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1. INTRODUCTION

The three-body problem in nonrelativistic quantum mechanics
formulated correctly for the first time by L.D.Faddeev’! is
now carefully studied within the framework of the system of in-
tegro—~differential equations for functions of two independent
variables /%3

Important results are found in studying the analytieapggper—
ties of functions satisfying such systems of equations ™ and
in solving the latter by various numerical methods 814/ However,
both these studies are essentially complicated by the presence
of nonlocal integral operators and by the sought solutions
being functions of two variables. For this reason it is natu-
ral to make the next step, i.e., to separate independent va—
riables by expanding the sought solutions over a complete set
of functions of one variable. As such a basis in the problem of
three-particle bound states in the case of s -wave two-body po-
tentials it is convenient to use the systems of eigenfunctions of
of kernels hgouo of integral operators.

In the problem of three identical particles the use of such
functions’1%/ makes it possible to reduce the initial system of
integro-differential equations to the system of second-order
differential equations for functions of one variable.

This paper is devoted to the study of spectral properties of
kernels h gy oo in the general case of nonidentical particles.

In section 2 the Faddeev integro-differential equations are
written in polar coordinates, and the eigenvalues and eigenfunc-
tions are found for the kernels hQg oo - Section 3 deals with the
investigation of the eigenvalues and eigenfunctions obtained in
Sec.2. In Sec.4 the integro-differential equations are reduced
to the system of second-order differential equations for func-—
tions of one variable and some properties of solutions of that
system are analysed.
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2. EIGENVALUES AND EIGENFUNCTIONS OF KERNELS hgg go

Consider a system of three different spinless particles in-
teracting by means of two-body s-wave potentials v;.

Following ref.’3/ we introduce three sets of relative coor-
dinates (&, y,), i = 1,2,3, which are expressed in terms of the
radius-vectors of particles r, by the formulae
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Here indices i, j, k run over the values 1,2,3; 2,3,1; 3,1,2; m,
is the mass of an i-th particle, and M is the sum of masses of
three particles.

Different sets of coordinates (1) are connected by unitary
transformations
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The angles ¥%; &[0, —;] are determined by the ratios of par-
ticle masses
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t =mM/ =m / /| / / y 3
87, ~nM/mm ~m/m +m/m, +(mj m, ) (mj m, ) (3)
and numbers € are such that €y = —F = g ik ="2132513
From equalities (2)it follows that the hyper-radius p =

2 s .
= (xi+y )1"’2 does not depend on the choice of the coordinate
set (1), gnd Xy and y, are functions of XY, and the variable
u = cos (X, Y:) 1B
xk=xk(xi' Yi, ui)l yg =yk(xi! yi- ui)- (4)

Following refs.”®3’ ye write the wave function of the bound
state of three particles with quantum numbers A= £ = L =0 as
a sum of three components ¥ = ¥, + s + Y3, and represent each
of the components ¢ , i=1,2,3 in the coordinate set (X, y. ) in
the form ) e

5w Bxs¥) -
l}!’i (xi - yi) o ot ———— yoo (yl. K ) (5)
xiyi

00 . LM
where Yoo is the bispherical harmonic Y)p at zero indices.
Substituting functions (5) into the TFaddeev equation
Hg ~E+v)y, = -y (gb + ¥,) we arrive at the system of equa-
tions for components (D dependent only on two variables
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Here the action of the nonlocal operator h is defined as fol-
lows:
i

o 0
<z, y|b|®> - { duhgo oo ;. ¥, u) @, G, ). (7)
The kernel of this operator
hy ) /(x5 8
00,00 ¥ % » U *"-Y; Xy (8)
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is a particular case of the kernel h at zero indices

v A o i

In equalities (7) and (B) Xy andy are functions (4) of vari-
ables x,y, andu;. The requ1rement of regularlty of the compo-
nent qlri (5) on the straight lines %, ¥yi= 0 is formulated as
the boundary conditions

®0,y)=9(x,0=0,i=1,2,3, (9)

