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1. Introduction

Quantum tunnelling phenomena are of fundamental interest for
the understanding of a variety of processes in the microworld (decay
of quasistationary states, nuclear reactions with gub-barrier par-
ticle emission, sub-barrier fusion, spontaneous fisgions,etc.) as
well as for & lot of its practical applications (Josephson effect,
highest-precigion investigations of solid-body surfaces within an
accuracy smaller than atomic diametere/1< etc.).

The behaviour of a single (elementary) quantum mechanical par-
ticle in an external potential field was widely understood etill at
the beginning of the developement of quantum mechanics. Nevertheless,
presently, investigations are golng on of several special situetions
leading to qualitatively new and partially surprising results. For
example, we mention penetration through singular potentials which are
nonpenetrable in the quasiclassical approximation 2 ; resonance-like
penetrability of a potential composed of 2 & —functions et finite dis-
tance 3 : and the existence of bound states with positive energies
for potential wells whose tails show a damped oscillating behaviour
(the bound state may lie even above the oscillating part), which is
due to multiple reflection above the barrier 4 .

Up to now, there are only a very few investigations concerning
barrier penetration of complex particles exhibiting intrineic degrees
of freedom (e.g., nuclei). Frequently, in such type of problems the
inner structure of the particle is completely neglected.

On the other hand, it could be shown/5'6/ that in the case that
ingtrineic excitations can be excluded (existence of a gap between
ground state and firet excited state and comparable small energies of
the center of mase motion), the tunnelling of a complex particle
through an external barrier can be essentially intensified if taking
into account the mutual intrinsic motion of the particles in the
ground state of the complex.

Another very interesting result is the finding of ref./7/ that
in the case when intrinsic excitation is possible, the penetrability
of an asymmetric external potential for & complex particle can show
& very pronounced left to right asymmetry (at the same energy of the
incoming particle).



These results have "been obtained either in a rather schematic
way or by using several simplifying assumptions to consider a one-
dimensional pair of particles interacting via an infinite rectangular
potential colliding with an external rectangular barrier.

Owing to the large number of practical conseguences of the above-
mentioned effects a more involved consideration should, therefore, be
of interest.

The aim of the present paper is to analyse in TDHF approximation
the behaviour of (effectively) one-dimensional nuclear slabs of diffe-
rent thickness (particle number per unit area) when interacting with
asymmetric as well ag symmetric external potentials and tc compare the
results with those of refs./”-

2. Qualitative Congiderations

We start with a brief description of the basic ldens of reflu.
/5-1/

First, consider the penetratlon of an external barrier Vix) vy
two identical elementary particles. In WKB approximstion Lhe tiann-
mission coefficient D(E)ie giv:n by .

DCE) ~ exp [ [*Yam (VX -EJ dx | | M

a

Prom eq. (1) it is obvious that the transmission coefficlents are
exactly the same for the case when the two particles are comnidered
to form a complex and the intrinsic motion is fully neglected, and
for the case of independent penetration of both particles almulta-
neously. In the first cese one has to double m, VYX). E , and in
the second to square eq. (1) ending up with D*(E) in both extreme
limite (in general, however, this is only exact in the quasiclasmnical
cape).

Turning to some intermediate situation of the two partlicles ini-
tially being bound in the ground state of the complex !;, we decom=-
pose the wave function of the system with respect to the full met of
intrinsic wave functions f,‘

~I/(X4JX1)=Z Fi(R)Iu<f) (2)
with  R= (X,+X3)/2 ,f= Xa-X4.

If the energy of the incoming complex particle is smaller than
the energy of the first excited state, one can neglect all terms with
o>0 in eq. (2). Then, for the wave function Fo(R), describing the
motion of the complex as a whole, one ends up with the Schrodinger
equation

= 22 E"R) + Voo (R)Fu(R)= ER(R) , M= 2m B

with the effective potentisl felt by the complex particle

Ve (R)= (1 8.()I*[V(R-%£)+ V(R+4£)] ol @)

which eppears to be the externsl potential for both constituents ave-—
raged over the intrinsic motion.

