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[IpumeHeHEe MeTOd8 BEITATAHHH 6adxkafwel CHATYAIAPHOCTH
nng ananuaa peaxmeit (d,p) Ha ferkEx sapax

[lokasaso, YTO MeTON BHIMHTAHHS Gimxailmed CHHACYISPHOCTH MOXeT
6Hifb yCMeAO NMpEMeHeH AN o6paboTke OaHHBIX o(d,p) peaxnusx.
Monydennas npu aToM HHEPOpManus O CTPyKType Anep B pannHefimeM yxe
MOXeT GHITh HCHOIb3oBaHa AN Gonee adbexTHBHOrO HCCIEAOBaHAA MeXa=
HH3Ma peaKOuit TPaAMNHOHHBIMH METOAAMH,

'd
Mpenpunt OOLeIMMEHHOTO MHCTHTYTA SIEPHHX uccaenopanmit.
Aybra, 1974 | x
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Application of the Singularity Subtraction
Method for d,p) Reactions on Light Nuclei

The applicability of the singularity subtraction
method to the analysis ofd,p) reactions is demonstrated.

Using the structure information. given by the subtraction -

method one can make "traditional"” mechanism studies more
leffective.
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Dubna, 1974

For various transfer processes it has been attempted
to extract the strength of the nearest singularity to the
physical region in the cosf plane using the analyticity
of the differential cross-section at fixed energy/!=7/,
In this paper I apply the singularity subtraction method
to (d,p) reactions on light nuclei and using the resulting
structure information I perform some mechanism studies.
On the whole a new scheme for analysingnuclear reaction
data emerges.

To save space I give here only a simplified description
of the singularity subtraction method, the reader is re-
ferred to ref./ % as concerning the general background
and the details of the method.

For (d,p) and (d,t) types of reaction the transfer pole
(at z=2, ) is usually the nearest singularity to the
physical region in the z=cosf plane. Therefore the pole
determines the asymptotics of the expansion coefficients
of the differential cross section according to a set of
regular functions. Using this fact one can determine
the strength of the pole singularity as follows. First
of all, one should remove the pole from the differential
cross section by a suitably chosen factor and using the
least squares procedure should fit the obtained result
according to some set of polynomials. These polynomials
might be the well known orthogonal polynomials Bn(z)
which are orthonormal with respect to the weights of the
least squares procedure. Then one has:
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where only the significant terms are included into the

sum. If one removes only the interference term of the
pole with the background amplitude then one has

do P
P dQ z -

p
Here the B,(z) polynomials differ from that in (1) but
this is of no importance. From (2) it follows that if one
analyses (z —z)do/dQ-P/(z —z) with aguessstrength P,
then at the correct strengﬂf' the A, coefficients w1th
n> N become insignificant. To mcrease the effectiveness
of the method all these are carried out not in the z=cosf
plane, but in a new variable received by the so-called
optimal conformal mapping /8.9/,

I do not maintain my previous statement that the results
of the subtraction method are necessarily free of any
systematical error /9. The determination of the value
of N intheexpansionseries of (2)involves an assumption:
in some cases within their errorsthe b, background coef-
ficients might obey the same (recurrence) relation which
the pole contribution coefficients obey and which assures
that the pole contribution is not present in the highest

order terms of the expansion series of (1). As a conse-
quence, one determines a wrong value of N. One should

especially be aware of it if the background singularities
lie near to the pole and if one is able to extract only the
lowest order coefficients from the experimental data due
to their large errors. Mostly it is of academic interest,
but in some unfavourable cases one virtually can get
wrong results.

One can also determine the strength of the pole by
inserting z=z, into the right-hand side of formula (1).
This is the continuation method generally used by other
authors '-35/ This procedure has some practical dis-
advantage, which I discuss later.

