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1 . ШTRODUCТION 

The induced fission (Hahn and Strassmann 1939, Иeitner and 
Frisch 1939) and the spontaneous fission (Petrjak and Flerov 
1940) have been discovered long time after the alpha decay (Bec­
querel 1896, Rutherford and Geiger 1908). One of the first suc­
cesses of the quantum mechanics was the explanation of the alpha 
tunnelling through the Coulomb barrier (Gamow 1928, Condon and 
Gurney 1929). 

The similarity between fission and alpha decay was recogni­
zed in the early stages of the fission theory (Bohr and Whee­
ler 1939, Frenkel 1946), Nevertheless, the theories of these 
phenomena were developed on essentially different grounds, Nuc­
lear reaction microscopic methods have been used in alpha decay, 
but for таnу years the phenomenological liquid-drop model (LDM) 
dominated the fission, 

The asymmetrical distribution of the fragment masses from 
the spontaneous or low excitation energy induced fission was 
а longstanding puzzle of the theory. 

The first attempt to consider both the collective nature 
of the nucleonic motion and the single particle effects Ьу ad­
ding the shell corrections to the LDM energy (Myers and Swia­
tecki 1966) offered а good estimation of nuclear ground state 
(gs) deformations. The next important step, producing а renewed 
interest for the development of the fission theory was the idea 
of deformed nuclear shells and the microscopic shell correction 
method (Strutinsky 1967) strongly stimulated Ьу the experimental 
discovery (Polikanov et al.l962) of fission isomers (Poenaru 
1977, Metag et al. 1980, Bj0rnholm and Lynn 1980). 

In this way it was possiЬle to explain qualitatively the 
fission asymmetry (Moller and Nilsson 1970, Pashkevich 1971, 
Adeev et al. 1970, Brack et al. 1972, HOller 1972, Mustafa et 
al. 1972) as it is essentially due to shell effects. The frag­
mentation theory (Fink et al. 1974) was also successful in both 
regions of low and high mass asymmetry (Maruhn 1976, Sandulescu 
et al. 1980), 

Alternatively, the phenomenological shell corrections were 
extended (Schultheis et al. 1970) to the high deformations en­
countered in а fission process. New variants of the LDM: the 
finite range of nuclear forces model (FRNFМ) (Krappe and Nix 
1974) and the Yukawa-plus-exponential folding model (У+ЕМ) 
(Krappe et al, 1979) were especially developed to describe both 
the fission and fusion processes taking place in the heavy 1on 
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reactions. The extension of these models to the systems with 
different charge densities (Poenaru et al. 1979d, 198Оа, 1980с) 
offered а good basis for the fission theory of the alpha decay 
(Poenaru et al. 1979а, 1979Ь, 1979с, Poenaru and Iva9cu 1980, 
1982) - an attempt toward а unified treatment of these only ap­
parently distinct processes. 

Another model describing in а continuous way the transition 
from light particle emission to fission in the decay of the 
compound nucleus at higher excitation energies above the bar­
rier was developed Ьу Moretto (1975) and Ьу Swiatecki (quoted Ьу 
Sobotka et al.l983); it was recently tested (Sobotka et al. 1983 
Ьу studying the production of ~Не. Li • 7 • 9 ве, В 1 С, N , О, 
and F in the reaction 90 HeV 3Не - 081Ag. It is based on the sta­
tistical transition state formalism and allows to compute the 
angular and energy distributions. Unlike this model dealing with 
excited states above the barrier, we are concerned with ground 
states or lower excited states, below the barrier where quantum 
-mechanical tunnelling and shell effects are extremely important.' 

Тhе purpose of this paper is to present the formalism used 
in our model; the results obtained and its extensions allowing 
to predict other decaying modes intermediate between alpha de­
cay and fission (Sandulescu et a1.1980a,Poenaru and Ivascu 1980, 
poenaru et al. 198За, 1984). The first evidence for such а mode 
was reported recently Ьу Rose and Jones (1984); they discovered 
the spontaneous emission of 14 с from 223 Ra. The results were con­
firmed Ьу Dr.OgloЬlin fro~ Kurchatov Institute in Moscow *. 

2. NUCLEAR STABILITY 

2.1. Metastability 

In order to see whether а nucleus Az is staЬle or not with 
respect to the split in two nuclei Alz 1 and A 2z 2,one сап use 
(Blatt and Weisskopf 1956) the deformation energy curve of the 
system vs. separation distance between fragments (fig.1). If 
the energy of the two nuclei at infinite separation is taken 
as the origin of the potential, the initial energy 

E(R) IR=O = Q(д.J, Z2) = М(А, Z) - [М(А 1 , z1) + М(А2 , Z2)] (2. 1) 

is the Q-value (the energy release), which сап Ье easily com­
puted from the well-known experimental masses (Wapstra and 
Bos 1977). The fission barrier height is the difference 

Еь =Е - Q, sp (2.2) 

*Talk presented at the 34th conference on nuclear spectro­
scopy and structure of atomic nucleus (Alma-Ata, 1984). 
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Fig .l. Stability (1), meta­
stability (2).and instability 
(3) of the nuclear systems 
~ith respect to the fission 
process. 
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Three distinct cases are shown in figure 1: 
1) STAВILITY: Q < О,Еь>О. The nucleus Az is in the posi­

tion of minimum potential energy; its split is prevented Ьу an 
infinitely thick barrier. 

2) МETASTAВILIТY: Q >О, Еь >О. The fragments are held to-
gether temporarily Ьу а potential barrier. Because of the quan­
tum-mechanical tunnelling effect, there is а finite probability 
Р per unit time for the penetration through this barrier which 
decreases wi th an increase in Е ь and in the reduced mass ll = 
= (A1A2/A)m, where т is the nucleon mass. The radioactive nuclei 
are metastaЬle. 

3) INSTABILITY: Q >О, Еь< О. The compound nucleus is unstaЬle 
mainly due to the spontaneous fission, 

One has to consider also the beta instability, which is beyond 
the scope of this work. 

2.2 . The Lifetime 

Like in fission (Brack et al. 1972) the half-life Т of the 
metastaЬle system is given Ьу 

Т= 1\ ln2/Г = ln2/vP, (2.3) 

where Г is the partial width and v = ш/2rr = 2Е vib /h represents 
the number of assaults оп the barrier per second (the characte­
ristic frequency of the collective mode). If the time Т for 
а particular split is very long in comparison with the half­
life of the other one, this emission cannot Ье experimentally 
observed. In spite of the metastability with respect to таnу 
disintegration modes, only the faster processes are observed, 

According to the WКВ theory the probability per unit time of 
penetration through the barrier is expressed as 

Rь 

Р = esp(-K); К= ; f 12/.l[E(R) - Q'] !
112 

dr, 
н. 

(2.4) 

3 



where К is the action integral. Q'=Q +Evib is the initial 
excitation energy • Е vib -=Тiйl/2 is the zero point vibration energy 
and ~ is the mass parameter approximated Ьу the reduced mass. 
Ra and Rь are the entrance and exit points E(Ra) = Е(Rь) = Q'. 
This approximation is valid for а barrier height high enough; 
otherwise 

Р = [1 + ехр(-К)]-1 • (2.5) 

In the framework of the R -matrix theory of alpha decay • the 
disintegration constant ,\ = ln2/T, is given Ьу 

A=S 2 Pih , (2.6) 

where s2 is the reduced width. which is proportional to the 
alpha preformation probability. In fission theory. the role of 
82 is played Ьу the zero point vibration energy Evib• but 
this quantity is present also in Р, as it is shown Ьу eq.(2.4). 
Consequently. Evib has smaller variations than 8 2 with z and 
N, even in the neighbourhood of magic numbers. 

3. DEFOR!1ATION ENERGIES FOR BINARY SYSTEMS 
WITH CHARGE АSУММЕТRУ DIFFERENT FROM ТНЕ МASS АSУММЕТRУ 

The LDM of Myers and Swiatecki (1966. 1967) and its genera­
lisation replacing the surface energy Ьу douЬle folded У+ЕМ 
over а sharp surface density distribution (Krappe et al.1979) 
are used in fission theory and heavy-ion physics. The У+ЕМ pa­
rarneters have been determined Ьу fitting nuclear ground state 
masses. fission barriers. heavy ion elastic scattering and elas­
tic electron scattering data. New physical effects have been 
introduced (Mёller and Nix 1981) in the mass formulae: а pro­
ton form factor. an exact diffuseness correction. а charge asym­
metry term,and microscopic zero point energies. 

In order to reduce the number of independent parameters. 
some authors (Krappe 1976. Mёller and Nix 1977) have assumed 
the same charge-to-mass ratio (Z/ A) Ьу choosing one of the re­
action partners to Ье off the line of beta stability. On the 
other hand. Zohni and Blann (1978) considered the realistic com­
binations but ignored the different charge-to-mass ratio. The 
difference between the mass-, 11 А ,and charge-, 11 Z• asymmetry pa­
rameters has been considered Ьу only some authors (Gupta et al. 
1975. Adeev et al. 1976. Gupta 1977) when potential energy sur­
faces (PES) have Ьеен calculated. though the asymmetric mass 
анd charge fragmentation (Fink et al. 1974) in а case frequent­
ly met in heavy-ion collisions. due to the fact that f or the 
light beta-staЬle nuc lei Z2 = N2 , but for the heavy ones N 1> Z 1. 
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We have shown (Iva9cu and Poenaru 1978. Poenaru and Iva9cu 
1979. Poenaru et al. 1979d) both for LDM and FRNFM tha t the de­
f ormation energy could Ье underestimated if this difference is 
ignored. An extension for systems with char ge asymmetry diffe­
rent f rom the mass asymmetry of these two models (Poenaru et 
al . 1979d) and of У+ЕМ (Poenaru et al.1980a. 1980с) has been 

developed. 
It i s obvious that the condition 

1/ А = (А 1- А2 ) 1 А ./. 11 z = ( Z 1- Z 2 )IZ 

for mass- and charge-asyпnne try parameters • where А = А 1 +А 2 

and z = z 1 + z2. is equivalent to 

I = (N - Z) / А f, I i = (N г Z i) 1 А i (i = 1,2) 

for t he nuclear compos ition . where N =А- Z and wi th 

( 3. 1) 

(3.2) 

Ple .;, Р2 е .;, Рое = eZ /( ~ rrrgA) 
(3.3) 

f or the charge densities. where е is the e l ectron charge and ro 
the radius constant. 

v2 
Fig . 2. Binary sys tem ыith 
di ffer ent charge densi ties . 

If we i gnore the difference 
11 z- 11 А , we have actually the 
pa ir of nuclei A1z •• А2zь, 
instead of Alz 1, А2;, where 

Z Ь = Z/ (1 + q) Z Ь = Z - Z а • (3.4) 

We take into consideration the 
difference in charge densities 
for fusion or binary fragmen­
tation a ssuming uniformity in 
each of the two fragments. In 
an intermediate stage of а fu-

s ion (or fission) reaction. when the two fragments are closed 
together. like in figur e 2. we assume that the nuclear volume V 
i s di vided in two parts v1 and v2 and that each fragment is ho­
mogeneously charged with а density 

ре (r) Р1е 

Р2 е 

-; r;;, v1 

?r;;, v2 

(3 .5) 

The deformation dependent terms of the potential energy. Ed, 

Е d = Es + Е с + Ev 
(3.6) 
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are the surface energy, Е5 , the Coulomb energy, Ее, and the 
volume energy Ev. 

3.1. LDM Surface Energy 

Due to the proportionality between the surface energy Es and 
the surface area, one has 

Е s"' cel А2 1 3 В sl + с s2 А 213 В s2 • Bs = Ев /Е~= (csl /с e}Bsl+ (cszl cs}B s2' 

where 
(3. 7) 

Bsl "'S/So' 
2 

С si "' а 9 (1 - к I i) (i"' 1,2) , а 8 = 17.9439 MeV, к"' 1.7826 (3,8) 

Si is the surface area of the fragment i (without the separa­
tion area between V1 and v2 ) and 8° is the surface area of the 
spherical fused nucleus А Z, for which 

Е о "' с А 2 / З 
• s 

with с 5 calculated as in equation (3.8) but with Ii 
Ьу I. 