Using the normalization condition for d& it is easy to show that

JVeo(RYdR =2 [V(R)AR . ()

If the pair of particles is much smaller than the half width of the
potential, Veo(R)approaches 2V(R), i.e.,it feels twice the potential
of each of ite constituents. A reduction of the barrier height in a
more realistic case can drastically enlarge penetrability for not too
small incident energles (the corresponding broadening of the effec-—
tive barrier can, however, diminish penetrability at very emall ener-
gies). This is the essence of the "intensified tunnel effect"

Consider now an asymmetric potential exhibiting a steep fall off
on the one side and a flatter one on the other side. It can be shown

that its penetrability for the two-particle complex is exactly the
same for approaching the barrier from any of the sides if real exci-
tations can be excluded. However, if other channels come into play and
the corresponding terms are retained in eq. (2), the transmission coef-
ficient is larger for approaching the barrier from the flat egide.
It is argued that thie is because the complex particle becomes leas
excited in this case and, consequently, more kinetic energy remains to
tunnel through the barrier with a higher probability. Considering only
the ground and firet excited states, numerical calculations have been
performed for & one-dimensional pair of particles interacting via an
infinite rectangular potential and colliding with an asymmetric step
potential. The results confirmed the above qualitative expectations.

It is of great interest to coneider analogous problems for a
complex of N> 2 particles. Intuitively one could claim that the inten-
gified tunnel effect will increese with increasing particle number sin-

ce more and more intrinsic degreee of freedom "help" the system to
"adapt" itself to an external barrier and to collectively overcome it.
On the other hand, with increasing particle number the excited states
come down in energy and the spectrum of states becomes more dense.
Hence, the neglect of intrinsic excitations becomes less motivated:
since intrinsic excitations decremse the kinetic energy of the sys-
tem, the barrier should become less penetrable.



To get a reasonable guess about the N-dependence of the asymmet-
ry effect 1s possibly even more difficult. We have the feeling that
for a given degree of the potential asymmetry it could be moet pro-
nounced for systems of diameters comparable with the thickness of the
potantial. For a given particle number in the complex it seems to us
that the effect should increase with increasing potential asymmetry.
Exact invegtigations on this line are, however, in order.

In a quantitative N —particle description of the itwo collective
barrier penetration effects, it is desirable to include also dynami-
cal deformations as well as break-up and fragmentation channels which
may play an essential role in the given problem and have not been
investigated explicitly in refs./ =1/ (e.g., break-up of a deuteron
when colliding with the external barrier).

Since the exact N-particle Schrodinger equation for the given
problem cannot be solved exactly we treat it in the standard TDHP
approximation with effective nucleon-nucleon interactiunn/“_lgl. In
TDHF the wave function ie described by a Slater determinant specified
by the criterion that at every time, the deviation between 1t and the
exact solution of the Schrodinger equation is minimized. The corres-
ponding variation principle yields a nonlinear system of coupled sin-
gle-particle Schrodinger equations for each initially occupled orbi-
tal, and, therefore, is much more easier to handle than the exact prob-
lem., However, due to the nonlinearity of the equations the superpo-
sition principle of exact (linear) quantum mechanice is lost. Thise
has a lot of consequencea/8'12/ like some classical (deterministic)
features of the TDHF solutions, the existence of sdliton-like molu-
tions, spurious asymptotic cross channel correlations, and corres-—
ponding fundamental questions of the interpretation of numerical
results. We should have these specific features which are the price
for the drastic reduction of the full problem in mind for the inter-
pretation of the barrier penetration results presented below. Here,
we mention in passing that no problems with interpretation arise if
one 1s satisfied with expectation values of one-body operators (e.g.,
mean particle number transmitted or reflected in the given problem)
instead of trying to look for specific channels, i.e. S -matrix ele-
ments.

Por simplicity of numerical calculations we restrict ourselves to
the considerations of an effective one-dimensional slasb geometry.

3. Model and Slab Characteristics

We perform our investigations of barrier penetration in the fra-
mework of the simple, effectively one-dimensional, model for nuclear

slabs proposed in ref./B/. In this geometry the sleb has & finite di-
mension in the 2 -direction and is translationally invariant in direc-
tions perpendicular to the 2 -axis. So, the single-particle wave func-
tions are of the form

Yz (Ft)=at exp [E(F‘E-ﬁkft/zm)] é, (z,1) (6)

and with the effective nucleon-nucleon interesction chosen to be a sim-
plified Skyrme force

V(F,E)= (1. +$t:8) S(F -F,) 1)

with t. ==1090 MeV fm3, t, =17288 KeV fmb. and‘f being the one-body
density N

SR t)=S(z,t)= ,,2_1 aa | ﬁf’n(z,t)l2 (8)

we have to solve numerically a coupled system of one-dimensional Schro-
dinger-type equations for the evolution of the single-particle orbi-
talB. d% occupiid 2? the initial state:

ité, (2,t)=[—5_”7n%1 sttt +3t e an+Ve)[4, . (o,
Here | denotes the external potential. The (constant) occupation
numbers @» monotonically decrease with increasing m expregeing the
fact that for higher orbitals less plene waves fulfill the condition

[K.] < [(2m/52)(€x - €4)]" 2 Kmax (n) . (10)

So, hicher orbitals enter the density with smaller weights than lower
ones.