Once the strength of the pole is found, one has to
calculate the spectroscopic information from it. For this
purpose the formulae of the peripheral model can be
used /19:12/ with no cut-off one gets back the pure

pole.
The result is:

N
+n§-lann(Z)= %Aan(z). (2)
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where I consider the A+x > B+y(x=a+y,B=A+a) trans-
fer process with zero orbital momentum in the x vertex.
E. (Ef) and k;(k;) are the CM relative kinetic energy
and momentum in the initial (final) state; m and J de-
note the mass and spin of the corresponding particle;
G,z‘ and GB are the vertex constants containing infor-
mation on the structure of particles. The differential cross
section is measured in mb/sr, while the vertex constants
in fermi. The Gg (q) decay amplitudes (here q is the
relative momentum in the vertex, { is the orbital mo-
mentum, while 1 -7+ J ) have the follow1ng connection

with the vertex constants
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where ix denotes the wave number corresponding to the
binding energy. If the wave function of the corresponding
particle in the decay channel characterized by the quantum
numbers of f and j has the asymptotic behaviour of

Af exp( -«r)/r, then

(lK) A h 7 /uc, )]

where p is the reduced mass.LateronlI use the notation
G- G2 G} .

AS it follows from (4), the signof the residue is deter-
mined by the parity of theorbital momenta in the vertices.
The residue itself is the sum of contributions with different
possible orbital momenta in the vertex, so determining
its value no information could be received on the number
and values of these orbital momenta.



It cannot be regarded as a disadvantage of the subtrac-
tion method because, as a consequence, the method becomes
very effective in extracting structure information and
extremely insensitive to other factors. Note that in
favourable cases the resulting structure information is gi-
ven with such a small error which was unfeasible untill
now (see/6,7/and the results discussed later).If one wants to
learn something about the orbital momenta in the vertices
and about the mechanism of the reaction, then one should
make some additional analysis with the well-known met-
hods (like the peripheral model, DWBA and so on) fixing
the structure information given by the subtraction method.

In th&s paper I study the 160(d,p)170(0-87)5513.3Mev/m/
and the Be(p,d)9Be(o.0,2.9)EP= 17, 21, 25, 29 MeV ' !!/ re-
actions in the above described way. At the end I briefly
present the results for the® P(d,p)32P E_ = 10.0 MeV
reaction

Table 1

Results for the ' 0(d,p)!" 0(0.87) reaction: a) ex-
pansion coefficients in formula (1) (note that they
are uncorrelated and have an rms error of + 1) and
x 2 values when fitting terms only up to the given index
are included. b) the guess strength for the pole ( G in

fiﬁr(rg)i2 ) when the corresponding coefficient disappears
—

1 [
(zr-z) %-4:—1 (Ir—l) -}E
*~ a, X1/NL G s G
3 62.4 36.¢ f
10 28.4 15.2
11 13,5 4.7 0.425 0.010
12 -2.5 4,6 0.315 0,019
13 5.8 3.7 0,591 0.0236
14 =2,5 B
T — _— —i

I give more details for the 60 case to illustrate
some problems in connection with the application of the
method. The coefficients in the expansion series of (1)
and the guess strength of the pole when the corresponding
expansion coefficients in (2) disappear, are presented in
Table 1. In this case the typical error for the experimen-
tal points (there are 46 of them) is 1 3%, but this is an
estimated value mainly coming from various corrections.
This implies, firstly, that the value of the errors is
fairly uncertain, secondly, that there is a strong corre-
lation present in the data, which was not taken into
account during the analysis.

Therefore, x as a function of the number of fitting
terms in formula (1) does not reach its expectation value
N; (the number of degrees of freedom in the fit) at
N + 1=11 after a steep decrease, but continues decreasing
with a considerably slighter slope. The sudden change
in the steepness makes it clear that after it one fits only
the statistical noise and some systematical error present
in the data. It follows that one can unambigously choose
N=10 for the expansion series (2).