3.2. Coulomb Energy for Various Macroscopic Models 

(3.9) 

substituted 

The general expression of the Coulomb energy can Ье split 
into three parts: Ьу taking into account the two integration 
domains 

Е 1 2 r d3 r -1d3 1 2 f 3 r -ld3 c"'2Ple r1 r12 r2+2p2e d r1 r12 r2 + 
v1 v 1 v2 v 2 

3.3. FRNFM Surface Ener gy 

I n t he FRNFM (Krappe and Ni x 1974), the surface ene r gy is 
eplaced Ьу the f o lded Yukawa potential ene rgy * En, from which 
he spur ious contribution to the volume energy, En v • has t o Ь е 
ubtrac ted out. I f the nuc lear matte r i s homogeneously di s tri-
uted in t he two fragments (р 1 = р 2 = Ро) one ha s simil ar ly 

1/ 2 3 3 
+ 2(V01 V 02 ) ( d r 1 ( d r 2g(x) + 

v1 v2 

1 3 3 
n = - --

3
(V01 ( d r1 ( d r 2 g(x) 

4"а v1 v1 

3 r 3 vo 2 r d r 1 d r2 g (х)) ' 
v2 v2 (3. 12) 

g(x) = ехр(-х) /х; х "' r 12 / a, 

l / 2 
(cs 1° 2) 

Bn = (En -EnV) /(E~ -E~v) = (cs1 / o,. )Bn1 + (cs2 / cs)Bn2 + --c-~~--Bn12' 
s 

we have assumed 

1/ 2 V
0 

= [ v 0 (r 1) v 0 (r 2)] , v 0 (r) V0 i"' csi /2"ar;, r ~;;: Vi ( i = 1,2) 

а= 1. 4 fm, а 5 = 24.7 HeV, к= 4 as usua l. 
For s e parated nuc l e i 

nv= En v
1
+ Env

2 
= (2rо /За) (c s1A1 + 0s2A2) 

nd fo r а spherical fus ed nucleus 

(3. 1 3) 

(3. 14) 

Е: -E:v = c
5

[A 213-(a/ r
0

) 2 + (А1 1 3 + a/ r0 ) 2 exp(-2R 0 / a), R 0= r0A 1 1 ~(3.15) 

з -1 3 о .. .. 

+ Р1еР 2е f d r1 f r 12 d r 2 ' r12"' jrl- r 21 , 
(3.10~3.4. У+ЕМ Surface Ene r gy 

v1 v2 

2 2 2 
Bc = (PJeiPoe) Вс1+ (р2/Рое) Вс2 +(pleP2e/Poe)Bcl2' 

where the first two terms represent the self-energies of the two 

The douЬle f olded Yukawa-plus-exponential potential energy 
1s also splitted into three parts 

fragments; and the last one, their interaction energy. For ~у =- ~ 2 4[cs1 r d
3
r1 г f (x) d 

3
r2 + c s2 r d 

3
r1 г f(x) d

3
r2 + 

~ r 
0 
а v1 v1 v2 v 2 а spherical homogeneously charged nucleus 

Е 0 
"' 3e 2Z 2 /5r А l /З 

с о 
(3. 11 н+ 2(cs1 

1/ 2 3 3 о 1 с 52 ) Г d r1 Г f(x) d r2], f(x) = (х- 2) g(x) , х . = r12 а, 
v1 v2 

with r 0 = 1,2249 fm for LDM, r 0 = 1.16 fm for FRNFМ and r 0 = 
= 1.18 fm for У+ЕМ. А more recent value (Moller and Nix 1981) 
is r0 = 1.16 fm for У+ЕМ. 

6 

*This type of potential energy was used Ьу Greiner and co­
orkers: see, for example , Palm and Gre iner (1970). 
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Ву == Еу/Еу= (cs1 / c s )Dy1+ (cs2 / c s )Dy2+[(cslc s2)1 / 2;c s 1Byl2• 

2/ 3 2 2 -2RJa (3,16 
Еу = с 5 А \1- 3(a/ R

0
) + (1 + R0 / a)[2 + 3a/ R0 + 3(a/ R0 ) ]е !. 

In spite of the same notations, for У+ЕМ we have с 8 = 21,7 MeV, 
к= 3 and а = 0.65 fm or the new values, allowing one to obtai 
smaller RМS errors for the ground state masses without micro­
scopic zero point corrections (MOler and Nix 1981): а5 = 21,14 м, 

к = 2,4 and а = 0,68 fm, 

3.5. Volume Energy 

Because in the LDM the symmetry energy is included in the 
volume energy Ev, for Тlz f,. ТJ А one also has to add the volume 
contribution to the deformation energy (though the volume con­
servation is assumed): 

Ev
1

+Ev
2

-E'V f,.O; E.Y
1
=-cviA; ;cvi=av(1-кvi1). (3. 17 

where av= 15.4941 MeV, кv= к for LDM and av= 16.4696, кv = 
= 2.31015 for FRNFM (Moller and Nix 1976). These values are on­
l y slightly different from those adopted Ьу Moller et al. (1974 
For У+ЕМ, the corresponding quantities are: av = 16.012 MeV, 
кv= 2.64 and the new ones av= 16,0053 HeV, кv = 1,959. 

The equations (3.7), (3.10), (3,12), and (3,16) are generall 
valid for binary fragmentation even in the absence of axial 
symmetry. They can Ье easily generalized for ternary or quater­
nary fragmentation. 

4. COМPUTATION OF ТНЕ DEFORМATION DEPENDENT TERМS 
OF ТНЕ POTENTIAL ENERGY 

4.1. Reducing the Order of Integration for General Shapes 

Only for very simpl.e nuclear surface shapes (see section 4.5 
the eqs. (3,8), (3,10), (3.12), and (3,16) could Ье integrated 
in order to obtain an analytical result. Usually for а given 
parametrization р =p(z, ф) of the nuclear shape, this is not 
possiЬle; one has to apply appropriate method of numerical quad 
rature. Unfortunately, in order to achieve the required accu­
racy (more than 5 significant digits) in case of six fold in­
tegrals like those from eqs.(3.IO), (3.12),and (3.16), one has 
to spend а long time even with а fast computer. Consequently, 
it is very important to try to reduce the proЬlem complexity. 
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If (р ,ф,z ) a r e the cylindrical coord i nates of а point on 
the nuc l ear sur fa ce, the surface a r ea (J unker 197 4) i s given 

Ьу 

z2 217 
S = Г dz J dф { p2(.z, ф )[l +( де_) 2 ] +(Д2_) 2 ! 1 / 2 

z1 О дz дф 

( 4. 1) 

where z 1 , z 2 a r e the intersec t ion point s of t he z-axis wi t h 
the nuc l ear surface. This douЬle integral needs negligiЬle sho r t 
computer time in comparison with all other . Of cour se , the cal ­
cula t ion of the vo lume ene r gy wi th eq . (3. 17) is even fas t er, 
once the quantities А i and I; are det e rmined for а given defor-
mation. 

The douЬle-vo lume integral expressing the Coulomb energy of 
а unifo r m charge d i s t r ibutioн , or the gravi ta t ioнal poteнtial 
energy of а uнiform mass dis t ribut ion , сан Ь е coнverted (Da­
vies and Sierk 1975) iн var i ous ways int o а double- s ur face iн­
t egral Ьу using Gauss divergeнce t heo r em twice. Iн t his way 
one has 

Е = 
с 

or 

-+ -+ .... .... 

.!_ ф р Р 2 ( dS If 12 )( dS2 r 12 ) 

12 · е r1 2 

Ее = :а Р Ф Р; cd8/tHdSz~2) 
r12 

or 
.... .... -+-+ 

1 2 (dSlr2)(dS2rl2) 
Е = - f>pp - --

с 2 е r 
12 

( 4. 2) 

(4.3) 

(4.4) 

The computer time can Ь е reduced Ьу exploitiнg the symmetry o f 
the eq. ( 4. 2) uнder the interchange of r\ анd r2. In cyliнdrical 
coordinates, the eq, (4.3) is writteн as 

1 z2 z2 217 217 , а , 2 
Е с = - ( dz f dz' ( dф f dф' р 2 \(р ' 2 - ~ .2.Р- )[ 2р 2- 2р р соs(ф ~ 

20 z 1 z l О О е 2 дz' 

2 . (4.5)1,1 
-Ф) - (z - z') l.e..:. - 2р '$Е_ sin(ф- ф ')! 1 [ (z- z ' ) 2 + р 2 +р' 2- 2рр 'соs(ф-ф ')] ~ 

дz дф 

where р'=р'(z',ф') and p=p(z, ф) is the nuc lear surface equation, 
Similarly, оне gets for Е and Е the douЬle-surface integrals: 

n у 

Е -
n - 817 2 r 2а 4 f> f> 

о 

-+ -+ -+ -+ а 4 r 12 r 12 -r12 1 а 
с s (dS

1 
r

12 
)(dS

2 
r12 )(--} [--- 2 + (- + 2) е ] 

r12 а а (4.6) 
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and 

Еу= --
871 2r 2 а 4 Ф Ф 

.... .... .... .... а 4 r12 r12 -r12 / a 
C

5
(dS1 r 12 )(dS2r 12 )(-) 1[--(-+2) +2]е -21. 

о r12 а а (4.7) 

То pass from Cartesian coordinates (х, у, z) to cylindrical ones 
(р, ф, z) (like fromoeqo(4o3) to eqo(4o5)) one uses the follow­
ing expressions 

. .... ... 
... ... ... ... ... дr дr 
r = xi + yj + zk ; х = р соsф; у -= р sinф , dS = (-) х (~) dz dф, 

дф дz . 
(4о8) 

... ... ... 
where i, j , k are the unit vectors of the Cartesian system 
of coordinateso 

The general relationships given in this section are not par­
ticularized for binary systems with different charge densitieso 
In order to obtain such expressions one has to apply the method 
used in the precedent sectiono 

If the nuclear shape has а symmetry with respect to z-axis, 
the order of integration in the eqso(4ol)-(4o7) could Ье redu­
ced further Ьу 6ne unito 

4о2о Various Methods for the Computation 
of the Coulomb Energy of an Axially Syrnтetric Nucleus 

Three methods were frequently used in the past to compute 
the electrostatic energy Ее of an axially symmetric nucleus: 
Lawrence (1965) method in which Ее is expressed as а three 
fold integral; Hill and Wheeler (1953) method derived from 
the eqo ( 4o5), in which Ее is а two fold integral, and Beringer 
(1963) method containing only а sum of termso А comparison of 
these methods was made Ьу Poenaru and Galeriu (1975)о 

4o2olo Beringer method 

In the Beringer method, the nucleus is divided into N sli­
ces of the same thickness ~. and each slice is replaced Ьу one 
cylinder wi th the height ~ and the radius R ci , (i "' 1,2, ... , N) 
derived from the condition that the two ~quivalent bodies have 
the same volumeo The Coulomb energy is composed from the self­
energy of cylinders, Ei and the interaction energy Eij between 
them: 

N N 
Е "' !. Е . + !. Е . . 