Initisl conditione are constructed from stetionary solutions of
eq. (9) (with V(2)30) boosted into direction of the external barrier
by multiplying with plane waves corresponding to the given kinetic
energy of the slab (for details seefg/).

The Paulil principle has been built in from the beginning and is
satisfled at all times simply becaume 811 the particles are moving in
the same potential 8 .

Since in the following we eball investigate slabs of different
thicknese ¢ »

‘#=Z An y Gn = K:.;(n)/n’ ; (11)

a4

it is useful to illustrate the corresponding stationary solutions.
Pig. 1 shows the # -dependence of single-particle energles £, , the
Fermi energy £, and the number of occupied discrete states N . Note,
that our slab mass table slightly deviates from that of ref./alsince
in that work en additional finite range Yukawa interaction in the



Fig, 1. The slab mass table for
the effective force of
eq. (7). Thesf ~dependence of the
single-particle energies €&, (80—
1id lines - occupied, dashed li-
nes - unoccupied levels) and the
Fermi energy &g (heavy line) ig
shown. The upper abscissa is la-
beled by the three-dimensional
equivalent mass number determi-

ned from g#=2r, A"?F,.

effective force, eq. (7), has
been considered., 'hMagic" slabs
occur when a new eigenvalue

dives below £& . The nearly equi-
distant "shells" have a dislance
of

A= 036fm ",  (12)

while the first "magic" slab has a thickness of A =0.39 fm'e. In
using the notions "shells" and "magic'" slabs one should, however, have
in mind that translational invariance in the transverse directlions gi-
ves rise to a continuous gpectrum, so that no gaps in the single-par-
ticle spectrum appear/a/. Nevertheless, one can expect thal "magic"
slabs are to some extent distinguished in a dynamical evolultion wince
the continuous transverse degrees of freedom are frozen. As could be
expected, the Fermi energy oscillates around the nuclear matter value
for the energy per nucleon, =-16 MeV,

The numerical method used to solve eq. (9) is a finite-series
expansion of the evolution operator with the mean-field Hamiltonian

h taken at half time step

¢>..(t+Ath§°—J?'_7[-%At{h(ﬂiAtH V§]J¢.. (t), (13)

Numerical stable results could mostly be achieved for a spatial step
si%Ze of4#=0.5 fm, a length of the numerical bax L =100 fm, and }= 4
(for a discussion of numerical stability, with respect to slab colli-
slons, see also ref./13/). An exception was the energy region around
the first discontinuity of the transmission probability (see below).
In this case } has been substantially enlarged in order to decrease
the degree of nonunitarity of the approximate evolution operator in
eq. (13) characterized by eigenvalues greater than or equal to 1 and
causing exponential amplifications of the wave functions and corres-
ponding strong violation of norm and energy conservation. In fact,

such type of instabilities cannot be fully excluded in this way; we
rather have shifted the time of their onset to a later instant, out
of the time interval of interest.

In connection with numerical stability it is interesting to point
out that, while in slab collieions the evolution of the main parts of
the density profiles (§x 0.1 % ) comes close to the stable results
already at step sizes of amboutdZ=1 fm and only the small-demnsity tails
("promptly emitted particles" -PEP) are drastically different from
the stable shapes (reached at aboutAz=0.5 fm), in the given connec~-
tion of barrier penetrations the evolution of the density profiles
at all end, hence, the tranemission coefficients reach stability only
ford2 £0.5 fm. For a step size of AZ= 1 fm the dependence of the
transmigsion coefficient D(E) on energy per particle E (for a given
potential V' and alab thickness M) is quelitatively similar in sha-
pe. The espential difference is that for the seme value of D roughly
twice the energy is required as compared to the stable case. Further-
more, the curve D(E )exhibvits small stochastic ripples obviously be-
ing connected with unsufficient numerical accuracy and disappearing
with decreasing 4% .