The square integrability of the total wave function ¥ is sequ-
red by the boundary conditions

D=, y)=0x,6 «)=0i=1,2, 3 (10)
Let us introduce three sets of polar coordinates

0<p<e, ¢ = arctg(y /;i) 0<¢ <..§. i=1, 8, 3, an

and from formulae (2) we obtain the connection between different
angular variables:

tg??;bk(qﬁi L0y ) = (tgzr + tsqu -9, M0+ tggr“ tg %si + 00 ) (12)

where 7. = 2¢, l;gyht.g:,f.vz
System of equations 65 in coordinates (11) is then written
in the form

[A; + E - v, (pcosd,)] ® (p, ¢,) = vi(pcoséi)tf <p, $[0|®>, (13)
1

where
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Equalities (9) and (10) are reduced to the following boundary
conditions

@i(p,0)=@i(p,-’_27.-)=0, 0<p <o, (14)
3




A
¢i(0.¢i)=¢i(w.¢i)=0. 0<d S i=1,23, (15)
From (7) and(8) we obtain the representation

o~ 1 1 sin2¢i & ) i
<P’¢'i‘h'¢x>=‘2‘_{ duisin2q§k k(P &) (16)

In integrals (16) the angle ¢; is function (12) of the integ-
ration variable u; and angle 9;., whose value is fixed in the
left—hand side of eq. (13). In this integral we shall make the
change of variables u; » ¢,. .

Upon solving eq. (12) with tespect to the variable u, we
calculate the Jacobian

du (&, ¢ )/dé = 2¢ coses2) . sin2¢ /sin2¢, . (17)

The upper b, and lower b_-. integration limits over the variab-
le¢, will %e found from eq. (12) written in the form

G (6, u= 1) = %, (4) = g (0, T9). (18)

The condition 0 < QS-;- selects the only solutions to eq. (18)

expressed in terms of the functions

= = = mi - - 1
ck(<5i)— |7r’ki ¢i|. dk(iﬁi) mm(rkiév ¢vi. e ¢i) (19)
by the formulae

b "'d.b = Qg !'_>0: b =0 b =d <0. (20)

ke ™ % P C% ‘un k+~ % - %
Functions (19) for some values y,;, are drawn in Fig.l.
Making use of (17), (19),
(20) we rewrite (16) in the
form

<p. ¢,1R 9> -
(21)
16,96, 3.

dllqﬁi)

= coses2y } §
ki
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Thus, the operator h in polar
coordinates (11) acts only on
the angular variable and is re-
presented by an integral with
- variable limits and contains as

a parameter the angle ¥y whose values are fixed by the
ratio of particle masses (3).

Let us now proceed to study the spectral properties of the
operator hgn oo (all indices are omitted). We look for the so-
lutions y(¢)' to the equation

5 d($)
Ay =hy, Ay(¢) = coses2y [ déy(&) (22)
eld)

in the class of functions continuous on the interval 0 < ¢ < n/2
satisfying the Dini condition’/'®/ and the same boundary- condi-
tions (14) that hold for the components ® ,i.e.,y(0) = y(z/2)~0.

We shall denote the above class of functions by K{O K

Theorem I. In the class of functions Kio. 7 /2] all solutions to
eq. (22) are of the form y (¢) = sin2n ¢ and compose an orthogo-
nal basis with the corresponding eigenvalues A (y) =

= sin2ny/(nsin2y),where 1 = s lale

interval [#/2, 7] thus obtaining the function y (¢} €K[g 5] With
the following properties «

v($) = y(¢), (23)