с i: 1 1 i > j 1] 
(4о9) 
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-where Е 1 is approximated Ьу а semiempirical relatioship: 

871 2 2 3 1 71 ~ 71 ~ 2 [ 70 ~ ] 1 Е = -р ~ R . 1 - -(-) + -(-) В + - - D ln(--) ( 4 о 1 О) 
i 3 е С1 8 R ci 8 R ci 12 R ci 

and 

222311 21 2~2 
Е 1. = 471 р ~ R . --k · J g iJ + - (1 + k ·. ) g .. + ) е С1 2 1 2 1) 1) 

2 
ngij (_А_) 2](1 

( 4 о 11) 
2 -2n+~ 1 2 

6 Rci 
+ I CznP 2n (О) [ - - ·-

n= 1 
+ kij) F(-n,-n+1,2 ;-k1i)l 

in which D = Ool55241; В= Оо257729; gij = Rcj / R ci < 1; k ij 

=(j-1)~/Rci; C2n= (З/2n+n)q(n-1 ) the ~oefficient of the x
2n 

• • • . ( 2 У: ( ) 1-2n term 1n the bшom1al expans1on of 1 + х ) ; P2n О =~~(n-1)(0) 

is the Legendre polynomial (Со= Р0 (О) = 1) 
geometric function (Abramowitz and Stegun 
1ated Ьу using the relationships: 

and F is the hyper-
1964) which is calcu-

n-1 
.F = 1 + !, т ; т = k 2 (n- t + 1)( t - n) 

f= 1 t t ij (f- 0.5) t т f -1 ; т о = 1 . 
( 4 о 1 2) 

For reflexion symmetric body, the amount of numerical computa­
tions can Ье significant1y reduced (Galeriu and Poenaru 1976) 
becauseRci= RcN+ 1_ 1 ; i~(1,m); m=(N-1)/2; N-oddpositive 
integer 

m m m+ 1 N 
Ес=2 . !. Е; +Em+1 +.l (2 _ ~ Eij+.I Eij ). (4ol3) 

1=1 1=1 )=1+1 J=m+2 

One obtains an error smaller than 5.10-5 if 0:SД/Rci:S0.5. 

4о2о2о Lawrence method 

Usually the integrals in the above formula are computed Ьу 
using Gauss-Legendre numerical quadratureo It is convenient 
(Poenaru and Iva~cu 1979) to express the equation of the nuclear_ 
surface in cylindrical coordinates у =У(Х) with а properly se­
lec ted scale factor [у = p/(z 2 _ z 1); х "" z/ (z 2- z1 )] leading to 
(-1, +1) instead of (z1,z2) intercepts of the surface with the 
symmetry axiso 

This interval is reduced to (0,1) in case of the Lawrence 
method for which the nuclear surface eqo is v1 = v1 (u). For 
а uniformly charged body, Lawrence (1965) slices the volume 
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into infinitesima1 disks. Не obtains an exact equation for the 
e1ectrostatic energy expressed as а three-dimensiona1 integra1 
with а re1ative1y simp1e integrand 

(4. 14) 
1 1 1 2( ) 

В = 120d 5 f 2udu f v2 dy f ----~•tn=-~rrw.::..t..;d:..:w:......"._--=------__,.,.. 
с о v1 о 2 о u(l-y)+[u2(1-y) 2+v12+V~ -2v1v2cos(rrw)]':.i' 1 

where 2d = (z 2 - z 1)/ R 0 
axis, in units of R0 

is the nuc1ear 1ength a1ong the symmetrJ 
and v 

2 
.. v1 (uy) • 

4.2.3. Davies-Sierk method 

For axia11y symmetric shapes one can reduce further the order 
of integration in the eq.(4.5). The integration over one of the 
ang1es ф gives а factor of 2rr and from the remaining angu1ar 
integration one gets an integrand containing comp1ete e11iptic 
integra1s (Hi11 and Whee1er 1953). With а re1iaЫe method for 
eva1uating the e11iptic integra1s (Cody 1965), Hi11-Whee1er in­
tegra1 shou1d Ье faster to compute than eq.(4.14) invo1ving an 
extra numerica1 integration. А11 three methods based on eqs. 
(4.2)-(4.4) are much more accurate in а given time than the 
methods of Beringer or Lawrence. The symmetry of eq.(4.2) for 
interchange of ~ to r2 makes this Davies-Sierk fo rmu1a faster 
than eqs. (4.3) or (4 .4). 

This formu1a adapted to our case of а binary system with 
charge asymmetry different from the mass asymmetry (Poenaru et 
а1. 1980а) 1eads to the fo11owing re1ationships for the quanti­
ties from eq.(3.10) 

х 8 хз 1 1 ~ 1 

Вс1 = Ьс J dx J dx ~F(x,x'); Вс2 = Ьс J dx J dx ~ F(x, х'); Вс12 = Ьс J dx J dx~ftx,x~)~ 
х3 -1 хз (4. 15) -1 -1 х 3 

where Ьс= 5d 5/811', х 3 is the position of separation p1anes bet­
ween fragments and 

dy2 dy2 
F(x, х') = 1 уу1 [(К- 2D)/3][ 2(у 2 + у 21 ) - (х- х') 2 + 1.5(х -х')(-1 - -)] + 

dx' dx 

2 d 2 dyf. 
+ К\у у 12/3 +[у 2- О.б(х- х')2...][у 21 + О.5(х- х') -Ш/ар , 

dx dx' 

( 4. 16 

in which у 1 = у(х') is the nuc1ear surface eq. with -1 ,+1 inter­
cepts on the symmetry axis and 

а 2 = (у + у) 2 + (х - х ') 2 ; D = (К - К') /k 2 ; k 2 = 4у у 1 а 2 , 
р 1 1 р 

(4.! 7) 

12 

where К and К' are comp1ete e11iptic integra1s of the first and 
second kind, respective1y with argument k, , 

rr/2 ';.i 
K(k) = Г (1 - k 2 sin2 t)- dt; 

о 

rr/2 ~ 
K' (k) -= J (1 - k 2 sin2 t) % dt • 

о 

These e11iptic integra1s are computed Ьу using Chebyshev po1y­
nomia1 approximation. 

Ву removing the indetermination arising for х = х', the func-
tion to Ье inte2rated takes the va1ue .F(x, х) = 4у 3/3. 

4.3. Surface Energies 

The expressions of B's from the eqs.(3.7), (3.12), and 
(3.16) wi11 Ье exp1icit1y written in this section. 

4.3.1. LDM 

The quantities В91 and В92 from eq.(7) are given Ьу 

2 х3 2 d 2 ';.i 1 2 2 !А, В91 = 0.5d [ dx[y + 0.25(-У-) ] , В 
2
= 0.5d 2 

( dx[y
2

+ 0.25(~) ] \4.18) 
-1 dx 8 х3 dx 

for the axia11y symmetric nuc1ei. We use the same notations as 
in the preceding section. 

4.3.2. FRNFM 

Onehas, simi1ar1y, for Bnl'Bn2 and вn 12 fromeq.(3.12) 
ха х3 1 

Bn1 = bn (-0.5d 3 J dx Г dx' ( dwF1 ~F 2 Q + 2А1/3А), 
-1 -1 о 

3 1 1 1 
Bn2 = bn (-0.5d J dx Г dx' ( dwF1 F2Q + 2А2 /ЗА) , 

о х3 хз 
(4. 19) 

х3 1 1 
Bn 12=-0.5bnd 3 J dx J dx' Г dwF1 F2Q, 

-1 хз о 

where 
2 

F 2 , dv 2 2 , dy1 · 
1 
=У- уу1 соsф -О.5(х-х )~; F 2 =у1 -у1 усовф +0.5(х-х) dx' ,(4.20) 

Ь =с А /[а(Е 0 - E 0 v)], n s r
0 

n n 
(4.21) 
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Q = [ Р 'h - 2a / R0 d + (P'h + 2a/ R0d) exp(-R
0 

dP 'h /а)]/ Р 2 , 

Р = у 2 + у 1
2 - 2у у 1 соsф + (х - х ') 2 ; ф = 2rт w. 

When х = х ',we have у =у 1 and the integrand becomes 

(F1 F 2 Q) н = 0.5\у sin(ф/2) - a!R0 t + [у sin(ф/2) + a/R
0 

d] х 

х exp[-(2R 0d/ a) у sin(ф/2)]1 • 

(4. 2 

(4. 2 . 

Unlike Bci•Which depends only on the nuclear shapes and allows 
fast computation for many nuclei simultaneously, Bnl depends 
also on the nuclear mass. Hence the computation for this model 
has to Ье done for each ~ucleus separately. The same is true 
for в,'s in the У+ЕМ. 

4.3.3. У+ЕМ 

Ву 1 , Ву 2 and By 12from eq. (3.16) are expressed Ьу: 

(4.2 

х 3 х 3 1 
Ву 1 = Ьу ( dx ( dx' f dwF1F2 Qy, 

-1 -1 о 

х3 1 l 
BYI 2 = 'Ьу ( dx f dx' f dw F 1 .F 2 ~ , 

-1 х 3 о 

1 1 1 
Ву 2 = Ьу f dx ( dx' f dw F 

1 
F 2 Qy 

х 3 х 3 о 

where 

Ьу =- d 4 
(r 0 /2а 

2) с 
8
R

0 
А/Е~, 

N 
= :l w i F(x i) , 

i= 1 
(4.28) 

·here xi are the abscissas and Wi the weights, tabulated (Abra­
owitz and Stegun 1964) for some values of N. А FORTRAN program 
llowing to compute \xi, wi 1 for any value of N is presented Ьу 
avis and Rabinowitz (1975). 

In order to obtain а nuclear shape with neck, the nuclear 
arametrization is usually given (Nix 1972) Ьу three different 
eometric bodies (for example two ellipsoids and а hyperboloid 
n the neck region) smoothly joined. In spite of the maching 
ondition for the function у(х) and its first derivative dy(x) / dx, 
here still remain the discontinuities of the higher order de­
ivatives at the two junction planes. In this case the accuracy 
nd speed of numerical quadrature are improved Ьу dividing the 
ntegration interval -1,+1 along Ох in four subintervals with 
he following boundary values: the intercepts on Ох axis z 1 = 

-1 and z5 = +1; the positions of two junction planes z 2 and 
4 and the posi tion of extremum of p(z) in the neck r egion z 3 • 

n our case, z 3 gives the position of separation plane between 
ragments as it was mentioned above. If the shape has no discon­
inuity, z 2 and .z 4 are arbitrarily chosen , 

The transformation from abscissas t i and weights v1 for 
he interval (-1,+1) to abscissas х. and weights w. , for the 
our subintervals is made easily byJusing the follciwing rela­
ionships: 

j =apti + Ьр; wj .. apvi; ( р = 1,2,3,4), (4.29) 

'h 'h (4.2~ 
Qy=I[P (Р +2a/ R0d) +2a2/ (R

0
d)2]exp(-R

0
dp 'h / a)-2a2/(Rod)2\/PtP = (zp+Czp) / 2; Ьр= (zp+l+zp)/ 2; (i=1,2, ... ,M); (j=1,2, ... ,N=4M).(4.30) 

and F 1 , .F 2 and Р remain unchanged. 

4.4. Numerical Integration 

4.4.1, Reflection asymmetric nuclei 

The integral 
1 

J 1 = J dx F(x) 
-1 

he integral implied in the computation of Bc,of the following 
type 

l 1 

~ ( dx J dyG(x, у) (4.31) 
-1 -1 

is computed with douЬle Gauss-Legendre numerical quadrature 

4М 4М 4М 
2 = :l :l w. w. G(x. , х . ) = :l 

i=1 j=1 1 
] 1 ] 1=1 

4М 

wi [wi G(xi ,xi) + ~ ~ w
1
. 'G(x1,x 1)], 

]=·1+1 
(4.32) 

here we have used the symmetry of the function to Ье integrated like that of eq.(4.18), can Ье computed numerically with а Gaus 
Legendre quadrature of order N (Davis and Rabinowitz 1975), 
using the relationship: ·• G(x., х.) = G (х. , х . ) • 

1 ] ] 1 
(4.33) 
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In the same way , for the computation of Bn and В у one needs 

1 1 
J3 = f dx ( dy f dz Н(х , у , z) , (4 .34 

-1 - 1 о 

4М 4М L 
J 3 =. k .k k W; wj u kН(x i' xj, sk) 

1=1 j=1k=1 

4М L 4М L (4 . 35 
=. k w;[w; k u k Н(xi'xi , sk)+2. ~ k wJ. u kH(x1 ,xJ.,sk)], 

1= 1 k=1 J==H1 k=l 

where sk and uk are the abscissas and weights for ·L -order Gau 
Legendre quadrature on t he interva1 (О, 1). The abscissas. for an 
gu1ar quadrature in Bn and Ву appears as sin(ф/2) and соsф; 
hence the functions sin(~rs i) , cos (2~rs i) (i = 1,2, ••. ,.L) are compute 
on1y once for given L , and are transmitted through а СОММОN 
statement to the subroutine fo1: computation of В 5 , В с, ·Bn , 
or В у Ьу (Poenaru and Iva~cu 1978, Poenaru et а1. 1980а). 