4., Numerical Results and Discugsions

A

A deteiled investigetion of intensified and asymmetric barrier
penetration in the present model would require to independently vary
barrier height, the degree of asymmetry of the potential, slab thick-
nesg, and slab incident energy. For each combination of these guanti-
ties a full TDHF evolution according to eq. (9) would have to be per-
formed., To limit the number of necegsary calculations we restrict our-
selves to the conslderation of an asymmetric Gaussian

Ve ) V. {exp(—zzlza.z) s 2 20
2)= Vo

14
exp (-2*/2ax ) , ESO e

with Vo= 10 HeV, Q.= 1.5 fm, a; = 3,% fm, and consider its penetrabi-
lity for slabs of thickness = 2.0, 1.0, 0.8, 0,75, 0.3 fm-2 and inci-
dent energies per particle in sufficiently emall steps (in order to

get smooth curves for D(E) through the calculated pointe) ranging

from values for which D(E)=0 up to energies for which D(E)=- . All
these calculations have been done for approaching the potential from
the steep side as well as from the flat side. Additionslly the same
calculations have been performed for the symmetric Gauseian potential
a,= as = 2.5 fm (with unchanged {f; ) in order to compare with the asym-
metric results,



It is known that single-particle effects play a crucial role in

TDHF nuclear dynamics/8—12 Minute changes in initial conditions

may easily result in qualitative changes in the nature of the consi-
dered reaction. Therefore, we start our presentation of numerical re-
gults with the discussion of the time evolution of individual simgle
particle wave packets and its relation to the barrier penetration
process of the slab. In Fig, 2 full as well as partial densities are
displayed for an illustrative example.

LA R Pig. 2. Contributionsa
13 e =Bes of individual
single particle orbitals
; a, [ $./2 (thin lines,
marked by a correspond-
ing number n= 1,2,3) to
the full density £(2)
(heavy lines) at various
times for a #f=1.0 fm—2
slab colliding with the
potentisl eq. (14) from
the nteep side atE/A =
= T.41 MeV. For t=0 the
external barrier is al-
80 shown (hatched region)
in arbitrary unite. The

ogition of the maximum

Z=0 ) of the potential
is marked by a vertical
thin line.

g2t

zlimi

In the given case only 3 orbitals are occupied (compare Fig. 1). After
having solved the TDHF equations (9) each single particle wave packet
can be independently considered as moving in the (given) time-depen-—
dent mean potential « The wave functions ¢,, may be decomposed into
Fourier components, the dominant velocities being

Vo= Vo [ & (En-W)]™
where V¥, 1s the initial velocity of the slab, &, is the stetic ei-
genvalue of ¢, and W ig the average well depth which is initially
-50.3 MeV in the given case. For qualitative discussions we omit Lhe
time dependence of VW in the following. The velocities Uﬁi, Vo
and the velocity V, which a classical particle needs to overcome the
barrier (10 MeV) are:

vt = 0.202 ¢, V, = 0.05 ¢

v = 0.279 ¢, v, ==0.027 ¢

W= 0.351 ¢, ¥ =-0.039 ¢

V,= 0.126 ¢, v, = 0.146 c.
8

In restricting discussion to the dominant components yg? one should
have in mind that the Pourier decomposition of ¢, really yields a ve-
locity distribution around v;! . The V,* component has sufficient velo-
city to overcome the barrier while Vy being positive (i.e.,also moving
towards the barrier) is substantially smaller than V, and, therefore,
ig reflected from it. This leads to the pignificant deformation of

the first orbital at ¢= 120 fm/c. Shortly after, the v, component

is reflected from the backward edge of the mean field potential well
which moves with V,, and,hence, acquires velocity hq’ which enables it
to overcome the barrier. At t2 180 fm/c it is really seen that a large
fraction of the firat orbitel is beyond the top of the barrier. The
small fraction which could not overcome the barrier corresponds to the
small-velocity components in the tail of the distributlon of the Fou-
rier components. The eecond orbital begins to "feel" the barrier at an
earlier instant since 1t is closer to the surface of the slab. Hence,
a 8light deformation can be stated already at t= 60 fm/c, It is , howe-
ver, caused only by the reflection of a small amount of velocity com-
ponents from the barrier since \ﬁf> V, and Vy, <0 (i.e.,moves away from
the barrier). So, the second orbital moves first to the backward edgs
of the slab,then to the opposite edge being mainly concentrated at

2<p for t= 240 fm/oc when the first orbital is at 270, A deep mini-
mum in the total density, consequently, arises connected with a cor-
responding barrier in the self-consistent mean potential suppressing
free motion of the orbitals in the whole slab., In the given situation
the repulsive external potential dominates the attractive nuclear force
between the two halfs of the slab, so that 1t becomes partly reflected
and transmitted., The third orbital ie even less deformed than the se-
cond and its weight im the total density (meam field) is quite small.
So, the fractions of it, which are finally trapped in the reflected

and transmitted fragments, are mainly determined by the evolution of
the first and second orbitals.

