present 
in the data. It follows that one can unambigously choose 
N = 10 for the expansion series (2). 

This behaviour of x2 in itself shows that the errors 
present in the values of G are larger than those calcu­
lated from the given errors of the experimental data. In 
addition, there is the strong correlation between the data. 
In principle, one can always easily include correlations 
into the analysis but, in practice, this is always a problem 
due to the lack of reliable information. The best thing 
one can do is to take the weighted average of the values 
with their given errors, and calculate the error of this 
average from the actual deviationofthe G values from it. 
The result got in this way is G ~~ 0.41- 0.04 f 2. Its sign 
is in accordance with the even parity of the final state 
( !' " c. is the only possible orbital momentum in the 
vertex). 

If the given errors of the experimental points really 
corresponded to the actual errors and the points were 
uncorrelated, then the resulting structure information 
would have a remarkably small error: about 2% (! ). It 
points out the extreme power of the subtraction method 
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and also its only disadvantage, its strong dependence on the 
statistical quality of the experimental data. 

In the continuation method, as one has no statistically 
independent values for G, one cannot average different 
results and one possible way of statistical control is 
lacking. I think that this is the only practical difference 
between the two methods, otherwise the results are extre­
mely similar, because in the pole only the highest order 
terms give the dominant contribution to the sum of for­
mula (1). 

As I mentioned above, if one wants to learn about the 
given reaction more than the single figure for the vertex 
constant, then one should make some additional analy­
sis. For this purpose I have chosen the peripheral mo­
del /13/ due to its extreme simplicity. In this model 
the contribution of the pole singularity is taken into 
account in the higher partial wave amplitudes, while 
the effect of other mechanisms and the coupling to other 
channels is taken into account phenomenologically by 
cutting off the low partial wave amplitudes. For more 
detail see ref. /14/ and the literature cited there. In its 
simplest form the peripheral model (PM) has only one 
parameter: the L value at which the cut-off is made 
in that channel where the L - k R prediction is larger. 
In our case the prediction in the deuteron channel is 

3- '15. L = kd (R+ Rd)==4.5with R = 1.1 yA +0.751 and Rd= l.Of. 
In the PM analysis I fixed the vertex constant as it 

was given by the subtraction method and changing the 
cut-off parameter I tried to describe the forward-angle 
region indicated by arrows on Fig. 1. The fitted value for 
the cut-off parameter L = 4.65 is extremely near to the 
prediction indicating its physical meaning, and the des­
cription at larger angles is very good too. It bears out 
the correctness of the structure information given by 
the subtraction method and also shows that very simple 
physical assumptions are enough to describe the angular 
distribution. Keeping in mind this fact it is remarkable 
that DWBA is generally regarded as unable to describe 
reliably the (d ,p) reactions in this atomic mass region. 

It is interesting to determine the spectroscopic factor 
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Fig. 1. Differential cross section for the 16 O(d,p) 17 CX0.87) 
Ed= 13.3 MeV reaction. The points are the experimental 

data, while the solid curve is the PM fit with G = 0.4lf 2 

fixed. The fitted region indicated by arrows, the fitted 
cut-off parameter is L = 4.65. 

from the vertex constant. The spectroscopic factor, appart 
from the vertex constant, is not a model independent 
quantity. It measures to which extent a model wave­
function, the so-called single-particle wave function used 
in the DWBA or a similar analysis, is present in the actual 
wave function of the final nucleus. As the contribution of 
the nuclear interior is usually strongly suppressed /14/, 
the information on the bound state wave function got 
by a DWBA analysis concerns its peripheral part. There­
fore it is natural to assume that 

G 2 = S· G 2 
B 0 ' 