The integra1s (4.15), (4.19) and (4.25) are computed Ьу 

Gauss-Legendre numerica1 quadrature with 4m.4m and 4m.4m . n mesh 
points, respective1y. The variation of IBM 370/135 running time 
Т, with the time of mesh points n and m is presented in fig . 3 
(so1id 1ines). On the same figure one can see that the CDC-6500 
computer (dotted 1ines) is approximate1y two times faster. For 
most purposes n = m = 12 a11ow to obtain satisfactory sma11 er­
rors even for 1arge deformations. 

The three fo1d integra1s in the eqs. f or В nl , ·Bn2 , ·Bn 12and 
BYl, Ву 2 , Ву 12 are computed Ьу using the eq . (4.35) where the 

summation is performed over the 

16 
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n 

fo11owing indices: (i =1,2, • • • ,К ; 
· j = 1, 2, .. . ,К; k= 1, 2, ••• ,L) . 
(i = К+1, • • • ,4М; j= К+ 1 , •• • ,4М ; 
k = 1 , 2 , • • • , L ) and ( i = 1 , 2 , ••• , К ; 
j = К+ 1 , • • • , 4М; k = 1,2J • •• , L) , 
respective1y. 

Fig . 3. Var i ation of running t i me 
f or one def ormation se t UJith 
the number of int egration mesh 
point оп IBM 3?0/ 135 (so 7id 
l ine ) and CDC- 6500 (dotted l i ne ) 
comput ers . 

4.4.2. Ref1ection symmetric nuc1ei 

If the nuc1ear shape has ref1ection symmetry, one can write: 

х . =- х М 
1 

. ; w
2
M . == w

2
M l . (i== 1,2, ... ,2М) (4.36) 

2М +1 2 + -1 + 1 + -1 

and, consequent1y, the number of sumflation terms in eqs . (4.28) 
and (4 . 32) can Ь е reduced. In fact, eqs.(4.28) and (4.32) be-
come in this case: 

2М 
J

1 
= 2 k w . . F(x·) 

(4.37) 
i = 1 1 1 

2М 2М 4М 
J 

2 
:::: 2 k w. (w · 'G .. + 2 k W· G .. + k w . 'G .. ) 1 1 11 J IJ 1 1J ' 

(4. 38) 
i = 1 j = i + 1 j = 2М + 1 

where G ij = 'G(x i, х j). 
Ву using eq.(4.38) in р1асе of eq.(4.32), the computation 

time for а given nuc1ea r shape is reduced from 13 . 2 s to 9 . 5 s 
for М= 16; f rom 7.1 s to 5 . 3 s for М= 12; from 3. 2 s to 
2.5 s for М = 8 and f rom 0 . 88 s to 0.65 s for М= 4 (Poenaru 
and Iva~cu 1979). The effective increase in computation speed 
is important because usua11y for potentia1 energy surface (PES) 
one needs to consider many deformations. 

4 . 5 . Ana1ytica1 Re1ationships 

For spherica1 shapes we have a1ready shown that simp1e ana-
1ytica1 re1ationships are avai1aЬle, a11owing to ca1cu1ate in 
а short time the se1fenergies in the framework of а11 mo de1s . 
In the fo11owing we wou1d 1ike to present brief1y some other 
cases for which c1osed formu1ae are known to exist. 

4 . 5 . 1. Se1f energy of а spheroid and e11ipsoid 

There are ana1ytica1 re1ationships (Beringer and Knox 196 1) 
for the LDM se1f-energy of а spherioda1 nuc1eus with the semi­
axes ratio 11 =о/а ( с is the s~mi-axis a1ong the symmetry axis) 
and an excentricity f =\1 -тt-2 \

1 

: 

-2 / 3 [ 
в s = 0.5." 1 + 

arcsin f/(1-l)]; 11 > l (prolate) 

ln(f + ."- 1 )/(f тt - 1)]; 11 < 1 (oЬlate) , 

(О . 5 71_2 1%).\ ln(1+l)/ (1- f); 71 > 1 
2 arctgf; 11 < 1 в 

с 

(4.39) 

(4.40) 
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For an e11ipsoid with semiaxes с> Ь >а expressed in units 
of Ro, due to the vo1ume conservation condition 

аЬс = 1 (4.4 

there are on1y two independent deformation parameters; one 
choice can Ье в "' о/а , r = Ь/а • In this case Car1son ( 1961) ha 
found that 

В5 =0.5\а 2 + Ь [(c 2 -a2 )E(ф,k 5)+a2 F(ф,k 5 )]J, 
(с2-а2)1 / 2 

в = 
с 

1 
(c 2 -·a2)l/2 .F(ф,kc), 

(4.4 

(4.4 

where F and Е are the genera1ized elliptic integra1s of the 
first and second kind, respective1y 

ф . 
F = f (1- k 2sin 2t)- Vz dt; Е 

о 

and 

tg ф = v' 8 
2 

- 1 . ' k 2 ~ ' . 1- r -2 

1- в-2 

t (1 - k 2 sin2 t) Vz dt 
о 

k 2- s 2_ r 2 
с-

В 2-1 

are the arguments of F and Е. 

4.5.2. Cou1omb interaction energy 
of а spheroid with а sphere 

(4.4 

(4.4 

After Cohen and Swiatecki (1962), the 
energy of а spheroid having the semiaxis 
of radius R2 at а separation distance R 
given Ьу: 

Cou1omb interaction 
~.а) with а sphere 
between centers is 

Ее =Z 1 Z 2 e 2s(x)/R; x 2 =ic 2-a 2 i/R 2 ; R~R 1 = 

where е2 = 1.4399764 MeV.fm, and 

1 ; 

с+ R, 

с = а 

or с= а one obtains the Cou1omb interaction energy of the two 
pheres which is expressed as in case of two point charges se­
arated Ьу the dis tance R. In the over1apping region (R < R 1 ) 

he deformation dependent terms of the potentia1 energy are 
a1cu1ated Ьу using numerica1 methods. 

.5.3. Interaction energies between two spheres 
in FRNFM and У+ЕМ 

At small distances R- R
1 

2 О, in case of FRNFM and У+ЕМ, be­
the e1ectrostatic energy, there is a1so а nuc1ear interac­

due to finite range of nuc1ear forces. For separated 
shapes, in the framework of FПNFH one has 

d (R) 
z 1z 2e 2 4( а )2 ( ) lh exp(-R/a) 
---- - с с g g2 R ro sl s2 1 R/ a 

(4.48) 

Rk Rk Rk 
k = (-) ch(-) - sh(-) 

а а а 

(k = 1,2) • (4.49) 

imi1ar1y, in the У+ЕМ 

d (R) 
2 У: R f zlz2e -4(....!...)2 (c&l с s2) % [glg2(4 +~)-g2 1 

R r 0 

- g lf 2] ' 

Rk 2 Rk 
k 

= (-) sh(-) . 
а а 

(4.51) 

In order to find the sepa ration distance Rм at which the 
~teraction energy has its maximum, one has to find numerica11y 

root of а nonlinear equation dEd / dR IR=R =О, which can Ье 
ut in the form М 

х + р(х + 1 ) = О for FRNFM 
(4.52) 

х + pl + х (pl + хр) = О for У + ЕМ; х = R/ a , 

а 3 Vz g1g2 
here р =- 4-2 (csl c s2) 2 ; pl = р(4- fl / gl- f2 / g2) • 

o(z) - { 0 .75\(х -1/х) ln[(1 + х)/(1- х)] + 2\/х 2 ; 

1.5[(X+1/x)arctg(x) -l]/x2; 

с > а 

с < а (oЬlate) 

r о е z 1 z2 
(4.471 _ The first eq.(4,52) is s o1ved Ьу Newton iteration method re­

Jf ining the initi ill guess х = 1.5% /а. Hue11er iteration scheme 
f successive bisection ana inverse parabo1ic interpo1ation in 
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the range of х from xt = Rt/t to xt + 5, is used to find the so 
lution of the second eq.(4.52), 

4.6. Interaction Barriers. 
Q -Values and Fission Barriers 

One can obtain some information concerning the fission and 
fusion phenomena, Ьу studying the potential e~ergy of а syste 
of two spherical nuclei (Z 1,A1 ),(Z2,A 2)at the touching point 
Rt = R 1 + R2 and infinite separation R =ос, relative to the ene 
gy Е 0 of а spherical compound nucleus (Z, А) (see fig.4). 

Fig.4. Variation of potential 
energy of а system of tыо sphe­
rical nuclei with the separatio 
distance Ъеtыееп centers. 

-
Fig.Б. Charge asymmetry para­
meter 11 z and difference 1:!..77 = 

= Тf А - 11 z Ъеtыееп mass and ~ 
charge asymmetry for nuclear ' 
combinations along the Green 
approximation for the line of 
Ъеtа stability. 

!о rм~z:::::=ч.sj 
fn "" Z1 /00 

The interaction barrier, Е 1 , of two heavy ions is usually 
calculated in а very simple one dimensional parametrisation as 
the maximum of the interaction potential energy. For two sphe­
rical nuclei this maximum occurs at the touching point (LDM) о 
not far from it (FRNFM or У+ЕМ), as it is shown schematically 
in figure 4. In this parametrization Еь is а rough approxima­
tion of the fission barrier. In the LDM, Е1 is simply the Cou­
lomb interaction at the touching point, but in FRNFМ or У+ЕМ, 
the interaction due to nuclear forces must Ье also taken into 
account. 

The general trends in the variation of interaction barriers 
fusion Q values and fission barriers for various projectile(Z 
target (Z 2) combinations along the Green approximation for the 
line of beta stability can Ье found Ьу computing the energies 
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Е о , Е t, and Е"" for the fused system, touching-point configu­
ration and separated fragments. 

Values for 71z and 1:!..71 = 77А -71 z for these pairs of nuclei are 
plotted in figure 5. Due to the interc~angeability of z 1 and 
z 2 we have used only half of the figure' from z 2 =о to zl = z2. 
for 1/z and the other one, from Z 1 "' О to Z1 = Z 2 , for 1:!..71. One 
can see that for each target nucleus there is one projectile 
which gives the maximum of 1:!..71. А similar trend can Ье expected 
for the influence of charge density differences on Е 1 =Е.-Есо 
(figure 6(а),(а'),(а")), Q = Есо-Ео (figure 6(Ь),(Ь'),(Ь ')) 
and Еь= Е 1 - Е 0 (figure 6(с),(с'),(с")) for LDM, FRNFM and 
У+ЕИ . 

At given pair (А 1 ,А 2) the interaction barrier in the case 
1/z f, 11 А is lower t~an for .11 z = 11А. For 1:!.. 71 of. the. order of ?·05 
!!..Е 1 =EJ(1/z=1/A)-E 1 ~s as h~gh as- 30 HeV. Th~s d~fference ~s 
due mainly to different values of Coulomb energies at the tou-
ching point. 

А first approximation for а fusion reaction Q value (figure 
6(Ь), (Ь'),(Ь'')) is obtained as а difference of deformation­
dependent terms of potential energy. In order to get accurate 
values of Q, one has also to consider the other terms of а mass 
formula (surface diffuseness and exchange corrections, pairing 
and shell corrections, Wigner term, etc.). Nevertheless the 
approximation reproduces the general trend as one can see from 
figure 6(Ь),(Ь'),(Ь''). For light systems one has positive va­
lues of Q (energy release). The transition from positive to 
negative values of Q occurs at smaller Z in the FRNFM or У+ЕМ 
than in LDM. Due to partial compensation of the Coulomb energy 
Ьу the volume (synunetry) energy at R = R i , I!!..QI is lower th:ш 
\!!..EJ 1: 18 MeV for LDM, 10 MeV for FRNFM and 14 MeV for У+ЕМ com­
pared wi th 30 MeV. Here !!..Q = Q(71 z = 11 А ) - Q. 

