ОБЬЕАИНЕННЫЙ ИНСТИТУТ
คAEPHЫX
ИССАЕАОВАНИЙ
V.N.Efimov, E.G.Tkachenko

DOUBLET S-PHASE SHIFT

IN THE nd-SCATTERING BELOW THE DEUTERON BREAK-UP THRESHOLD
IN THE INDEPENDENT OF AND LINEAR IN THE NN-INTERACTION RANGE APPROXIMATION

$4 \because 24$

ААБОРАТОРИЯ

V.N.Efimov, E.G.Tkachenko ${ }^{2}$

DOUBLET S-PHASE SHIFT

IN THE nd-SCATTERING BELOW THE DEUTERON BREAK-UP THRESHOLD
IN THE INDEPENDENT OF AND LINEAR IN THE NN-INTERACTION RANGE APPROXIMATION

Submitted to "Изв. АН CCCP"(сер. физ.)

Ефимов В.Н., Ткаченко Э.Г.

E4-8414

> Дублетная S -фаза nd -рассеяния ниже порога развала дейтрона в нулевом и первом порядках по радиусу взаимодействия
> дублетная S-фаза nd -рассея ния ниже порога развала дейтрона, рассчитанная в рамках модели интегральных уравнений с обрезанием ядер при больших импульсах, воспроизводит экспериментальные данные качественио в нулевом порядке по радиусу нуклон-нуклонного взаимодействия и очень хорошо количественно в первом порядке.

Препринт Объединенного института ядерных исследований. Дубна, 1974

Efimov V.N., Tkachenko E.G.

Doublet S-Phase Shift in the nd-Scattering Below the Deuteron Break-Up Threshold in the
 Independent of and Linear in the NN-Interaction Range Approximation

The integral equations for the S-wave doublet nd scattering in the independent of and linear in the N-in teraction range approximation are solved using the Kharchenko method of cutting the integral equation kernels. The cut-off paremeter is defined through the experimental value of the doublet scattering length. Calculated s-pha se shifts in the doublet nd-scattering below the deute ron break-up threshold are in good agreement with experiment and do not depend on the cutting fashion.

Preprint. Joint Institute for Nuclear Research. Dubna. 1974

Nucleon - nucleon resonant interaction provides, in the Skornyakov-Ter-Martirosyan (STM) model ${ }^{1}$ (which corresponds to the zero range nucleon-nucleon interaction), a collapse ("the fall into the centren) of the three nucleon system in the s-state with $S=1 / 2, I=1 / 2$. The collapse exhibits itself both in the non-existence of the lowest energy level for the threc-nucleon system ${ }^{2}$ and in the existence of the homogencous STw equation solution at any fixed energy. The latter leads to the non uniqueness of the STM equation solution for the neutron-deuteron s-scatterinc In the $S=1 / 2, I=1 / 2$ state ($1 . e_{0}$, for doublet scattering). Danilov ${ }^{3}$ had shown that the extra requirement, the wave functions be o:thogonal when corresponding to different energies, eliminates the ambiquity in the solution. Into the constoeration an extra parameter then should be involved which coula be defined through experimental characteristics of the three nucleon system, for example, through the triton binding energy. In that cane there arises the discrete energy spectrum in the three nucleon system with levels $E_{n}<0$, and $E_{n} \rightarrow-\infty$ if the interaction range r_{0} is diminishing. However, as was noted in , in the approximation which corresponds to the small value $|E|^{1 / 2} r_{o} \quad(E$ is the three nucleon energy and r_{0} is a range of the nucleon-nucleon interaction) we should concern only with the highest level of this spectrum, for the other states of the spectrum violate the condition $\left|\frac{E_{n} M}{\hbar^{2}}\right|^{1 / 2} r_{0}<1$. In the framework of the consideration - E_{1} is the triton binding energy. In the STM model " the fall into the centren is a result of the infinitely strong attraction at negligible distances and in the three nucleon case it is characteristic for the doublet s-state only, for in the
quartet S-state the Pauli principle forbids the three nucleons to be at the same point simultaneously and for in the non-zero angular momentum states the repulsive centrifugal forces appear to be "switched on" at small distances between the nucleons. The infinitely strong attraction at the negligible distances between the three nucleons in the doublet s-state results in the kernels of the integral STM equations to decrease weakly with increasing momenta.