This behaviour of y2 in itself shows that the errors

‘present in the values of G are larger than those calcu-

lated from the given errors of the experimental data. In
addition, there is the strong correlation between the data.
In principle, one can always easily include correlations
into the analysis but, in practice, thisis always a problem
due to the lack of reliable information. The best thing
one can do is to take the weighted average of the values
with their given errors, and calculate the error of this
average from the actual deviationofthe G values from it.
The result got in this way is G = 0.41- 0.04 f2 Its sign
is in accordance with the even parity of the final state
( {4 - is the only possible orbital momentum in the
vertex).

1f the given errors of the experimental points really
corresponded to the actual errors and the points were
uncorrelated, then the resulting structure information
would have a remarkably small error: about 29 (!). It
points out the extreme power o0f the subtraction method
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and also its only disadvantage, its strong dependenceon the
statistical quality of the experimental data.

In the continuation method, as one has no statistically
independent values for G, one cannot average different
results and one possible way of statistical control is
lacking. I think that this is the only practical difference
between the two methods, otherwise the results are extre-
mely similar, because in the pole only the highest order
terms give the dominant contribution to the sum of for-
mula (1).

As I mentioned above, if one wants to learn about the
given reaction more than the single figure for the vertex
constant, then one should make some additional analy-
sis. For this purpose I have chosen the peripheral mo-
del /13/ due to its extreme simplicity. In this model
the contribution of the pole singularity is taken into
account in the higher partial wave amplitudes, while
the effect of other mechanisms and the coupling to other
channels is taken into account phenomenologically by
cutting off the low partial wave amplitudes. For more
detail see ref. /14/ and the literature cited there. In its
simplest form the peripheral model (PM) has only one
parameter: the L value at which the cut-off is made
in that channel where the L ~ kR prediction is larger.
In our case the prediction in the deuteron channel is
L = kq (R+Rg)=-45with R=11 ¥A .07 1% and R4= 10f.

In the PM analysis I fixed the vertex constant as it
was given by the subtraction method and changing the
cut-off parameter I tried to describe the forward-angle
region indicated by arrows on Fig. 1. The fitted value for
the cut-off parameter L = 465 is extremely near to the
prediction indicating its physical meaning, and the des-
cription at larger angles is very good too. It bears out
the correctness of the structure information given by
the subtraction method and also shows that very simple
physical assumptions are enough to describe the angular
distribution. Keeping in mind this fact it is remarkable
that DWBA is generally regarded as unable to describe
reliably the (d,p) reactions in this atomic mass region.

It is interesting to determine the spectroscopic factor

g5
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mb/sr |
180 {d,p170 (0.87)

100 Eq =133

o 20 40 65 ‘ 86

&n
Fig. 1. Differential cross section for the 16 o(d,p)”O(O.87)
Eq4=13.3 MeV reaction. The points are the experimental
data, while the solid curve is the PM fit with G= 0.41f2

fixed. The fitted region indicated by arrows, the fitted
cut-off parameter is L = 4.65.

from the vertex constant. The spectroscopic factor, appart
from the vertex constant, is not a model independent
quantity. It measures to which extent a model wave-
function, the so-called single-particle wave function used
in the DWBA or asimilar analysis, is present in the actual
wave function of the final nucleus. As the contribution of
the nuclear interior is usually strongly suppressed .14/,
the information on the bound state wave function got
by a DWBA analysis concerns its peripheral part. There-
fore it is natural to assume that

2 _q. .2
G2=s.G%, (6)



where S is the spectroscopic factor and Gg is the
single particle vertex constant calculated from the asymp-
totics of the single particle wave function by formula (5).
I have made the calculation by means of the well-known
well depth fitting procedure and used two different geo-
metries for the Saxon-Woods potential: R=125VA  and
R=11 3’?._+ 0.75- '3 | while in both cases a= 0.60 . Using the
deuteron vertex constant G = 0:43 * 0.01 {14/ the spect-
roscopic factor I gotwas S=0.66 and S=080, respecti-
vely. It is in accordance with the generally assumed single
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Fig. 2. Differential cross section for the Be(p.d) Be
reaction at Ep.—. 25.0 MeV. The results o{l the PM calcu-
lations for_ the reactions leading to the " Be(2.9) state
with G=0.071f{- and with the predicted cut-oif parameter
of L. = 5.0 are shown by solid line for the two kinematically
possible vertex orbital momenta.