Еь overestimates the fission barrier not only because the 
saddle-point shape is different from two spheres at the tou­
ching point, but also because the shell and pairing corrections 
were not taken into account. As one can see from figure 6(с), 
(с'),(с'') the region of nuclei staЬle against fission (Еь>О) 
is larger than that predicted Ьу more realistic calculations. 
In spite of tl1ese considerations, !!..Еь=Еь(1/z= 71 А)-Еь gives the 
order of magnitude of the difference ~n energy between the 
sadd~e-point energies of systems ( А1 Z

8 
, A2z ь)and (А lz1 , A2z 2) :es­

pect~vely. For 1:!..77 :0,05, the FRNFM and У+ЕМ are more sens~t~ve 
than LDM in this respect: - 20 MeV and -16 }feV compared with 
-12 MeV. The sign of Еь shows that except for shell effects 
there is no driving force towards different N/ Z ratios in the 
two fission fragments, at least in case of neutron-deficient 
systems formed in heavy-ion reactions. In fission, PES for 
71 z f- 71 А ,are useful for the computation of charge distributions. 
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50 !00 
z, 

Fig.6. LDM~ FRNFM and У+ЕМ intePaction baPPiePs ((а) ~ 
(а')~ (а' ' }) ~ fusion Peaction Q-values ((Ъ) ~ (b 'J~ 
(Ь")) and fusion ЪaPPiePs ((с) ~ (с ')~ (с")). The 
coPPesponding ePPOPS аРе obtained if the chaPge density 
diffePence is ignoPed. All enePgies аРе expPessed in MeV. 

Due to the fact that the charge equilibration process is ver 
fast with respect to the fission time, it is important to take 
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о 0.5 'z 

0.{) 

~ 
о 

Fig . ?. LDM intePaction ЪaPPiePs (а )~ 
fusion Q -values (Ъ) and fission ЪaP­
PiePs (с) : tPend of vaPiation with mass 
and chaPge as ymmetPy foP the 149 ТЬ com­
posite system. 

into accoun t the charge density asymmet­
ry particularly in the initial stages of 
fusion reactions. This is also interes­
ting for the calculation of the charge 
distribution in fission (Gupta et al. 
1975, Gupta 1977). 

The influence o f charge and mass asym­
metries on the above-mentioned LDM quan­
tities in the case of the 149 ТЬ compo­
site system is shown in figure 7. Only 
а r e latively narrow surface of the plane 
11f.-1JZ has physical meaning. The fron­
t~ e rs of this surface (chain lines) could 
Ье set Ьу the requirement А 1 ;::: z1 (the 
upper limit) and с sl;::, О (the lower limit). 
If ТJz = ТJ А one fo llows the dot ted lines: 
the interaction energy (figure 7(а)), 
f i ssion Q-value Qfi 8 "'-Q fus (figure 
7(Ь)) and fission barrier (figure 7(с)) 
become smalle r if the asymmetry is i n­
creased. The interaction energy is very 
sensitive to the charge asymmetry: for 
а given ТJ, it increases when ТJz is de­
creased from ТJ Z = ТJ А and decrease when 

о 
'lz 

0.5 -0.5 

Fig.B. The вате quantities as in fig. ? ~ computed in 
!.JOPk of У+ЕМ, 

the fPame-
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ryz is increased, The fusion Q va1ue and fission barrier are 
a1most symmetric with respect to the 1ine ryz=ryл: both increase 
for д." > 0 and д." < О.А simi1ar trend shows the f1.gure 8, dis­
p1aying the resu1ts computed in the framework of У+ЕМ. 

5. АLРНА DECAY AS А FISSION-LIКE PROCESS, 
NUМERICAL RESULTS 

5.1. Nuc1ear Shape Parametrization 

If а simp1e parame trization of the nuc1ear shape is used, 
one needs the numerica1 time consuming procedure on1y in the 
over1apping region of the two fragments; for the touching poin 
configuration and the separated objects, one can get simp1e 
ana1ytica1 re1ationships. 

5,1.1. Spherica1 nuc1ei 

The ground state shapes of the parent, daughter nuc1ei and 
of the a1pha partic1e are approximated Ьу spheres of radii R0 , 
R 1 ,and R2 , respective1y. In an intermediate stage during the 
def ormation process (see fi gure 9), the distance between cent­
res is R. It increases from Ri=Ro-R 2 to Rt=Rн~R 2 at the 

touching point in such а way that 
R2 i s kept constant and the vo-
1ume V1 + V2 is conserved. The sur­
f ace equat i on у (х) ,i n cy1indrica1 
coordinates , with -1,+1 inter-

.---..!.у 

X cepts on the symmetry axis i s 

у 2= 1 
R уЛ 2 - (х + х 1) 2 , х ::; хс 

(5,1 
2 2 2 

R2/ f -(x+xгRif ) ,х > хс, 

where 2f = R + R 1 + R 2 ; х 1 = (f- R1)/ l 
Fig , 9. Spherical tию Xc=zc/ f-x 1. For а given defor-
centers parametrization mation pa rameter, R , the position 
of the nuclear surface . of the separa tion p1ane between 

fragments re1ative to the heavy 
f r agment center, z с, and the radius of the large fragment, R , 
ar e dete rmi ned Ь у so1ving ite rative1y the non1inear system ot 
eqs. expre ssing the ma t ching and vo1ume conserva t i on condi­
tions: 

ith а first guess R 10 = 1; Zco-= 0.5[ (1- R~)/R + R] . In this 
section а11 the 1engths R, R 1 , R2 and z с are expressed in 
uni t s of Ro· We presume а proportiona1ity between the fragment 

ass numbers А1 and А2 and their volumes V 1 and v2.At the tou-
ch ing point Ан= A1(Rt) =А- А 2 =А- 4 and A2f = A2(R2) = 4. 

5.1.2 . Deformed parent and daughter 

For deformed nuc1ei, the ground state shapes of the parent 
and daughter nuc1ei are approximated Ьу two spheroids of semi ­
axis а 0 , с 0 and а 1 , с 1 , respectively (see fig. 10) the ratio 
of which can Ье determined f rom taЬles of nuc1ear deformations 
(Seeger and Howard 1975) 

{3 
0 
= с0 /а 0 

= (1 +а 20 +а 40 )/(1 - 0.5а 20 + 0.375а 40 ). ( 5. 3) 

One assumes а spherica1 shape with constant r adius R2 = r0 A
1/r3 

f or t he emitted partic1e . Duri ng the deformat i on process , t he 
distance between centres, R, is increased from Ri = с 0 - R2 t o 
Rt = с1 + R 2 at the t ouching point , then to "" in such а way 
that t he vo1ume is conserved and the ratio of semiaxis of the 
1arge fragment {3 = о/а is а 1inear extrapo1ation between the 
parent {3

0 
and daughter {3 1 ratio : 

{3 =f3o -({3
0
-R )(R -R. )/(R -R. ) ; R. < R < Rt. '! 1 t 1 1- -

( 5. 4) 

In cy1indrica1 coordinates (р, z) t he surface equa t ion i s given 
Ьу 

•' -{ 
а 2(1 - z 2/с 2_>, 

R~- (z- R); , 

z < z с 

z > z . 
с 

Fig.lO. Spheroid intersected 
with а sphere . (а) initial 
configurat ion; (Ь) inte~e­
diate position; (с) touching 
point . 

(5.5) 

~Rz Etfj R2 

-с о z, z 
1 R 

~Rz 

~J R, 

The vo1ume conservation condition can Ье wr itten as 

4~rRg./3 = 41та~с0 /3 z 41r(afc1 + R~)./3 = V1 + V2 , (5.6) 
R i - 2Rzc + R 2 - R ~ = О , 

2R~+ 3Rfzc- 3R2zc +3(R 2- R ~)zc + Ri(2R 2+ 3R)- R 3 - 4= О, 
24 

(5,Z) 8 where R
0 
=r 0л 11 3 and 
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ЗV 1 /17 "'с 2 [2с +Zc(3-zJ/c2)]/,В2 , 
(5. 7) 

3V 2 ! 17 "' z ~ - ЗR z ~ + 3(R 2- R ~) z с + !1~ (2R2 + 3R) - R З • 

We presume а proportiona1ity between the fragment mass num­
bers А1 and А 2 (at the touching point А 1f and A2f ) and their 
vo1umes V1 and V2.From the matching condition at the separa­
tion p1ane z "'zc, we get: 

с2- z2"' ,в2[R2- (z - R) 2 ). 
с 2 с 

(5.8) 

In this way, for а given va1ue of one independent deforma­
tion parameter R, the geometry of the systems is perfect1y de­
termined. The two unknown quantities Х= с and у"' z 0 are the 
simu1taneous so1utions of the fo11owing non1inear system of 
eqs.: 

х 2 + (,В 2- 1 )у 2 - 2R,В 2 у + ,В 2 (R 2- R 2 ) "' О , 
2 (5.9) 

2х З +3Х 2у+(.В 2-1 )уз_ 3R,В2 у2 + 3(R2- R~),8 ~ + ,82[ R~(2R +3R) - R 
3-4R~) "'О· 

This can Ье so1ved Ьу refining an initia1 guess 

Уо"' с1; хо"' !у~+ .ВЧR~- (уо- R)2)\ ~ (5.10) 

with the Newton iteration numerica1 method. 

5.2. Variation of the Charge Density 

.. 
\ 

t 
! 
j 

1 
{ 

! 
j 
i 

Frorn heavy ion co11ision studies it is known that the charge 1 

density equi1ibration process is very fast. Hence, the charge 11 

densities of the two fragments are considered to Ье the same 
unti1R",R 7 "'Ri+0.7(Rt-Ri); thenthechargenumberZ 2 of ~ 
the sma11 fragment increases linear1y wi th R up to Z2r = 2. i 
Z 2 = Z 27 + (Z 2г z27 )(R-R 7)7/[3(R 7-Ri)), R~ R 7 . ( 5. 1 1) 

As we rnentioned 
taken into account 
calcu1ated. In the 

above on1y deformation dependent terms are 
when the rnacroscopic potentia1 energy is 
LDM, FRNFM and У+ЕН, one has: 

EiR) "'EL
0
(R)- ELD(oo); Ed (R) = EFR(R)- EFR(oo), Е iR) = EY+E(R) - Еу+~.,.), 

( 5. 12) 
where the potentia1 Е(оо) = Е 1 +Е 2 of the two fragments at infi-
ni te separation dis tance (R ... оо) is the origin of the energy. 
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5.3. Fission Q-Va1ues 

For R"' R 1 one obtains the rnacroscopic rnode1 deformation 
dependent part Q -va1ue of the fission reaction 

(5.13) Ed(R) IR=R ."' Q d 
1 

This quantity is different frorn experirnenta1 va1ue Qexp because 
the ground state deformations of the parent and daughter nuc1ei 
cou1d not Ье reproduced Ьу the chosen pararnetrization, other 
terms of а macroscopic rnode1 rnass formu1a were ignored and the 
she11 correction energy ВЕ was not yet introduced. 

For each of the three rnode1s rnentioned above, one has 

Q ехр • Q "' М -(М 1 + М 2) "'Q м +В Q; BQ "'ВЕ - (ВЕ 1 + ВЕ 2) , (5.14) 

where QM is the contribution of the rnacroscopic rnode1 terms of 
the rnass formu1a and BQ is the she11 correction part. 