In the framework of the Danilov model 3,6 there have been obtained the integral equations with a sufficiently rapid decrease of the kernels at large momenta, and the doublet nd-scattering problem has been solved at zero energy of an incident neutron in the approximation independent of the nucleon-nucleon interaotion range.

For treating the doublet nd-scattering problem Kharchenko ${ }^{8}$ has proposed a model which is based on solving the integral STM equations, the kernels of which being cut off at large momenta. The cut-off parameter was defined by the following requirement. There must exist just one bound state in the threenucleon system and the energy of the bound state must be equal to the experimental binding energy sf triton. The doublet scattering length values, calculated in $7 \quad\left(a_{2}=0.48 \mathrm{~F}\right)$ and in ${ }^{8}$ ($a_{2}=0.49 \mathrm{~F}$) are in good agreement with the experimental one $a_{2}=0.65 \mathrm{~F}^{9}$.
2. The integral equations for three particles have been obtalned and considered by Danilov in the linear in an interaction range approximation ${ }^{6}$. In this approximation the two-iody t-matrix does not depend on initial and final momenta. In effect, the integral equations for three particles are possessed in the Inear in the two-body interaction range approximation by the same properties as the respeotive STM equations.

In the following, for treating the integral equations we use the Kharchenko method with various fashions of a high mowentum cut -oif.

Using the Faddeev general equations ${ }^{4}$ we are, in analogy with ${ }^{10}$, to obtain the equations for the doublet s-wave ieutron--deuteron scattering in the linear in the nucleon-nucleon interaction range approximation (INNIRA), and then to introduce the cut --off (it could be a smooth one) in the final equations. Then we have:

$$
\begin{align*}
& \psi_{1}(p)=\frac{8}{3 \pi}\left(\gamma_{p}-\beta_{1}\right)\left(1-\beta_{1} c_{1}+c_{1} \gamma_{p}\right) * \\
& *\left\{\frac { \pi } { 2 } c _ { 1 1 } * 2 \left(\left(p, p_{0}, \varepsilon_{0}, p_{c}\right)+\right.\right. \tag{I}\\
& +\int_{0}^{\infty} \frac{p^{\prime 2} d p^{\prime}}{p^{\prime 2}-p_{0}^{2}-i \delta^{2}} u\left(p, p^{\prime}, \varepsilon_{0}, p_{c}\right) * \\
& \left.*\left[c_{11} \psi_{1}\left(p^{\prime}\right)+c_{12} \psi_{2}\left(p^{\prime}\right)\right]\right\}
\end{align*}
$$

$$
\begin{aligned}
& \psi_{2}(p)=\frac{2}{\pi} \frac{p^{2}-p_{0}^{2}}{\beta_{2}+\gamma_{p}}\left(1-\beta_{2} c_{2}+c_{2} \gamma_{p}\right) * \\
& *\left\{\frac{\pi}{2} c_{21} * u\left(p, p_{0}, \varepsilon_{0}, p_{c}\right) *\right. \\
& +\int_{0}^{\infty} \frac{p^{\prime 2} d p^{\prime}}{p^{\prime 2}-p_{0}^{2}-i \delta} u\left(p, p^{\prime}, \varepsilon_{0}, p_{c}\right) * \\
& \left.*\left[c_{21} \psi_{1}\left(p^{\prime}\right)+c_{22} \psi_{2}\left(p^{\prime}\right)\right]\right\} \\
& \gamma_{p}=\sqrt{\varepsilon_{0}+\frac{3}{4} p^{2}} ; \varepsilon_{0}=\alpha^{2}-\frac{3}{4} p_{0}^{2} \\
& \beta_{1}=-\alpha ; \beta_{2}=-\frac{1}{a_{p}}-r_{0}^{s} \frac{1}{2 a_{s}^{2}} \\
& c_{1}=\frac{1}{2} r_{0}^{t} ; \\
& U_{2}=\frac{1}{2} r_{0}^{s} ; \\
& *\left(p, p^{\prime}, \varepsilon_{0}, p_{c}\right)=f_{d}\left(p, p_{c}\right) * f_{d}\left(p^{\prime}, p_{c}\right) * \\
& * \frac{1}{p p^{\prime}} \ln _{n} \frac{p^{2}+p^{\prime 2}+p p^{\prime}+\varepsilon_{0}}{p^{2}+p^{\prime 2}-p p^{\prime}+\varepsilon_{0}}
\end{aligned}
$$

In the expressions written above $\alpha=0.2316 \mathrm{~F}^{-1}$, $a_{s}=-23.7 \mathrm{~F}, r_{0}^{t}=1.749 \mathrm{~F}, \mathrm{r}_{0}^{\mathrm{s}}=2.67 \mathrm{~F}$, r_{0}^{t} and r_{o}^{s} are the effective radii of the interaction between two nucleons in the triplet and singlet state, respectively.