To 1illustrate the delicate interplay between repulsive external
potential and attractive nuclear force, we consider now a thick (& =
2.0 fm'g) slab colliding with the same potential as in the asbove case
at two quite close incident energies (B.56, 8,62 MeV/A). Fig. 3 shows
the corresponding demsity profiles and velocity distributions

st B 5 an Jm (67 L ¢4) (15)
va)= g w2, 9 Im (b 35 4
at several times. Note, that in the initial state from (15) follows
v(z,t=0)= V, as it should. PFor both incident energies the evolu-
tion of the system 1s nearly the same with respect to both density and
velocities. In both cases at about £ 120 fm/c a deep minimum of the

9
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Fig. 3. Density profiles (heavy
lines) at several times
for_a slab of thickness £ = 2.0
fm™2 colliding with the same po-
tential as in PFig, 2 at incident
energy 8.56 MeV/A (full lines) and
8,62 leV/A (dashed lines). The ver-
tical thin line marks the poai-
tion of the potentisl barrier whi-
le the two horizontal thin lines
denote the incident velocity Vesc
which the slab would have in the
absence of the barrier, and-=-Ve/c
for an elastic reflection. The
scale to the right concerns velo-
cities (in units of ¢ ) while the
left-hand scale corresponds to
the density.

density appears at 2 0 leading
to the transmiggion of a first
fragment while the remaining part
of the slab still stands on the
top of the barrier. At about ¢ =
= 240 fm/c a further deep minimum
arises at Z<0, At the higher
energy 1t is slightly closer to

2=0 . The right-hand part of the fragment has slightly larger velo-

cities than for the lower energy case, although in both cases its ve-~
locities are negative. So, it seems at t= 240 fm/c as if the remaining
fragment becomes reflected as a whole., At later instants, however, it
becomes clear, that this happens only for the lower incident energy
while at the higher energy pert of this fragment is transmitted., It
is quite surprising that not only the Tiret tranesmitted fragment but
also the second one have velocities close to Ve .

Substantiel oscillations of the density for large times indicate
that part of the initial kinetic energy is converted into internal
excitations. In the example shown in Fig. 3 the excitation energy

-

amounts to 41%, and in that of Fig. 2 to 26% of the total energy of
the system, Since in both casee the incident energies are approxima-
tely the same and the same barrier has been considered, one can conc-
lude that the degree of excitation decreases with decreasing slab
thickness, i.e.,decreasing number of occupied orbitals. For a very
thin slab of = 0.3 fm_2 (one orbital occupied) at the same incident
energy only 2.2% of the total energy go into excitation.

¥e turn now to the discussion of the energy dependence of the
transmission coefficient D(E) for slabs of different thickness. We

10

determine this quantity by simply counting the partiéle number at
270 at large ¢t , 1.e.,“

D[E)=£— ! S (2, t>+00)dZ . (16)

We mention in passing that eq. (16) is not an exact definition in
the sense of time-dependent scattering theory. In principle, the de-
finition of D(E) should contain the integral of the diagonal part of
the l-particle density matrix at £+ +00 over 2,7@ for each coordi-~
nate Z, ..-,2y .« Although in TDHF approximation the N-particle density
matrix at any time reduces to the antisymmetrized product of one-par-
ticle density matrices £g(2.), the N-fold integral over Z,>0
not reduce to eq. (16) since the single~-particle functions ¢, are
not orthonormal in the right half-space (the discussion of Fig. 2 has
shown that asymptotically any orbital has components as to the right
as well as to the left). However, due to the well-known artifact of
that standard TDHF theory/8'12/ called "asymptotic cross channel cor-
relations", a more exact expression for D(E) would not exist in the
sense that it would continue to depend on time even for t-»+¢ ., The-
refore, in accordance with the aim of TDHF to optimally describe ex-
pectation values of one~body operators (particle number operator in
the right half-space, in the given case) we use the more '"classical"
definition of eq. (16).

For a slab of = 1.0 fm ° colliding with potential (14) from the
steep side the transmission coefficient D is shown in Fig. 4 as a
function of energy. The somewhat unexpected result is that it is dif-

does

2

ferent from zero and unity only in a very small energy interval (be-
low the barrier height V[ ). At E=E,= 7,315 MeV it immediately
Junmps from zero to about P=0.6. Then, with further slight enlargement
of E 1t slightly increases to about D=z 0.65 at F,=7.492 NeV where it
has a second discontinuity and acquires unity value for E? Ea . The
case of E= 7.41 MeV lying in
between E, and E, was al-

n v
n' P ready discussed (Fig. 2).
',1\'1//’