If Q ехр <О for а particu1ar nuc1eus, i t is s taЬle wi th res­
pect to the spontaneous ernission of an a1pha partic1e. This is 
the case of the 1ight - and rnost of the neutron excess nuc1ei 
far off the 1ine of beta staЬi1ity. The Q-va1ues contour 1i­
nes for even-even nuc1ei with z and N protons and neutrons 
are given in figure 11. The dashed area corresponds to nuc1ei 
with experirnenta11y rneasured rnasses tabu1ated Ьу Wapstra and 
Bos (1977). Calcu1ated va1ues using the code kind1y supp1ied 
Ьу Dr.Janecke (1980), the resu1ts of various authors (Maripuu 
1976) and the Myers-Swiatecki (1967) rnass formu1a for spherica1 
shapes are used beyond this area. 

Fig.ll. Contour maps of the 
alpha decay Q ехр - value for 
even-even nuc lei with z pro­
tons and N neu t rons. 
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~ ..._ 5 
~ 
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~ 

110 !ZO 130 140 N !50 

Fig.1 2. Qexp-value systema­
tics of вот~ alpha emitters. 
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The point-dotted curve is the Green approximation of the 
line of beta stability. From this figure one can see the gene­
ral trend of increased alpha instability toward neutron defi­
cient and heavy nuclei, well explained Ьу the macroscopic part 
of the mass formula and the important variation from magic pa­
rent to magic daughter nuclei, due to the strong increase of 
the shell effects 8Q. 

The pronounced instability corresponding to the daughter 
nuclei with magic neutron number (N- 2 = 126) is more trans­
parent from the figure 12. 

For а given nucleus(let's say 248 cm) it is interesting to 
see other possible very asymmetric spontaneous fission activi­
ties in competition with alpha decay. As is shown in figure 13 
the neighbouring nuclei are not emitted spontaneously because 
the corresponding processes have negative Q-values, but for 

emission of many other nuclei with N2 Z 2 .? 4, 
248

Cm has Q > 0. 

The shell effects, 8Q favouring the alpha decay of this 
nucleus with respect to that of its neighbours are presented 
in figure 14. These were computed with the Myers-Swiatecki 
(1966) formula, for spherical nuclei, eq.(5,15)). At each of 
the double shell closure (N 2 = Z 2 =2,8 and 14 on figure 14), 
8Q has а maxumum value (3,7 and 12 MeV, respectively). In spite 
of the increased Q for 16 О and 28 Si in comparison wi th 4 Не, 
the emission of these clusters (Sandulescu et al.l980) is strong­
ly hindered with respect to the alpha decay. One has to consi­
der also the macroscopic model contribution to the fission bar­
rier, the vibration frequency and the inertial mass parameters, 
playing an important part in this competition. The delta-func­
tion-like mass and charge distributions in this region of asym­
metry are due to the fact that the asymmetric fission leading 
to а light fragment different from 4 Не is not possible (Q < 0) 
or has а very low probability ( 10-9 for 14С than а ) • 

The barrier shapes for this very asymmetric fission will Ье 
plotted in figure 19. The barrier height Еь is given Ьу Еь= 
"" Е d (R J- Q = Е 1 - Q. For the same nuclei as in figure 12, we 
have plotted in figure 15а the LDM touching point interaction 
energy Ei = Ed(Rt), in figure 15Ь the shell effects 8Q, and in 
figure 15с the barrier heights Е ь = Е i - Q ех • The figure 15с 
is almost the figure 12 with the upside dowri, because Ei is 
а smoothly varying quantity. The pronounced reduction of the 
barrier height for the magic neutron number due to the steep 
variation of 8Q (figure 15Ь) is very clear in figure 15с. 

5.4. Shell Corrections 

Usually the macroscopic-microscopic method (Brack et al. 
1972) is applied to heavy nuclei. For instance the mass table 
of Seeger and Howard (1975) refers to Z, N ~ 22 and that of 
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Fi g. 13 . Contour maps of t he Q-values for various asym­
metric splitting of the 248 Cm nucleus. 
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Fig.14. Shell effect contribution 8Q to the 
f or the same processes as in fig,13. 
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f or the alpha decay of 238
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Moller and Nix (1981) to Z,N > 8, The Strutinsky prescription 
for light nuclei or for very large mass-asymmetry was not yet 
developed. Nevertheless, one can use а phenomenological shell 
correction method sometimes called cluster prescription, exten­
ding f o r large deformations the Myers-Swiatecki (1977) formula 
for the g.s. of spherical nuclei: 

S(N, Z) ~С![ F(N) + F(Z)] / (0.5A) 213 _ сА 113 1, 

[( 
5/ 3 5/ 3 5/3 5/ 3 F(rn) ~0.6 N. -N. 1 )(rn-N. 1)/(N. -N . 1 )-rn +N . 1 ], 

1 1- 1- 1 1- 1-

(5.15) 

where rn ~ (N i- 1 , N i) ;Ni are the spherical magic numbers N, z ~ 2, 8 .. 
14, 28, 50, 82; N ~ 126, 184; Z ~ 114, ~nd the parameters 
С ~ 5, 8 MeV; с ~ О, 325. This eq. was used to calculate 8Е , 
8Е1 , 8Е 2 and 8Q plotted in figure 14 and fig.ISb. According 
to Schultheis and Schultheis (1973), the damping terms of the 
Myers-Swiatecki shell correction formula for deformed nuclei, 
were replaced Ьу а curvature-dependent integration usually per-
formed numerically: 

88 ~ С J k 1 [ F(Nik 3 ) + .F(Z/ k 
3 

)] 2 
213 

k 
3 

- сА 1 du, 
41тr 2А4/ 3 

о 

(5. 1 б) 
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where 

1- а а du 
k ~ 2R0 ( +- f ) ; а ~ 0.7 , 

9t1+:R2 ISI :R1 +:R2 
(5. 1 7) 

· ;я 1, :R 2 are the cutvature radii and ISI 
For two intersect~d spheres (Schultheis 
а simple formula: 

is the surface area. 
et al. 1970) one has 

2rrR 1 (R 1 + z с) 2rrR 2 (R - z с+ R 2) 
8S(R) ~ S(N 1' z1) + S(N2, Z 2) -------

4rrR2 4rrR2 
1 2 

(5. 18) 

During the deformation, the variatioп of R induces the varia­
tion of Zc, R1, V1, V2, А1, А2 and consequently of z 1 , 
N 1 , Z 2 and N 2. Each time when one of the nucleon numbers reaches 
а magic number, the correction energy has а minimum (negative 
value) and it has а maximum at mid-shell number. 

For alpha decay, the variation of the fission fragment nuc­
leon numbers during the deformation from R = R i to R = Rt is as 
low as 2 units at all. Hence the shell correction energy is 
а smooth function of R (see figure 16). 

Ву assuming that the top of the barrier is not affected Ьу 
the shell correction, which agree with experimental data on fu­
sion interaction barriers (Poenaru et al. 1979d) the shell cor­
rection 

8 
8 

E(R) = 88 (R) - oS(R t ) (5. 19) 

when added to the deformation energy Е d of the LDM, rises the 
theoretical Qd-values of the heavy nuclei wi th 3-6 MeV. In 
spite of this i mprovement, there still remains а smoothly va­
rying shift men tioned above. In order to reproduce the expe­
rimental Q-va lue exactly, we have introduced а phenomenologi-
cal correction energy Е (R),containing both the shell cor-

• !=СЩ:. rect1on and the smooth sn1rt: 

E(R) ~ Ed(R) + E corr(R); Ecorr(R) cQcorr[l-V2(R) / V2f]; Qcorr= QeJfii-Qd, 
(5.20) 

where V2f ~ V2(Rt) is the alpha particle volume. It seems reaso-
naЬle to scale the shell correction with V2(R) / V2r, Ьу rela­
ting i ts variation to the bulk properties of the nascent alpha 
fragment. Another choice could Ье the ratio ~ (R)/ S2f of the 
surface area of the small fragment to S2f ~ S2(Rt), or the ra­
tio ~R - R 1 )/(Rt- R 1) as shown in figure 17 f or the example 
of 22 Ra. А best choice for the scaling parameters S 2 and R 
(Poenaru et a l . 1979Ь) have yield а negligiЬle difference of 
logT(S 2) and logT(R) with respect to logT(V2), so we decided 
to use the eq.(5.20). 
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Fig .1 9. Barrier shapes for the alpha 
decay of 2ЗBcm,ыithout (broken curve) 
and blith (full curve) shell correc­
tion. а - LDM; Ь - FRNFM; с - У+ЕМ. 

The experimental corrections Q corr defined Ьу eq. (5. 20) are 
plotted in figure 18а for the LDM, in figure 18Ь for the FRNFM 
and in figure 18с for the У+ЕМ. As was expected, the very strong 
shell effects at the magic neutron number in the daughter nuc­
leus are the same, but the deformation dependent part Qd of 
the У+ЕМ and FRNFH give а good approximation of the alpha Q­
values. On the other hand LDM, giving а large error fo r the 
alpha particle mass leads to large discrepancies (even negative 
Qd -values). 

5,5. Barrier Shape 

The corrections of the barrier for the alpha decay of non­
magic nuclei are very small in the framework of FRNFМ and У+ЕМ, 
As an example in figure 19 the barrier shapes for the alpha de­
cay of 238 Cm are shown. The LDH (а), FRNFМ (Ь) and У+ЕМ (с) po­
tential energies without (broken lines) and with (full line) 
corrections are plotted. As we have mentioned in the preceeding 
section, one can see that in the last two models R m> Rt• In 
the LDM, Rm= Rt; the top of the barrier is very sharp and higher 
in energy. Due to the different values of the radius constant 
r 0 the initial separation distance Ri (in fm) is also diffe­
rent from model to model, 

5,6, Alpha Decay Lifetime of Heavy and Superheavy Nuclei 

After replacement of numerical values of the parameters,from 
eqs,(2,3) and (2.4), one obtains: 

-21 Rь ~ 
'I "" 1.4333 х 10 ехр (О.4239 f IIL А (R)[ E(R) - Q ']1 dR) , 

Е~ь Ra 
(5.21) 

where Т is expressed in s ; R , R8 and R ь in fm; Е vib, Е and 
Q' in MeV, The penetrability integral is computed Ьу Gauss­
Legendre numerical quadrature, dividing the whole range (R 8,Rь) 
in two subintervals (R 8 , Rm) and (Rm, Rь).For R ~ ( Ri• RtHhe po­
tential energy E(R) is calculated numerically, hence the lower 
limit of the integral, R 8 , the solution of the eq. E(R8 )= Q' 

in this interval, is found Ьу а searching computer code. The 
upper limit, Rь, is given Ьу the Coulomb interaction energy: 
R ь = Z 1Z 2 е 2/ Q, because the nuclear interaction term is vani­
shingly small at large distances. 

For the mas s parameter IL A(R) = IL(R)/ m, where m is the nuc­
leon mass, we have tried three kinds of variations: 1) the in­
stantaneous reduced mas s 
1L i (R) = А 1 (R) А2 (R) / А , (5.22) 
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which is an increasing function of R; 2) the final reduced 
mass 

1-1 1(R) =А11 А 21 /А =4(А-4)/А = conвt. (5.23) 

and 3) the semiempirical relationship suggested Ьу Randrup et 
al. (1973) for the almost symmetrical fission 

R- Ri 
/-1

8 
(R) -= I-Lf [ 1 + 7.37 ехр (-2.452 )] . 

