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The storage of ultracold neutrons (UCN) in the hexa-
pole magnetic field is considered. The storage time
estimates are obtained and the influence of the gravita-
tional field is taken into account.
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The present paper is considering the motion of an
ultracold neutron (UCN) in the hexapole magnetic field.
The problem is directly connected with the containment
experiments. First it was considered in terms of semi-
classical methods/!/ and it has been shown that the
neutron can be well stored in the hexapole magnetic field.
Here we shall give a more exhaustive considerationof the
problem. The obtained results are consistent with con-
clusions made in ref.”!/ and at the same time indicate
some peculiarities in the behaviour of UCN stored in the
magnetic trap. In the first partof the paper the problem is
formulated more precisely and the storage time of UCN
on the low-lying levels is found. In the second part the
storage of UCN on higher levels is estimated, and in the
third part gravitational forces areincluded into considera-
tion.

1. Schradinger equation for the neutron in magnetic
field:
d

2w~ (-h A_pH)v. M)
Jdt Zmn n

Here ¥ is the spinor wave function, ﬁn=-‘1-91'#N3 ,
BN is Bohr nuclear magneton. The axis of the hexapole
is directed along z and ¢=(c, ,0_ ) are Pauli matrices.
The magnetic field may be pres’éntéd as follows: H=Ar2¢ ,
r2-x2+y2 | €=(es,e ,) is the unit vector,e =sin2¢
€ y=Cos 2¢. In this paper we shall deal only with cylindrical
system of references, so A looks as follows
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that according to eq. (1) the magnetic field confines the
peutron to a finite area if its spin is parallel to H or,
in other words, if ¥ is the eigenfunction of the operator

Ef?': ¢ Er’;P =% . But the operator ¢4 does not commute
with J7, and it means that the quantum number is not

conserved. It means, generally speaking, that spin reverses
spontaneously, and neutron leaves the trap.
For the convenience let us introduce the following time

and coordinate units: t - v2m /p A ,r, “UhY2m LA
and then turn to the dimensionless variables. The furnlction
q’:_l eiongeimq,) J

Nor v, () )

is substituted into eq. (1). Here ¢/ is the spinor function
again, but now independentof theangle ¢ . Really, the first
factor. in eq. (2) causes spin rotation afte~ the field. On its
separation there appears no term in eq. (1) dependent on ¢,
and so the separation of the variables is permissible. The
second factor together with the constant 1/y2, forms
the eigenfunction with respectto ¢, normalizedover unity.
The equation for the function l/fm(f » t) turns into:

dJ
t

i

U E0=(A s Lo wm® sy (00 @)

’_I‘o make clearer the physical meaning of the problem it
is convenient to expand v, (r ,U) in spinors, whichare
the eigenfunctions of the matrix 7,

= . u
¥ (r,t) fl (r,t) u, +f2m(r,t) 5 4)
where
+, - gt - + - -
ulul_u2u2_1,u1u2_0, ayul’z_iul’z.

Each component of eq. (4) follows the magnetic field H

due to the first factor in the expression (2). Therefore
the f; (r,t) function describes the part of the wave func-
tion with the spin parallel to the field, and the f, (r,t)
function describes the part of the wave function havm'é" the
spin antiparallel to the field. If there was no ¢, matrix
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in eq. (3), then it could be separated in two independent
equations for f,, and fs, . Therefore, if at some moment
the fy,, (r,t) function is equal to zero, it will be equal to
zero at any other moment too, and the neutron will be
polarized along the field. However, the equations for
fl 2"(lr,[)are related because of o :

. d _— . _ l+m 2.
T flom=S12 fratV i ians R =B r—5 1 (D)
2m
V=—.
)

It is important to note that £ has the discrete spect-
rum only, while £, has only a continuous one. In case
m=0 the equations will be independent and the neutron
with spin parallel to the field will be confined by the field
for ever. We shall expand the fl 2l(nr,t) functions in eigen-
functions of the fl > operators ’