(6) 
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where S is the spectroscopic factor and G ~ is the 
single particle vertex constant calculated from the asymp­
totics of the single particle wave function by formula (5). 
I have made the calculation by means of the well-known 
well depth fitting procedure and used two different geo­
metries for the Saxon- Woods potential: R = 1.25 ~A and 
R= 1.1 ~·A +0.75 I:>., while in both cases a= 0.60 . Using the 

deuteron vertex constant G~ = OA3 ± 0.01 f / 141, the spect­
roscopic factor I got was S = 0. 66 and S = 0.00, respecti­
vely. It is in accordance with the generally assumed single 
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" a Fig. 2. Differential cross section for the Be(p,dl Be 
reaction at E P~ 25.0 MeV. The results ot the PM calcu­
lations for tl~e reactions leading to the Bc(2, 9) state 
w1th G, 0, 071 f- and with the predicted cut-off parameter 
of L c, 5.0 are shown by solid line for the two kinematically 
possible vertex orbital momenta. 
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particle nature of the 17 0 ( 0.87) state. In such a way one 
can get information w the average field in the nucleus: if 
somebody is sufficiently convinced that for the given state 
the spectroscopic factor is known, then from (6) the single 
particle vertex constant could be determined and could 
be compared with the constant which follows from the 
assumed average field. 

For the 
9

Be(p, d )
8

Be (0.0) reaction the subtraction 
method did not work, i.e., in the expansion series of (1) 
there were more significant terms than in (2). At E = 

= 25.0 and 29.1 MeV I got a positive residue with a 25%P er­
ror, but it must be attributed to some systematical error 
andjor to the effect of correlations in the experimental 
data. 

For the 9
Be ( p, d) 

8 
Be (2.9) reaction the results are 

presented in Table 2. The different G values cannot 
be regarded as contradicting one another if one multiplies 
their presented errors by a factor of ( x2 . 'N f) 1 2 • The 
E = 25.0 MeV results are the most reliable, their 
w~ighted average is G = -0.071 ± 0.007 f 2 . The sign 
is in accordance with the odd parity of 9 Be: the possible 
vertex orbital momenta are P n = 1 and £ n = 3. The G value 
itself contains contribution from these two transitions. 
PM calculations, the results of which are presented on 
Fig. 2, show that only a very small P n = 3 admixture 
can be present in the 9 

Be nucleus, but it could have an 
important effect on the differential cross section. The 
correlation between the second maximum of the £ n = 1 
PM angular distribution and the bump in the experimental 
data at e - ~o explains why the subtraction method was 
unsuccessful in the 9 Be(O.O) case: the absence of any 
similar bump shows that in this case the transfer pole 
has no visible effect (note that only Pn = 1 possible). 
It follows that the attempt made in ref. 11 to describe 
these reactions by DWBA is quite hopeless. If the 
transfer pole is not dominant then one should explicitly 
take into account other mechanisms, too, and it is not 
sufficient to include them phenomenologically into the 
analysis with the aid of optical potentials. Besides, in the 
8 Be(2. 9) case one should take into account P n =- 3, too. 
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I have also succeeded in analysing the31 P(d,p )32 P 
Ed= 10.0 MeV reaction leading to different excited states 
of 32 P I 121. The statistical quality (i.e., the reliability 
of the errors) of these data was the highest one, but as the 
above given examples illustrate quite well the application 
of the subtraction method, I give a short summary of the 
results. I applied the method to eachofthe ten cases when 
the differential cross section exceeded the 1 mbjsr limit. 
In one case I got a clearly wrong result, in six cases it 
was possible to extract the structure information from two 
or three coefficients, which assures that the results are 
correct. In four cases when the differential cross section 
was higher than 4 mbjsr a peripheral model analysis, as 
I described above in the oxygen case, was successful. 
Therefore, a very important by-product of these investi­
gations is the direct evidence that the peripheral model 
fit gives correct structure information providing the 
angular distribution is well described. 

One can conclude that the singularity subtraction method 
gives correct structure information for (d,p) reactions 
on light nuclei. This method can also be applied to havier 
nuclei and to reactions of the (d, 3He) type, because in 
these cases a similar physics is involved. 

The subtraction method with its extreme effective­
ness for extracting structure information does not rep­
lace the other methods for the analysis of nuclear reac­
tions but does make them more powerful when they are 
combined. I hope that the method will soon become 
widespread in analysing nuclear reactions. 

Thanks are due to Prof. S.E.DardenandDr. J.J.M.Gas­
teren for providing me with their results in numerical 
form. 
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