We shall continue an arbitrary function y(¢)C 0.7s] On the

5(-'25- +8)=-y(5 - ¢), (24)

where 0 < ¢ <n/2.0n the interval [0, »] we introduce a complete
orthogonal system of functions 1, cos 2n¢and sin2ngwhere g =
=1,2,... . Then y(¢) may be represented by the uniformly conver-
gent series

y () = : b sin2nd, (25)

which may be integrated term by term. According to (23) and (24)
the coefficients equal

w 7 /2
2 -
By == ({ d¢Y(¢)Bin2n¢=i:— {{ déy($)sin2¢,

and coefficients of the expansion over the functions cos2n¢,
n=0,1,... are zero owing to (24). We look for the solutions to
eq. (22) in the form (25) and with account of (23) we get
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T b (A~ sin2ny/(nsin2y)) sin2n¢é = 0,
n=1

with the following solutions: b #0,b, =0, m#én,n =1,2,...
The eigenvalues

)‘n= '\n()’) = gin2ny/(nsin2y) (26)

depend on the parameter y, and the corresponding eigenfunctions
are determined up to arbitrary factor b, and have the form
yn(¢)=bnsin2n¢v.'rhese functions form the basis in class K[ o, #].
and consequently, in class K[ ;/2]-

Note that the eigenfunctions have a definite parity with
respect to point ¢ =n/4:y, . o, are odd, and ygy,,1 are even for
0 i 0 Rl R
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3. PROPERTIES OF EIGENVALUES OF KERNELS h{JO 00
Let us study the properties of eigenvalues (26) as a function
of the parameter 0<y<w/2, Clearly, A (y) = O if there exists

an integer £, f = 1,..., n—-1 such that y=" 1 i.e., if q=
2 n
=y/(n/2) is a proper rational fraction.

The latter holds valid if the particle masses obey the equa-
lity
1/2 "
By =tgy, =@M/ mm)  =tgsq. (27)

Let ny is a denominator of the fraction q, then zero is a multi-
degenerated eigenvalue of eq. (22), (A (y) = O for all n multi-
ple to ng), and the corresponding eigen%unction is an arbitrary
linear combination of the functions sin2nym¢ ,where m =0,1,...

Consider two examples. Let masses of particles be equal, then
y=n/3, ny=3. To the eigenvalues Ay (7/3) = O the eigenfunc-
tions sinBm¢ correspond. To the remaining eigenvalues

Mpgmg) = @+ 8m)h A, o (2) =@+ 3m)7!

there correspond the functions sin2(1 + 3m)¢ and sin2(2 + 3y sphere
m=0,1,... . In this case eq. (22) is equivalent to the equa-
tion Ay”(¢) + 4y($) = 0; y(@) = y(n/2) = O, provided A ¥ O,

which may be obtained following ref.”!?/, Now let masses of par-
ticles be related by the conditions m; >m,, my = m.(m +mj)/(mi e
-m) then Y=Y = w4, ny = 2. To the zeko elgenvalues

J\gm (m/4) = O there correspond the functions sin 4m¢odd with respect

() il

to the point ¢=n/4 and to others A LA TR o SIS
é zm—l(“ ) Byl

6

even func-

tions sin2(2m - 1)¢. For odd values of n = 2k+1,k = 0,1,... the
eigenvalues are expressed in terms of the Dirichle kernels”18/:

2

Azk+ 1(?) -

k
D (4y) = —— (142 I cos4my) (28)
2k+1 % + m=1

and their sequence satisfies the limit
lim(Z2k + 1) 12'“1[)’) = 278(y). (29)

It is not difficult to obtain appropriate recurrence relations

M) = B ) 4 n"izeos?-(n +Dy,0=0,1,.. (30

and representations for eigenvalues for even n:

k
Ay == I cosm-Dy, k-1,2,.. (31)

m=1

From definition (3) written in the form

:g2y=a+ﬁ+a.8, asmj/mi, ﬁ:mj/m

k

it follows that y 40 ifa, B+ 0, y» n/2ifa » = or B . = Conse-
quently, at finite and nonzero masses of particles the parame-
ter ¥ satisfies the inequality 0 <y<n/2 Note that A, (0) = 1,

A (n/2) = (-1)"*! for all integer n and prove by induction the
following

Theorem II. Provided that 0 < y <E'- the inequalities

[A(¥) <1, n=2,3, .. (32)
are valid.