10

- o

[ T—

particle nature of thel!? 0(0.87) state. In such a way one
can get information en the average field in the nucleus: if
somebody is sufficiently convinced that for the given state
the spectroscopic factor is known, then from (6) the single
particle vertex constant could be determined and could
be compared with the constant which follows from the
assumed average field.

For the 9Be(p,d)8Be(0.0) reaction the subtraction
method did not work, i.e., in the expansion series of (1)
there were more significant terms than in (2). At E_ -
=25.0 and 29.1 MeV I got a positive residue with a 25%per—
rar, but it must be attributed to some systematical error
and/or to the effect of correlations in the experimental
data.

For the 9Be(p,d)8Be (29) reaction the results are
presented in Table 2. The different G values cannot
be regarded as contradicting one another if one multiplies
their presented errors by a factor of (x2'N)!'2  The
E = 25.0 MeV results are the most reliable, their
weighted average is G --0.071 * 0.007 £2. The sign
is in accordance with the odd parity of ?Be: the possible
vertex orbital momenta are !/, =1 and {,=3. The G value
itself contains contribution from these two transitions.
PM calculations, the results of which are presented on
Fig. 2, show that only a very small f;, =3 admixture
can be present in the ~ Be nucleus, but it could have an
important effect on the differential cross section. The
correlation between the second maximum of the ¢ =1
PM angular distribution and the bump in the experimental
data at 6 ~ 0° explains why the subtraction method was
unsuccessful in the Be(0.0) case: the absence of any
similar bump shows that in this case the transfer pole
has no visible effect (note that only /, = 1 possible).
It follows that the attempt made in ref. 1 to describe
these reactions by DWBA is quite hopeless. If the
transfer pole is not dominant then one should explicitly
take into account other mechanisms, too, and it is not
sufficient to include them phenomenologically into the
analysis with the aid of optical potentials. Besides, in the
8Be(2.9) case one should take into account !, =3, too.



5.04
4.8
1.8
5.0

2
JI/NF

n=12
-10, 5:2.8
=17, 5:2.1

n=11
—17.9:1'5
—14.841.4
-9 2:1.4

) for the ’Be(p,d)%Be(2.9)
-‘801"‘101

values received using the expansion

Table 2

n=10
~8.24+0.18
-9.404+0.7
—6. 3:0. 7

series (1) show the goodness of the experimental data

Results for G ( in 10°2f2

reaction. The )2

—7.1+00 4

17.0

.0
25.0
29.1

I have also succeeded in analysing the3!P(d,p)32P
E4= 10.0 MeV reaction leading to different excited states
of 32 P /12/ The statistical quality (i.e., the reliability
of the errors) of these data was thehighest one, but as the
above given examples illustrate quite well the application
of the subtraction method, I give a short summary of the
results. I applied the method to eachofthe ten cases when
the differential cross section exceeded the 1 mb/sr limit.
In one case I got a clearly wrong result, in six cases it
was possible to extract the structureinformation from two
or three coefficients, which assures that the results are
correct. In four cases when the differential cross section
was higher than 4 mb/sr a peripheral model analysis, as
I described above in the oxygen case, was successful.
Therefore, a very important by-product of these investi-
gations is the direct evidence that the peripheral model
fit gives correct structure information providing the
angular distribution is well described.

One can conclude that the singularity subtraction method
gives correct structure information for (d,p) reactions
on light nuclei. This method can also be applied to havier
nuclei and to reactions of the (d,3He) type, because in
these cases a similar physics is involved.

The subtraction method with its extreme effective-
ness for extracting structure information does not rep-
lace the other methods for the analysis of nuclear reac-
tions but does make them more powerful when they are
combined. I hope that the method will soon become
widespread in analysing nuclear reactions.

Thanks are due to Prof. S.E.DardenandDr. J.J.M.Gas-
teren for providing me with their results in numerical
form.
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