In the independent of the nucleon-nucleon interaction range approximation (INNIRA) we must $f i x r_{0}^{t}=0$ and $r_{0}^{s}=0$.

The function $f_{d}\left(p, p_{c}\right)$ decreases rapidly when $p>p_{c}$ and provides a cutoff for the kernels and solution of integral equations (1) at large momenta, Pe being a phenomenological parameter. In particular, in the sharp cut -off model, considered in 8 , this function equals

$$
f_{\alpha}\left(p, p_{c}\right)=\theta\left(p_{c}-p\right)= \begin{cases}1 & \text { if } p<p_{c} \tag{2}\\ 0 & \text { if } p>p_{c}\end{cases}
$$

(But therein ${ }^{8}$ there was a remark, that the cutoff function ∞ old be a smooth one).

In our calculations this function has been taken in form (2) as well as in the following ones:

$$
\exp \left(-p^{2} / p_{c}^{2}\right) ; \exp \left(-p / p_{c}\right) ; \frac{p_{c}^{2}}{p_{c}^{2}+p^{2}}
$$

The dependence of the Saxon-inoods type also has been used for $f_{d}\left(p, p_{c}\right)$ with different "smearing width" values of d.

The homogeneous equations for the three nucleon bound state with an energy $-\mathcal{E}_{0}$ are as follows:

$$
\begin{aligned}
& \psi_{1}^{\infty}(p)=\frac{2}{\pi} \cdot \frac{1-\beta_{2} c_{1}+c_{1} \gamma_{p}}{\beta_{1}+\gamma_{p}} \\
& * \int_{0}^{\infty} u\left(p, p p^{\prime}, \varepsilon_{0}, p_{c}\right) * \\
& *\left[c_{11} \psi_{1}^{0}\left(p^{\prime}\right)+c_{12} \psi_{2}^{*}\left(p^{\prime}\right)\right] p^{\prime 2} d p^{\prime} ; \\
& \psi_{2}^{0}(p)=\frac{2}{\pi} \cdot \frac{1-\beta_{2} c_{2}+c_{2} \gamma_{p}}{\beta_{2}+\gamma_{p}} * \\
& * \int_{0}^{\infty} u\left(p, p^{\prime}, \varepsilon_{0}, p_{c}\right) * \\
& *\left[c_{21} \psi_{1}^{0}\left(p^{\prime}\right)+c_{22} \psi_{2}^{0}\left(p^{\prime}\right)\right] p^{2} d p^{\prime} .
\end{aligned}
$$

For the doublet state of the three nucleon system we have $C_{11}=C_{22}=1 / 4 ; C_{12}=C_{21}=3 / 4$. The quartet nd-scattering is described by (1) with $C_{11}=-1 / 2 ; C_{22}=C_{12}=C_{21}=0$. Equations (1) and (3) could correspond to the system of three identical spinless particles provided one puts $C_{11}=1$; $c_{22}=C_{12}=c_{21}=0$ in these equations.

Into equation (1) and (3) there enter constants originated from the two -body int fractions as well as the extra parameters, characterized by the fashion $f_{d}\left(p, p_{c}\right)$ of cutting the integral equation kernels at large momenta. These extra parameters of the model in question could be defined through the use of experimental characteristics of the three particle system.
3. The experimental dependence of value of $k \not \mathrm{cg}_{2}$ on $K^{2} 11$ for the neutron-deuteron wave doublet scattering can be well fitted by the curve (Fig.l):

$$
\begin{equation*}
k c \operatorname{tg}_{2}=-A+B k^{2}-C /\left(1+D k^{2}\right) \tag{4}
\end{equation*}
$$

which has a pole just below the elastic scattering threshold ${ }^{12}$. (In (4) S_{2} is the doublet 5 -phase shift in the neutron satering off deuteron, and the coefficients A, B, C, D are determined by the best fit of (4) to the experimental points ${ }^{l l}$).