—iEmnl —ip2t
f =3a_ (e x @ f, = famp(t)e xmr()r)pdp

1m n
N ) _ 2_..-2
fx;n(r) an’ (r)rdrw=3nn, ; fx;P(r)xmp,(r)rdr_Za(p p’)

f‘fzm (r,t)[zrdr=f|amp(t)|2pdp. (6)

The equations for the x functions turn into Whittaker’s
ones/2/;

82 1 A 1/4__ #2 m241 E
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when the variables Xy, , =8, vX and X=r 2areintrodu-
ced, and their solution may” be written in the following

form:



- -iX/ .
gl(x)=Clxve X/%:(V_A,ZV,X);gz(x)acsze i 2F(V+.l/\,2V,X);(8)
vep+d,
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where F(ab,{) is the confluent hypergeometrical function.
The finiteness requirement for g ( X) for all X gives
the spectrum v-A=-n- 1

Emn =EN=4(V+n)=4N- 9
Normalization constants c 2 foundaccording toref.’ 3/
(see pages 86 and 696) are equal to:

__1 2T Gv+m) . _1 mA/2 | T(v=id)]
‘L e n! * C2 \/Ze I'(2v) e

To solve the equations (5) coefficients a, (1) should be
found. In principle it is possible to seek for the stationary
solution, but it seems to the author that the nonstationary
one is more appropriate since in stationary state the
particle must be bound and unbound simultaneously. Let
us suppose that at the moment t=0 the neutron is in the
bound state Ep having the total quantum number N=n+v ,
then ay =1, and all other terms of expansion (6) are
equal to zero. The variation of the coefficients is found
with the help of perturbation theory:

'(p2—E )
- d . . d : ! N
i e amn(t)aO, 'laTamp (t)avpne , [¢1))
where

. > 2m X 2v—=2 -X(1-i)/2
TVon T Xy ) TF X gy @rdrmmey ¢ [ X x

XF("‘I’],ZV,X)F(V —.i)\,ZV,—:iX)dX . (12)

The probability of spin reversal and, consequently, of the
transition to the unbound state is:
42 42

V()= [y, @0 dr=Tm%2c?|]|% t=ar, 13)
where ] stands for the integral ineq.(12). First we shall
consider the decay of the lowest states:n=0, m=1 (the
state n=0, m =0 is absolutely stable). The dimensionless
coefficient « ahead the dimensionless time ¢ in eq.
(13) is about unity since its parameters are of the same
order. Therefore the decay constant for the low-lying states
is:

T=[0/a = to =\/2mn #nA . (14)
Ultracold neutrons have energy E = 107 erg and they
may be kept in the field of about ~ 10 kgs . If the radius
of the magnetic trap is about 10 cm , then A should be
about 100 gs/cm?2 . With such A , r, ~ 10-2 cm and
tg - 10-1 sec, i.e., the storage time of low-lying states
is r~ 10-! sec.

2. Now let us consider high energy states with quantum

E
numbers 2N=2n+m--—é—@5z107, E0=2h/t0 z10—26erg being
0

the space between discrete levels. It is not convenient to
use for these states the exact wave functions in matrix
elements, since the computational difficulties are
enormous. It is better to take the wave functions in quasi-
classical approximation. According to ref.”4/ the wave
functions for discrete and continuous spectra in quasi-
classical approximation look as follows:

Xy OV 7Xeq Y eos(o, -/ q5)

)

Normalization is chosen as in (6) and the letter symbols
in eq. (15) st%nd for:

Ony 0= 1 @ (X)X%5q

mn, n,p n,p

X)=vgh+ 2=

mn,p



16
X=l'2, ( )

bemg the left turn point for the discrete and
contmuous motion. When the indices m are omitted the
matrix element takes the next form:

Xt -
V=i | n__dX cos (6,(X) - ) cos(0 (X)--), (17)
x, X \/q (X)q X)

where X% is the right turn point of the discrete state.
Let us infroduce the following symbols:

—————————— dz}
=vo2%+z-B, 0, 0

(Z)_ fS, Z”