/s A=10fm

of —veTre |

o | Pig, 4. Total (full 1line) and

o o+ QBIns! | partial transmission

it ! coefficients (dashed lines mar-

il " ked by the number of the cor-

02 N : responding orbital) for a slab

. M oe—— of thickness A= 1,0 fm™¢ colli-
Niaaia o ding with potential (14) from

% S o the steep side as functions

E(MeV/A)

of incident energy.
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The E ~dependence of the partial tranemission coefficients D, (E)
(percentage of the m —th orbital being transmitted) near the discon-
tinuities indicates that they are not caused by discontinuities in

the behaviour of single orbitale. Indeed, at eny energy from 7 to

8 lieV a deep minimum of the density ariees (as shown in Fig. 2) in

the vicinity of the position of the barrier top. For E < E; the double-~
~humped complex is reflected and for E»> F, transmitted es a whole.
Only in between we have partial reflectiom and transmission as in

Fig. 2. Near the discontinuities the percentage of each orbital being
located on each side of the density minimum changes smoothly. It is
interesting to note that the reflected fragment for E,< E < E,

hae approximately the thickness of the firet "magic" slab (0.38 fm2).
Thie mey indicete mome special role played by such "elementary" frag-
ments - at least in 4D~ TDHF dynamics.

Flg. 5 shows the energy dependence of the tranemission coeffi-
cient for slabs of thickness A= 2.0 fm-z. In each of the three consi-
dered cases three discontinuities at different positions are charac-
teristic,

10

Fig. 5. Energy

T
i dependen-
i

D(E)

09 |
ca of the trane-
_________________ migsion coeffici-=
ent for the poten-
tial (14) from the
eteep side (dashed
line the flat
side (dott-dashed
line) and for the
corresponding sym-
metric potential

) (full 1line).Slajs
with $#= 2.0 fm™
are considered.

4202
o+

071
06 -
0S|
[J
03}
02

LANS

L s L L

i n " -] &
E{MeV/A)

From Fig. 3 we have seen that the origin of thie discontinuities in
the same as forf= 1.0 fm—e slabs: the delicate balance between repul-
sive external potential and attractive nuclear force "decides" whether
a deep minimum formed due to the corresponding appropriate poeition

of the single particle orbitals leads to the transmission of a fur-
ther fragment or not. In Fig. 3 displaying the origin of the dis-
continuity of D(E) et E;*B.6 MeV it is eeen that the fragment addi-
tlonally transmitted slightly sbove FE,;ies also approximastely of the
thickness of the first "magic" slab. With increasing energy the num-
ber of fragments remaine the same while the transmitted ones increase

12

more or lems mmoothly 1in thicknsee. After the first discontinuity of
D(E) one has one, after the pecond-two, and slightly above the third-
three transmitted fragments. At E>7E; the slab i transmitted and at
E<%E,rﬂflacted a8 a whole without being fragmented.

5. Intensified and Asymmetric Penetration

Now we return to the question of whether the asymmetry in the
penetrability of asymmetric barriers predicted in ref./7/ for en idea-
lized one-dimensional quasideuteron can be seen for a many-particle
system in 1D-TDHF, Pig, 5 demonstrates that the effect ies really pre-
sent for most of the energy region where 0< D<-1, While for E> 7.1
MeV the barrier penetrability is D=7 for approaching the potential
from its flat side, the penetrabillity from the steep eide is lesa than
unity up to E= 15.6 MeV. Por E< 6.6 MeV the result is opposite to
the expectation of ref. 7/, i.e.,the potential is more pemnetrable from
the steep side. The effect in this energy reglon is, however, much
less pronounced. It is interesting to note, that the penetrability
for the corresponding symmetric potential, although moetly lying in
between the two values for the asymmetric potential, can turn out
to be higher as well as smaller than both valuss for the asymmetric
case in some quite small energy reglons.

For smaller slabs and the same potentials the ssymmetiry effect
is less pronounced. So, for #=1.0 fm_a slabe the energy diffarence
of the dipcontinuities where D(E) reaches unity values for both ami-
des of the potential (14) is nearly the same as E, -EF, in Fig. 4.

The corresponding values of £, nearly coincide. For slabs of thick-
ness f§<0.80 fm-z no asymmetry effect could be established (in accor-
dance with a very small amount of excitation). Moreover, for such
slabs the penetrability Jjumpe immediately from O to 1 at energies
somewhat below the barrier height Vg . That is, thin slabs behave like
classical objects. The fact that they penetrate the barrier already
at Es< V. 1is probably connected with the finite dimensions of the

slab which lower the effective potential felt by them.