In the model in question, with the cut-off, for instance, taken in form (2), the values of $k \operatorname{tg}_{2}$ at different energies k^{2} of the incident neutron increase with increasing cutoff parameter p_{c} (the range of changing the parameter allows here the three nucleon system to have just one bound state with an energy to be close to the triton energy). The monotone character of curve (4) at $\mathrm{k}^{2}>0$ (Fig.1) gives us a possibility to say that a small increase of the parameter produces a small shift of curve (4) as a whole to the left, along the energy axis k^{2} (correctly, it should be said in the opposite direction to this axis). A small increase in the parameter p_{c} also produces a small increase in the binding energy of three-nucleon system bound state, as well as a small replacement in the position of the pole of functional dependence (4). This pole in functional dependence (4) of $k \not \subset \mathcal{C g}_{2}$ on k^{2} is situated very closely to the elastic nd-scattering threshold at $k^{2}=0$ and small changes in the position of this pole yield considerable changes in the value of the doublet nd-scattering length. So the doublet nd-scattering length, being defined by the nearest to the pole point on the energy axis k^{2}, is the most sensitive value with respect to the change of the cut-off parameter p_{c}.

Fig.1. Dependence of $k \operatorname{ctg} S_{2}\left(F^{-1}\right)$ on $k^{2}\left(F^{-2}\right)$ (δ_{2} is the doublet nd-scattering s-wave phase shift and k^{2} is the incident neutron energy in the c.m.s.). Expe rimental data ${ }^{11}$ are pictured as open circles. The point a is concerved with the triton binding energy. The curve represents the best fit of the formula (4) parameters to the experimental data.

In accordance with these reflections we choose here the cut-off parameter p_{c} to reproduce exactly the experimental value of the doublet nd-scattering length $a_{2}=0.65 \mathrm{~F}^{9}$. This choice $1 s$ expected to have just small divergence of the calculated trition binding energy off the experimental one, at the same time the oalculated low energy S-wave phase shifts better fitting the experimental ones in the neutron-deuteron scattering.

In calculations we have used the following forms of the cut-off factor $f_{d}\left(p, p_{C}\right)$ in equations (1) and (3):
(1) $\quad f_{d}\left(p, p_{c}\right)=\theta\left(p_{c}-p\right)$,
(1i) $f_{d}\left(p, p_{c}\right)=\exp \left(-p^{2} / p_{c}^{2}\right)$,
(111) $f_{d}\left(p, p_{c}\right)=\exp \left(-p / p_{c}\right)$,
(1v) $\quad f d\left(p, p_{c}\right)=\frac{p_{c}^{2}}{p_{c}^{2}+p^{2}}$,
(v)

$$
f_{d}\left(p, p_{c}\right)=\frac{N}{1+\exp \left(\frac{\rho-p_{c}}{d}\right)}
$$

In item (v) the normalization constant N is conditioned by

$$
\left.f_{d}\left(p, p_{c}\right)\right|_{p=0}=1
$$

The "smearing width" of cutting d is given several fixed values in the interval $[0.05,2.00] \mathrm{F}^{-1}$.

As was explained above, the values of the parameter p_{c} in expressions (5) have been determined through the experimental value ${ }^{9}$ of the doublet nd-scattering length, just one bound state being demanded to exist in the three nucleon system. The binding energy of this state was found with the help of Eqs. (3) with the parameter p_{c} fixed as described just before. This energy was regarded as the triton binding energy. The parameter p_{c} values for different cut-off fashions (5) are obtained by the use of the experimental value of the doublet scattering length $a_{2}=0.65 \mathrm{~F} 9$ and exhibited in Table I for the independent of and linear in the interaction range approximation in the first and third colunn, respectively. In the second and fourth colurn of Table I there are written the calculated values for the triton binding energy in the INNIRA and LNNIRA.