Rt- Ri 
(5.24) 

The zero point vibration energy Е vlb was adjusted for each 
time: 0.37 MeV for /-li;0,4 MeV for 1-11 and 0.63 MeV for 1-Ls in 
the LDM. The difference between the maximum and minimum value 
of log(T/T ехр) for the seven isotopes of U is а good measure 
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of the deviation of theot:etical values from the experimental 
ones. This is practically the same (1.4 and 1.5) for 1-Li and I-Lf 
but much higher (2,2) for /-1

8
• Hence we decided to use for the 

moment the simple law of 1-11· 
As one can see from figure 20, on the example of 230 'Ih ( 1), 

24Bcr (2) and 252No (3), the half-life is very sensitive to 
the variation of Е vib . In order to obtain а good overall fi t 
with experimental data, following values of Evib = 0,37; 0.37 
and 0,30 MeV were chosen for LDM, FRNFМ and У+ЕМ respectively, 
with 1-Li · 

5.6.1, Heavy nuclei 

Experimental half-lives (heavy points) after Rytz (1979) and 
Nuclear Data Sheets (vol,5, no,3 and 6; vol,6, no.4; vo1.7, 
no.2 and vol,8, no,2) are used in figure 21, Ву comparing this, 
with figure 15с, one can see an almost identical trend, revea­
ling the importance of the barrier height in this process. The 
good agreement with experimental data of the theoretical life­
times irrespective of the model used for the macroscopic energy 
Ed, in the range of Т of 24 orders of magnitude, suggests 
that the alpha decay process could Ье interpreted as а fission 
phenomenon. This conclusion is also supported Ьу the fact that 
а new semiempirical relationship (Poenaru et а1.198ОЬ, 1982, 
Poenaru and Iva~cu 1983 а) for T Vz (Q), derived on the basis of 
fission theory of alpha decay, gives the best agreement with ex­
perimental data, In the following we will us e the LDM, Ьу ex­
ploiting the advantage of its simplicity. 

When compared with other theories of alpha decay, these com­
putations are fas ter and more accurate. То calculate the life­
time for one nucleus, the IBM 370/135 computer running time is 
of the order of 45 s for LDM and 2m 20 s fo r FRNFM or У+ЕМ, 

5.6,2. Superheav y nuclei 

On the basi s of our method one can predict reliaЬle values 
of the alpha decay lifetimes in the new region of nuclei in­
cluding the superheavies, . Alpha disintegration of these nuc­
lei is particularly important because in many cases it puts 
а limit of the survival. 

As an example we have studied (Poenaru et al,l981) the even­
even isotopes of the elements with Z = I06-120 ' and N = 172-190, 
where there are no experimental data. In order to have а comp­
lete systematic trend of variation wit~ N between 110 and 190 
(see fig.22) the isotopes of the element 104 with N = 154-190 
have been also considered. The Q-values for correction energy 

35 



18 LOM 

• 116 
fcBJ,./ 88 fi/04 

9~- _ _raz ta41rб IP: 
~н-: 
94 96 98 • 

120 140 160 N 100 

Fig . 22 . Correction energies vs 
neutron number of parent nucleus 
for alpha emitters including 
superheavies. 

• ехр 
- Fithis work :1 
• rsetS.. 1 and 120 NIX 0972) J(i 

90. .~2g f,Ji_,.. r,.~t .lt~ o 
l

-8'· 88·/' ;.96 ~--lr .1 4-- .. 1 ,. ' {Ч/ 106 

о~ "1 ~-~ ,.- · . 1/ i Й12 

111 

Fig.23 . Alpha decay half-lives ~ 
of some heavy and superheavy , 
even-even nuclei. 

J".,... Jf/) .... ~96 i / ' /108 
/ ~ f"',·'~ юqщ~/J( /на t . 'f-.. _ -· ~'/'fi~ 

<,с:\ 116 
11 

.. ~· ~1ra 
L___,__j •••• ;;~а 

1 1 1 • 1 

120 140 160 100 N 

were taken from Fiset and Nix (1972). As it is seen on the ' 
fig.22, the shell effects of the daughter nuclei with magic 
number of neutrons, for which N = 128 and 186, induces а steep 
increase of the Q corr • The same thing happens at the magic pro­
ton number 114 ( Z = 116). 

А corresponding increase of the decay probability is shown 
in fig.23. One can see that nuclei with Z > 114 decay particu­
larly faster. For some isotopes of the elements 104, 106 and 
108 we predict lower half-lives than Fiset and Nix (1972), but 
in general the present results are more optimistic: about an 
order of magnitude larger, When other competing modes of decay 
(fission and beta decay) are also taken into account, the nuc­
leus 294 110 has the longest calculated total half-life. Of 
course the centrifugal barrier (Moller and Aberg 1980) can 
change drastically the situation. 

5.7. Transitions between Deformed Ground States 
and Fission Isomers Alpha Decay 

5.7.1. Transitions between ground states 

In section 5.6. the g.s. nuclear deformations of the parent 
and daughter nuclei (Seeger and Howard 1975) was not taken in­
to consideration explicitly; it was introduced only through 
the experimental Q-value in the correction energy. The para­
metrization of а spheroid intersected with а sphere, presented 
in section 5.1.2. (Poenaru and Ivascu 1981Ь) is аЬlе to con­
sider the deformations and at the same time preserves the ad-
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Fig . 24 . Nuclear deformations of 
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vantage of the analytical relationship for Ed(R),in the LDM, 
when the fragrnents are separated (R 2:. R t). 

The spheroidal deforrnation ~ of sorne even-even parent and 
daughter nuclei, calculated with the eq.(5.3) frorn the quad­
rupole and hexadecapole deforrnation parameters а 2 and а 4 
(Seeger and Howard 1975) are plotted in fig.24. The arrows di­
rected from the parents to the daughters (which are displayed 
at the same N as the parents). 

Due to the deformation, Qd increases, improving the agree­
ment with experimental values. The reduction of the Q corr wi th 
0.6-1.2 MeV is clearly seen in fig.25. 

Because of the increase of Rt, the LDM barrier height 
(fig.26) and consequently the zero point vibration energy are 
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now smaller ( Evib = О. 2 HeV for the case of constant reduced 
mass 1-Lf ). 

Another interesting effect is illustrated in fig.27 where 
an enlarged view of the residual discrepancies is displayed, 
without (а) or with (Ь) deforrnations taken into account. It 
i s obvious that the dependence on Z of the discrepancies are 
greatly reduced in the presence of deformation. This is an ar­
gument that the neutron shell effects shadow the proton ones 
i n this region. The same conclusion can Ье drawn from the fi­
gure 28 where the individual zero-point vibration energy of 
each nucleus, deterrnined from the condi tion Т =Т ехр were 
plotted, assuming а constant inertial mass parameter 1-1 А= 1-1 f. 

5.7.2. Alpha decay of fission isomers 

The parametrization of а spheroid for the parent and daugh­
ter nuclei and of а sphere for alpha fragment allowed us to 
study the alpha transition ais gfrom а shape isomeric state 
(Vandenbosch 1977, Poenaru 1977, Hetag et al.l980) of а parent 
nuc leus to the ground state of the daughter. In this case 

Qis g "' Qgg+ Ellp • (5.25) 

wher e Епр is the fissi on isomer excitation energy (Britt 1973, 
Iva~cu and Poenaru 1981) of the parent nuc leus and Q gg is the 
Q-value for the alpha decay between ground states (called 
Q exp above). The shape isomeric state has а large deformation 
~Р= 2 (BjФrnholm and Lynn 1980) , but the ground state deforma­
tion of the daughter nucleus is of the order of ~ d = 1. 24. 

The results ob tained for the known even N isotopes of U, 
Pu and Crn are plotted in fi g . 29. On the same figure one can 
see t he measured lifetime for the decay Ь у spontaneous fission 
from the isomer ic state fi s .This process is much faster. The 
branching ratio f or the alpha decay is lower than 10 -8 - а fi­
gure whi ch expl a ins why the alpha particle s of the fission iso­
mers could not Ье found experimentall y (Leachman and Erkkila 
1966 , Belov et al. 1973). 
. Another type of alpha transit i on ais is between the shape 
1somer ic states of the parent and daughter nuclei, has а lower 
Q-value 

Qis is= Qis g- Е п d е Qgg + (Енр~ Elld) (5.26) . 

and the shape of the daughter nucleus is also well deformed 
~d = 2 . As it i s shown in fi g .29, the probab i lity of thi s pro­
cess is at leas t 5 orders of magnitude lower than that of а 1 • 

The measured l i fetime of other processes occurring in th~se 
nuc lei are drawn in f i g.29: the spontaneous fi s sion of t he 
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ground state F gg and the gs-gs alpha decay а 
88

. 

number the alpha decay dominates, but for large 
fission process competition became stronger and 

For low neutron 
N values the 
stronger. 

б. ТIМЕ DEPENDENT HARTREE-FOCK STUDY OF ALPHA DECAY 

It was shown (Sandulescu et al,1983) that in TDHF approxima­
tion, the collision of an alpha particle with а lead nucleus 
leads to nuclear dynamical effects during the capture process 
and to periodic oscillations of the compound system. The oscil­
lations were interpreted as zero point motions associated with 
the" alpha decay collective mode. The computed frequency corres­
ponds exactly with the experimentally deduced value based on 
the alpha decay description as а fission process. 

6.1. The Model 

It is known that in the time-dependent Hartree-Fock (TDHF) 
approximation only а very limited set of physical quantities 
can reasonaЬly Ье compared with the experiment. Up to now, the 
contact with experiment was restricted to the fusion cross sec­
tions and to the gross behaviour of the Wilcynski plots. 

Recently Weiss (1981) has suggested that the TDHF-approxi­
mation may include also some high energy collective excitations 
of the residual nuclei after а grazing collision. It was shown 
that the high frequency structures of the Fourier transform of 
the Cartesian moments of the density of the residual nuclei for 
several moments are correlated. This may explain the observed 
bumps in the cross section versus the final kinetic energy for 
different species in the system 40 са + 40 са at Е!вЬ = 100 MeV 
(Roynette et al. 1981). From these calculations it is not clear 
if the frequency components represent nonlinearity effects, 
multiple phonon or primary collective excitations. 

In the following we present the results of а study in the 
TDHF approximation of another collective mode, which cannot Ье 
simply described Ьу multipole expansion of the surface, the 
collective mode associated with alpha decay. In order to excite 
such а collective mode, the central collision of an alpha par­
ticle with а lead nucleus at relative kinetic energy jus t above 
the Coulomb barrier, was considered. 

The calculation has been done, due t o the extremely large 
asymmetry of the considered system, onl y in two dimens i ons and 
using the advanced array processing techniques. А simplified 
Skyrme plus Yukawa interaction was used, the small Coulomb ex­
change correction energy wa s neglected and no spin-orbit inter­
action was included. The effective charge quartet model with 
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the filling approximation for the outermost shells (Cusson et 
al. 1980, Stocker et al.1980), has been used. 

6.2. Alpha Decay Collective Mode 

The process was computer over а long period of time 
(3.315 fm/c). From the total number of the pictures taken in 
steps of 19.5 fm/c only few were selected, which were conside­
red to Ье characteristic for the alpha decay process. 

In f i g .30, the f irst 10 shapes which il l ustrate the capture 
of the alpha particle Ьу the lead nucleus have been plotted. 
It is evident that if we assume that the e~ission process is 
just the capture process reflected in time, the alpha decay 
process implies many dynamical effects, like the polarization 
of the heavy nucleus in the vicinity of the alpha particle and 
the formation of а long neck bef ore the alpha particle is emit­
ted, 

In the usual description of alpha decay, based on the R-mat­
rix theory of nuclear reactions, these dynamical effects are 
neglected, The barrier is considered to Ье а one-body process 

[}О] ~6J 
EQ][Q] 
ВJ][QJ 
~[QJ 
lQJ[Q] 

Fig . ЗO . The aaptur e of an alpha 
par tiale Ъу the 208 РЬ nual eus 
illustrated i n t i me- s teps of 
19, 5 fm/a . 

о 7 /~ Zl [fm] 

",_; o~J ~ 6,,.,1 
[QJ[QJ 
[QJ[QJ 
[QJ [QJ 

Fig . Зl . The shapes whiah ap­
pear per iodiaally in the time 
evolution of t he aompound 
sys tem 212 Ро. 
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and the alpha reduced widths are evaluated in the one-center 
shell model. 

From the TDHF calculations it was concluded that the whole 
process looks like а fission process. This gives а full support 
of the theory of alpha decay as а fission process based on the 
liquid drop model with phenomenological shell corrections (Poe­
naru et al. 1979а). 