Concerning the "intensified tunnelling" considered in refs./5'6/
we first consider the question of what to compare our results with.
Since for any finite slab thickness in the given geometry the slab
conglsts of an infinite number of nucleons, there 1s a substantisl
difference in considering either the single-particle penstrability

in the N-th power, i.e.,the simultansocus penetration of N independent
particles (N=+ % ) or the penetration of a particle of mass M=mN
energy En= N-E ( E - energy per particle) through a potential of
height V=MV, . While for N=2 one gets nearly the same result in
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both cases (and exactly the seme in first order WKB), for N ->+0 one
gets 1dentical zero for any potentiasl at any energy in the former ca-
se but a step function for D(E) with discontinuity at E=V, in the
latter case for any potential. This is because for a fixed velocity

v the wave number k= Mv/# goes to infinity with N»e,k 1i.e.,o0ne
has the same situation ae if the mass M would be finite and %+ 0
(classical limit).

Hence, we discues the effect of collective amplification of bar-
rier penetrability by comparing the TDHF results with the classical
values D(E<V,)=0 and D(E3»Ve)=< . Then, in nearly ell consi-
dered cases substantisl intensification of penetrability can be estab-
lished. The only exception is for thick A= 2.0 fm"'2 slabe approaching
the potentisl (14) from the steep side with energies E > Vo, (compare
Fig. 5). In thip case roughly half of the total energy is converted
into excitations which are expected to suppress the effecf 5'6/. It
ie interesting, however, to note that slthough in the other cases the
excitation energy may amount up to about 40%, penetrability is sub-
stantielly enlarged. For thin slabe (f <0.8 fm2) this is seen from
the fact that the discontinuity of D(E) lies below V, . It comes the
closer to VW the smaller £ . This means that the effect really
increases with increasing slab thicknese although the amount of ex-
citation energy ie aleo increasing (see above). Fig. 6 displays the
Jf -dependence of the position of the first (i.e.,the only, for #50.8
fm-z) diecontinuity of D(E). Since per definition penetrability is
intensified for E»F,, provided that E, <V, the above statement is
clsarly illustrated. The extrapolation of the calculated points in
Pig. 6 and the f -dependence of the degree of excitation leads to
the conclusion that the effect vanishes for Jf-= 0 .

Pig. 6. Jf -dependence of the po-

sition of the first dis-
continuity of D(E) for the poten-
tiel (14). The full circles are
our numerical results while the
full line is drawn to guide the
eyes. a) and b) denote the approach
of the potential from the flat and
steep sides, respectively.
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In this limit the slab has no inner structure in 2 -direction and
behaves like a point-like classical object.
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f. Concluding Remarks

Much of the features obtained for slab penetration of external
barriers resemble the appearance of soliton-like objects. These are

1) the role of nearly "maglc" slabs near the discontinuities
of D(E); 11) the clasaical behaviour of thin slabs (only one orbital
occupied) in colliding with the barrier; iii) the relative stability
of the shape of such slabhs or fragments, and iv) the closeness of
their asymptotic velocities to the inoident velocity.

Moreover, we have performed numerical calculatione for symmetric
collisions of "magic™" slabs with A=A, =0.39 fm"z. Even for rather
high incident energies ( E _= 25 MeV) most of the mass is concentra-
ted in the two final fragments having penetrated each other retsining
nearly their initial shapes and velocitles. Part of their loss in
mass and energy is carried by a small amount of FEP /13/ and a small
plece of matter with central density substantially lower than §, re-
maining at rest around =0,

However, since goms amount of excitation is always present, the-
ge objects behave like real solitons only asymptotically for E....?*?

or vanighing external potential in the penetration problem. Then,
ene has to do with freely translating slabs in its ground étste, which
are known to be solutions of the TDHPF equations (9).

Another interesting observation on this line is that in high-

-energetic slab collisions fragmentation occurs into exactly as much
fragments as orbitals are occupled initially/8'13/. Each such fi-
nal fragment consists of components of all orbitals.

It is possible that the appearance of soliton-like components in
the coneidered 1D-TDHF problems is an artifact of considering & one-
dimensional problem, since it is known that the transition to more
dimensions can suppress the existence of stable solitary solutions.

A pecond remark concerns the "classical" definition of D(E)
via eq. (16) which was necessary due to some consequences of nonlinea- .
rity and, hence, some classical features of the TDHF initial value
problem, Recently, several methods have been worked out to approxima-
tely requantize the mean-field theory (see ref./9/ and references
cited therein). For example, quantum fluctuations around the
"classical" TDHF "trajectory" in the class of determinantal wave func-
tions can be taken into sccount using path integral methods. The point
is that on this line any observable quantity is also influenced by
"trajectories" in the vicinity of that with the least action ( only
the latter is coneidered in standard TDHF). They may have disconti-
nuities of D(E) at slightly different positions, so that in a re-
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quentized version of TDHF the discontinuities could be smecothed out.
Unfortunately, theee methode are still far from practical applicabi-
lity.