$$
\text { Fig. } 2 \text { shows two dependences of }
$$ $k \operatorname{tg} \delta_{2}$ on k^{2} (δ_{2} is the doublet nd-scattering S-Wave phase shift and k^{2} is the incident neutron energy in the c.m.s.) below the deuteron break-up threshold. The se two dependences are calculated on the basis of Eq. (1) in the INNIRA and LNNIRA for different cut-off functions (5). It has appeared that both in the INNIRA and in the LNNIRA the values of $k \operatorname{ctg}_{2}$ below the deuteron break-up threshold do not depend practically on cut-off fashion (5) and ould not be distinguished in the Fig. 2 scale. In the LNNIRA the calculated values of $k c t g \delta_{2} f 1 t$ the experimental ones very well, the calculated triton binding energy values exceeding

out-off functions (5) in the independent of and linear in the indion. The experimental triton binding energy is regarded to be $E_{T}=8.48 \mathrm{MeV}$. The parameter $P_{c}\left(F^{-1}\right)$ values and the triton binding energy $E_{T}(M e V)$ for different Cut-off

$\underset{ }{-}$

Fig.2. Dependence of $k \operatorname{tg}_{2}\left(\mathrm{~F}^{-1}\right)$ on $\mathrm{k}^{2}\left(\mathrm{~F}^{-2}\right)$ (δ_{2} is the doublet nd-scattering S-wave phase shift and k^{2} is the incident neutron energy in the c.m.s.). The open circles are the images of the experimental data ${ }^{l}$. The arrow marks the deuteron break-up threshold position. Curve 1 is the independent of the nucleon-nucleon interaction range approximation (INNIRA). Curve 2 is the line ar in the nucleon-nucleon interaction range approximation (INNIRA).
the experimental ones (according to Table I). On the other hand, In the INNIRA we have good agreement with experiment for the calculated triton binding energy (that was expected from the results of ${ }^{8}$) but at the same time a certain divergence of the calculated $k \operatorname{tg} S_{2}$ off the experimental date. We should remark that much more sophisticated models not always yield a good value for the triton binding energy, simultaineously reproducing the low energy doublet nd-scattering S-wave phase shifts decently.

The considered here model is in fact the result of reducing the three-paxticle problem of the neutron-deuteron scattering to the two-particle problem with an effective interaction between the neutron and deuteron. This interaction appears to be non-local and dependent on energy and spin。

We have shown earlier ${ }^{10}$ that the INNIRA fits well the calculated quartet nd-scattering s-wave phase shifts to the experiment below the deuteron break-un threshold.

Cutting factors (5) do not influence the results of calculations in the quartet case, for the functions satisfying the quartet $S T M$ equation decrease rapidly at large momenta. So the model, which is based on the use of the two-nucleon t-matrix in the LNIIRA and on cutting the kernels of the STR integral equations at large momenta would be considered as a method of constructing a quasi-optical potential for the interaction of neutron with. deuteron. Such a potential may have at least one phenomenological parameter and sufficiently well fits both the bound state energy and the nd-scattering s-wave phase shifts (at least below the deuteron break-up threshold).

In conclusion the authors thank V. B. Belyaev for useful discussions. One of us (E.G.T.) expresses his deep gratitude to Professor N. A.Perfilov and to Professor O.V.Lozhkin for their stimulating interest in the work and their regular support. He also wants to trank Mle S.K. for her tender attention which urged him intensely until this work was completed.

References:

1. G.V.Skornyakov, K.A.Ter-Martirosyan. DAN USSR, 106, 425, 1956 ; JETP, 31, 775, 1956.
2. L. H. Thomas. Phys.Rev. 47, 903, 1935.
3. G.S.Danilov. JETP, 40, 498, 1961.
4. L.D.Faddeev. JETP, 39, 1459, 1960.
5. R.A.Minlos, L.D.Faddeev. DAN USSR, 141, 1335, 1961; TETP, 41, 1850, 1961.
6. G.S.Danilov. JE'TP, 43, 1424, 1962.
7. G.S.Danilov, V.I.Lebedev. JETP, 44, 1509, 1963.
8. V.F.Kharchenko. Yad.Fiz. 16, 318, 1972.
9. W.Dilg, L.Koester, W.Nistler. Phys.Lett. 36B, 208, 1971.
10. V.N.Efimov, E.G.Tkaohenko. Yad.Fiz. 18, 62, 1973.

1I.W.T.H.van Oers and J.D.Seagrave. Phys.Lett. 24B, 562, 1967.
12.R.S.Christian and J.L.Gammel. Phys,Rev. 91, 100, 1953; A.C.Phillips. Phys.Rev. 142, 984, 1966;
L.M.Delves. Phys.Rev. 118, 1318, 1961.

Received by Publishing Department on November 29, 1974.