Clearly, |A2(¥)] =|ecos2y| < 1, let [A,(¥)| < | for an even n>2,
i.e., -1 <A (y)<1-¢, where 0<e<l, From (30) we obtain the
upper bound |1.+1)‘)| <1-ne/(n+2)<1 that proves the theorem.
For odd n the proof is similar. Let K;CKfp, n/sg]be the class of
functions orthogonal to the first eigenfunction ¥;(#) = sin2¢
corresponding to the eigenvalue Ady) =1.

According to theorem II, for any physical values of masses of
particles 0<m <, i=1,2,3 the operator h in the class K, is
a contracting mapping/!%/. The iteration sequence of functions
z,,y=hz, +f, wherez  and [ are arbitrary functions from the
class K, converges in metrices L, to the exact solution z(¢)



2 y ach)
of the inhomogeneous equation z($) =coses2y [ aéz(&) + f(¢) Let
(

clgh)

us mention one more property:

llm'\n(y)=0| 0()"‘(—2{.

n-+o0a

(33)
Some eigenvalues as functions of the parameter y are drawn in

Fig.? and 3. Arrows mark the values of Y =%, for some three-
particle systems when m, < my, my "
J E :

4. CONCLUSION

We shall search the solution to system (13) in the form

s e
fbi(P, ¢i) =32 p fiu(P)Sin2u¢ni i, o A S T (34)

n=1

For the func?ions fn (P) we may readily find the system of se-
cond-order differential equations

fo(p) + @+ (1-160") /4p%1,_(p) =2 Vi (P, (p) =

- (35)
= 2 v (0 O () 4+ A 08 (), natl, 2,

and the boundary conditions f (0) = f (=) = 0,
rated by the conditions (15)."™ -

8

n=1,2,... gene~

Instead of the exact and, generally, infinite systems of eqs.
(35) one may consider a finite and approximate system of equa-
tions (o, m = 1, ... N) for the following three reasons. Matrix
elements of the two-body nonsingular potential

in

n/2
v (p)=— [ désin2név (dcos$)sin2me
m 4 0 A

are decreasing’/!®/ with increasing |n - m| not slower than

ln-m|~!. The eigenvalues A+ 0 for m-»« (33), and the functions
“1125 (p) should decrease not slower than m™" with increasing
m as to provide the continuity of the second partial derivative
with respect to the angular variable of the component (34).

The terms in the r.h.s. of system (35) describing the influence
of the third particle on the couple of particles decrease with
m > = faster than the sum of terms in the left-hand side. We
point out some properties of a three-body system following from
the representation (34). Substituting (35) into (5) we arrive
at the following representation of the Faddeev component:

¥ (p, $)= G 'p™E5 it (p)o, (8)), (36)

n=1
which results in the known/4,5/ asymptotic behaviour
~5/2

P»oo
The functions @ (¢) = sin2n¢/(nsin2¢)have the same dependence on
the angle ¢ as the eigenvalues on the parameter y and, con—
sequently, possess the same properties (28-33). For the total
wave function, all owing for (5), (16), (22) and (36) we obtain
the expression

~1 <SR 2
#o, $) =61 p T no ($) 3 o P, (37)

where o, = 1, G = A, (¥).k#i. The wave function (37) does
not contain terms ~f {P), where m are integers obeying equali-
ties (27), i.e., such that Ay(yy;) = 0. This kinematic property is
specific for all three-body systems masses of which obey con-
ditions (27). The system of equations (35) may have nontrivial

solutions noncontributing to the total wave function (37). These

3
solutions satisfy the condition X aéikfkg(p) and will be
. =1
studied elsewhere. y
In conclusion we note once again that the eigenfunctions of
kernels hgoon do not depend on the particle masses unlike the

eigenvalues. In the class of functions in which we look for




the solution of the Faddeev equation in the case of the bound
state with A=Ff= L = O the eigenfunctions form the angular
basis. Thus, we believe that the use of the results obtained
will greatly simplify the analysis of solutions of the con-
figuration formulation of the three-body problem.
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