The appearance of discontinuities in the energy dependence of
D(E) was also cbtained in the classical 1imit in the framework of the
coupled channel method 14/. Without chennel coupling one has a clas-
sical one-atep function for D(E). Teking into account N coupled chan-
nels, the clasaical limit yielde & N-step function for D(E). Quantum
effects lead to a emoothing out of the discontinuities.

From these remarke we conclude that the appearance of step-like
discontinuities in our 1D-TDHF results is one more classical feature
of the TDHF theory. Independently on whether they would exist also in
3 dimensions they should be smeared out if taking into account quan-
tum fluctuastions. We claim, however, that this would not change our
qualitative results on intensified and esymmetric barrier penetra-
tion, since it is quite unlikely that quantum fluctuatione would also
shift the shapes of D(E) in energy &nd relation to each other for
approaching the potential from the steep or flat side.

So, we claim that the effects predicted in ref./s—T/ for very

simple situations could be demonstrated to exist also in 8 more invol-

ved many-particle treatment.
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Maanep N., Huwwos 1.0, , 3axapses 6.H. E4-84-L487
Yeuneuue w acuMMeTpun npounyaesoctu Gapsepa
anA Apeprsx cnoes B npubivxeHus sasucAwero oT Bpemedn XapTpu-Ooka

IGDEKTM YCUNEHUA M HADYWEHWUA CUMMETPUM NPOHMUAEMOCTH GapbepoB CNOMHEMU
wacTuyamy, OONAfMONMMK BHYTPEHHMMKU cTeneHaMu cBoGoau, MCCNEAYOTCA B pamkax
SARMCANErO OT BPEMEHW CPeAHero MNONA C MCMONs30RaHWeM 3ODEeKTUBHOW OAHOMEPHOW
FEOMETDMM CNIOEB M YNPOWEHHHX 3QPEKTMBHEX cun Ckupma meway Hywnowamu. Kosd-
duumenT npoHuyaemoctu D(E) emumcnen xax Qywkuma 3Hepruu HaneTaouero Ha 6ape-
ep CNom v ero TorymHe. fetansHo cﬁcyuaaercn_nannuue CKAUKOB B NOBEAEHWM
D(E). EcTe ocHOBaHuA npepnonarats, YTO KBaHTOBWE MONPABKM K CTAHAAPTHOMH
X03B-KkapTuHE, KaK M YBENUUEHME DA3MEDHOCTH, NPUBEAET K CrAaMMBAHMIO CHAUKON,
HO HE MSMEHMT KAYECTBEHHWX DE3ynsTaToB. OHKM 3aKMOUANTCA B TOM, UTO BO BCEX
PACCHOTPEHHEX CNYYaAX MPOHUUEEMOCTh, ACHCTBUTENBHO, CYUWECTBEHHO ycununaercu'
M MMEET MECTO IQPEKT ACHMMMETDMM, KAK NPEACKAIWBANOCH paHee Ha OCHOBE NPOCTOW

KBa3mnaer TPOHHOM MOgenm.

PaGora swnonvexa 8 flaGopaTopwu TeopeTuuecKor Ouawmku OHAW.

CooOmexnne OO0peqHHEHHOrO MHCTHTYTa AAePHMX Wccnenosauufi. [ly6ua 1984

M3dler P., Nikishov P.Yu., Zakharlev B.N. E4-BL-LBT
Intensifled and Asymmetric Barrier Penetration
of Nuclear Slabs In TDHF Approximation

The effects of intensified and asymmetric barrier penetration by com-
plex particles exhibiting Intrinsic structure are Investigated In the frame-
work of the time-dependent mean-fleld theory using an effective one-dimen-
sional slab geometry and a simplified Skyrme nucleon-nucleon effective
Interaction. The transmission coefficient D(E) has been Investigated as
a function of Incident energy E and slab thickness. The appearance of dis~
continuities In D(E) Is discussed in detall. It Is argued that quantum cor-
rections to the standard TDHF picture as well as the transition to three
dimensions possibly smearing out the discontinuities should not alter the
qualitative results. In nearly all considered cases the penetrabllity Is
really substantially Intensified and the asymmetry effect manifests |tself
as predicted earlier using a simple quasideuteron model.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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