“n,p

X=Ez ,B:m/E, s

n,p

then, for m >>1 and E>> 1 one has:

-(43 n)f cos(Ea"n- —Z—-)COS(EOP—%—). (18)
Lo AV »Sp

We shall consider first the case when_m ~ E ’—4162)/2
B= 12 ( Bcannot be large thanl/2).Then z =(1-v1

_ (Y
2

and z <z are far from each other, and the

p=
matrix element is determined by the last factor of the
integrand which oscillates at high frequency near the
turning points. So V,, may be estimated:

_ ¢ d¢& - E-3/4 19)
oh Of v cos(E &)

from which it follows that the storage time of high energy

3/2
12t = ( %) t, = 10° sec. (20)

ph 0

U

S —

Now we assume that 3<<1 and 8%E<1. Then, near the
turning point X‘

cos(EO ——)cos(EG -Z-) LlcosE(6 —6-?'P)—sinE(6.n+5p)].

In the 1ntegrand we retam only the first term, since the
second one oscillates at high frequency. Moreover the
first term may be assumed to be 1/2, since

E(6_-0)

p B f —Y"—- EB3<1 (21)

B2 yVy-pB2

As a result we have for Vpll

the following expression:
Veipg) & -2, (22)

Consequently, the storage time of the states m,n with
m® < n2 is

-1

T oz tO: 10 sec. (23)

3. Now we shall estimate the influence of the gravita-
tional field on the ultracold neutron storage time in
magnetic trap. In the presence of the earth-gravity field
the potential term of Schrodmger s equation U= m_g x
should be taken into account (or in dimensionlessunits

U=Grcos$, where G = —g-o_ = 10" ). The potential U does
To
not contain spin operators, so it cannot reverse the neut-
ron spin, but it mixes up the states with different m and
n, in particular, the stable states having high m with
those having low m. But states with low m, as follows
from the above considerations, decay quickly. Therefore
the storage time of longlived states becomes less. Thus,
we shall estimate the influence of U on the storage
time in the following way: under assumption that at the
initial moment the neutron is on the longlived ' level with
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mZ=m, we shall find out with the help of perturbation
theory how long it takes the neutron to jump to the level
with m’=m— 1, and thus we shall find the velocity of the
neutron motion along the m axis. Then the period of
time in which m decreases to m~E2/3maybe determined.
And since the neutron in the state with small m reverses
the spin in 7= t_, the determined period will be resul-
tant storage time of the initial state.

So, we shall use the perturbation theory to determine

the probability of transition from the state m’=m tom=m-1.

Similarly to (11) one can write:

. d )
l_ét_am—l,n(t)zum—l,m exp[—l(Em_l—Em)t]. (24)

Making use of the quasiclassical functions we obtain:

U  =2GyE Ly _._s/___cos(E = TIcos(E,
m-l,m~ 7 m 9 m—l m—=1 - —)
Vs -S| 4

(25)
As far as E,,s, 0, and E__,,s. 1,0, respectively
differ from each other by arelatlve value ~ 1/E , they may
be assumed to be equal and the product of cosines in
eq. (25) can be put equal to 1/2. As a result we have:

Tt 5 TIGVE (26)
The equation holds when ja__  [<1. From it the transition
time is determined: e

e (27)

' "GVE .
The value of -, is small.lt justifies a posteriori the
neglection of the exponent in eq. (24) when looking for the
solution of eq. (26).

The motion along the 8=  axis is characterized by
velocity:

S_
vE

e (28)

5B
1
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Since the potential U gives transitions both to the
Am=+1 state and to Am=-1 one, the motion along
the B axis cannot be considered a directed one. It is
better to describe it with the diffusion formula:

(AB)?=Dr, (29)

where D  is the diffusion coefficient: D 5 v.58-GE ~/2
Assuming APB in eq. (29) being equal to 1/2 we shall
find the time in which the system reaches the state
with B= 0:

t 3/2
t= 2. E t, = 10% sec. (30)

iD ¥ 4G 0
Of course the estimations obtained are pure qualitative.
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