The dynamical effects suggested Ьу the TDHF description of 
alpha decay, i.e., the modification of the self consistent 
field during the emission process have been recently taken into 
account Ьу evaluating the alpha reduced widths in а very asym­
metric two-center shell model. Comparatively to the one-center 
shell model, the asymmetric two-center shell model amplifies 
the single particle wave functions at the surface of the nuc­
leus. Consequently the absolute values of the alpha reduced 
widths are increased. This increase may possiЬly explain the 
well-known theoretical underestimation of the alpha reduced 
widths • in the frame of R -matrix description of alpha decay • 
at least with two orders of magnitude. 

After the capture process, the compound system has quite 
complicated shape oscillations. Looking at the time evolution 
of these shapes we can see clearly some shapes which appear 
periodically. First the compound system reaches а more or less 
symmetric shape, similar with а sphere with two bumps on the 
opposite sides and second an asymmetric shape which can Ье 
approximately described Ьу а sphere with only one bump on the 
side on which the two partners come first in contact. These 
shapes which appear ~eriodically with а half period Т/2 
= 780 fm/c = 2.6 ·10- 1s are given in fig.31. 

These oscillations have been interpreted as zero point os­
cillations of the collective mode associated with alpha decay 
Е vib =11cu/ 2 = 0.4 MeV. \ve should like to stress that this va­
lue Evib = 0.4 MeV corresponds exactly with the experimental­
ly deduced value based on the description of alpha decay as 
а fission process (Poenaru et al. 1979а). 

7. SEMIEMPIRICAL FORМULAE FOR ALPHA DECAY НALF-LIVES 

During the last few years, the number of the known alpha 
emitters have been increased mainly Ьу measuring the activity 
of the new neutron deficient nuclei produced in heavy ion reac­
tion (Gauvin et al.1975, Cabot et al. 1978, Hagberg et al.l979, 
Hofmann et al. 1979, Ritchie et al. 1981, Schmidt et al.l979). 
А new island of alpha activity in the neighbourhood of the 
douЬle magic nucleus lOOsn was studied (Schardt et al.l979,1981). 

Alpha decay competes usually with fission and beta decay 
in .the disintegration of heaviest nuclei synthesized up to now 
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(Bemis et al. 1981) and it is expected to Ье frequently met in 
the superheavy region (Nix 1972). 

As far back as 1911, Geiger and Nuttall have found а simple 
dependence of the alpha decay partial half-life, T,on the 
alpha particle range in air. Now the disintegration period can 
Ье estimated, if the kinetic energy of the emitted particle, 
Е ,is known, Ьу using semiempirical relationships (Froman 
а . . 

1957, Wapstra et al. 1959, Taagepera and Nurm1a 1961, V1ola 
and Seaborg 1966, Keller and Milnzel 1972, Hornshoj et al.1974). 
Some of these formulae were derived only for а limited region 
of the parent proton and neutron numbers Z and N, Their para­
meters have been determined Ьу fitting а given set of experi­
mental data selected Ьу the authors from the availaЬle measure­
ments on large collectivity of even-even, even-odd and odd-odd 
nuclides. 

Since then the precision of some measurements was increased 
and new alpha emitters were discovered. This process of improv­
ing both the quality and the quantity of data will continue in 
t4e future. Consequently it is interesting to have from time 
to time the possibility of changing some of the parameter va­
lues. In the following it will Ье shown that а better agree­
ment with experimental results can Ье obtained Ьу requiring 
а vanishing mean value of the absolute errors for each group 
of nuclei, leading to new parameters !Ck 1 of the various for­
mulae presented below. 

In an attempt to improve the description of data even in 
the neighbourhood of the magic neutron and proton numbers, 
where the errors of the other relationships are large, а new 
formula with six parameters !Bkl ,based on the fission theory 
of alpha decay have been derived (Poenaru et al. 198ОЬ, Poe­
naru and Ivascu 1983а). This formula takes into consideration 
explicitly not only the dependence on the proton number, but 
also on the neutron number and their difference from magicity. 
А corresponding computer program (Poenaru et al.1982) allows 
us to improve automatically the parameters /Ckl and !Bkl men­
tioned above, every time а better set of experimental data is 
availaЬle (Poenaru and Ivascu 1984Ь). 

7.1. А Basic Set of Experimental Data 
on the Strong Alpha Transitions 

Our set of 376 data Q, Т on the most probaЬle (ground 
state to ground state or favoured) alpha transitions of 123 
even-even, 111 even-odd, 83 odd-even and 59 odd-odd nuclei, 
is presented elsewhere (Poenaru and Ivascu 1983Ь). They are 
selected to meet in each of the four groups, the criteria of 
best fitting the systematics of Q-value, logT, of the quantity 
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Xexf defin~d below, versus 
tal plot. 

neutron number and the Geiger-Nut-

From these data, the parameters of our formula were obtained. 
Маnу of the alpha active nuclei have also other competing decay 
modes (beta decay, spontaneous fission, etc.), hence the par­
tial alpha life time represents only а fraction, given Ьу bran­
ching ratio, Ьа, of the total disintegration period, Tt, From 
all the alpha transitions, we have selected the strongest ones: 
ground state to ground state transitions in even-even nuclei and 
the so-called favoured transitions in the odd-odd and odd-mass 
nuclei. The ratio of the intensity of this alpha line to the 
total alpha strength will Ье called ip in the following. Con­
sequently, the partial decay lifetime, Ta,of the most probaЬle 
alpha transition is given Ьу 

т 
а 

100 . 100 т 
ь i t 
а Р 

where Ьа and ip are e~pressed in percent. 
The released energy, Q, is related to the 

kinetic energy, Еа, Ьу the relationship 

Q = Еа А/А d, 

( 7. 1) 

alpha particle 

(7.2) 

where А and А d= А - 4 are the mass numbers of the parent and 
daughter nucleus, respectively. For alpha transitions from the 
ground state of the parent nucleus to the ground state of the 
daughter, Q is given Ьу the mass difference Q = М(А, Z) 
М(4,2) -M(Ad,Zd);otherwise (for favoured transitions) one has 
to add also the difference of the excitation energies. 

Except а small number of cases (some isotopes of Те, Хе, 
I , Cs, Hr , Та, Os, Ir , and No ) , for the energy release 
in alpha decay, the Q -values - derived from the masses of 
nuclei tabulated Ьу Wapstra and Bos (1977) were used. Some 
authors (Perlman and Rasmussen 1957, Keller and Mtinzel 1972) 
take into consideration а small term, ~E8 ,due to the electro­
nic shielding 

~Е s = (85.3Z 71 5 - SOZ 2/ 5) 10-6 MeV, (7 .3) 

They use an effective Q -value Q eff = Q +~Е 8 • The contribution 
of this term is only of the order of 15-30 keV. For а semiempi­
rical relationship the complication introduced is not justified 
Ьу an improvement of the agreement with experimental data. Con­
sequently this term will Ье ignored i~ the following. 

Informations concerning the quantities Т t , Ьа and ip of the 
eq.(7.1) were compiled Ьу Rytz (1979 ) . Our basic set of expe­
rimental data was selected from these taЬles and from the pub-
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Fig . 32 . Se 'lec t ed a'lphд emitters ,(5il. g) and Ъeta-stable 
nucZei. (•) . 

lications Ьу Gauvin et al. (1975), Gorbachev et al. (1975), 
Cabot et al. (1978), Lederer and Shirley (1978), Hagberg et al. 
(1979), Hofmann et al. (1979), Schardt et al. (1979) and 
Schmidt et al. (1979). As the range of lifetimes of different 
nuclides extends over many orders of magnitude,i t is more prac­
tical to use the decimal logarithm logT. The experimental va­
lues of Т will Ье denoted Ьу Техр, Unlike the mass taЬles 
(Wapstra and Bns 1977), presenting only one value for а given 
nucleus, usually for а given transition there are many measu­
r ements of the quantities Tt, Ьа and ip, different from each 
other. 

In each of the four groups of nuclides: even-even, even­
odd, odd-even, and odd-odd, our selection was guided Ьу the 
criteria of the best matching in the general trend of the fol­
lowing four systematics : Q, logTa, Хехр versus neutron num­
ber, N, and logTa versus 1/ yQ. 

The quantity Хехр is derived (Poenaru and Ivascu 1980) be­
low from the experimental value logTa and the calculated K s 
value. 

The position of the selected alpha emitters in а N -Z sys­
t em of coordinates, is shown in Fig.32 where the beta staЬle 
nuclei are marked with heavy squares. One can see that the 
majority of the alpha radioactive nuclei are neutron deficient. 

The systematics of Q, logT а and х ехр quantities versus the 
neut r on number, N, for even-even nuclei, are shown in Fig.33a,b 
and с, respectively. For Q values between 2 and 9.8 MeV, the 
a lpha disintegration lifetime variation extends over 30 orders 
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N 

of magnitude (from 10-7 to 10 23s) but Хех is on1y s1ight1y 
different from unity; it ranges from 0.96S to 1.045. 

The most unstaЬle nuc1ides toward a1pha emission have 128 
neutrons 1eading to the magic neutron number of the daughter 
nucleus, but the maximum va1ue of х corresponds to N = 126. 

ехр 

For various isotopes of Ро, Rn, and Ra ( Z= 84, 86, 88) 
the approach of the magic neutron number of the daughter nuc­
leus Nd = 126 ( N = 128) is fe1t beginning with N = 126, 
as the half-life for N = 126 (see Fig.ЗЗb) is 1ower than that 
for N = 124, but а dramatic decrease is noted when N is in­
creased from 126 to 128. The Ct, Fm, and No (Z = 98, 100,102) 
isotopes show а discontinuity for N = 154 due to the subshe11 
c1osure at Nd= 152. 
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Fig.34. GeigeP- Nuttall plo t f oP even- even nuc lei. 

А Geiger-Nutta11 p1ot for the same nuc1ei can Ье seen in 
Fig.34. Some of the points which deviate from the straight 
1ine systematics of the other isotopes of а given nuc1eus are 
connected with а short thin 1ine with their common curve. 

The figures simi1ar with Fig,ЗЗ and 34 for even-odd, odd­
even abd odd-odd nuc1ei and the detai1ed taЬles of experimen­
ta11y determined quantities of our set of nuc1ei, are given 
Ьу Poenaru and Iva~cu (1983Ь), 

7.2. New Additive Parameters of the Known Formu1ae 

The formu1a given Ьу Froman (1957) 

2 -logT = [ 139.8 + 1.83 (Z- 90) + 0.012(Z- 90) ] /у' Q -

- 0.3 (Z - 90) - 0.001 (Z - 90) 2 + С F 
(7 .4) . 

i s 1 imi ted to the region о f even-even nuc 1 е i wi th z > 84. Q -
values are expressed in MeV and Т in seconds throughout 
this work. Consequent1y some additive parameter "old" va1ues 
in taЬle 1 cou1d Ье different from the origina1 if the author 
has used other units for Т (years or minutes). 
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Almost all parameters ICk\ are negative. Hence the values 
-Ck are given in taЬle 1. The original parameter value is 
called "old" and the new one is obtained from the condition 

n 
that the mean value of the absolute error (1/ n) !. log(T. /Т. ) 

i = 1 1 1 ехр 

vanishes in each group of the nuclei mentioned above, All diag­
rams presented in thi s section (except Fig,40a) are computed 
Ьу using these new values, 

The formula (7.4) gives а very good agreement with experi­
mental data for N ~ 128, but for the new region of nuclei pro­
duced in heavy ion reactions, the errors as high as 5 orders 
of magnitude are obtained (Poenaru et al, 1984Ь), because the 
eq,(7.4) was not designed for lighter nuclei, 

А better overall result, though the dispersion for heavy 
nuclei is larger, gives а very simple relationship of Wapstra 
et al. (1959), 

logТ = (1.2Z + 34.9)/ v Q + Cw (7.5) 

also valid for even-even nuclei with Z ~ 85. This time the 
maximum error affects Z = 60 nucleus, not Z = 52 as in the 
preceding case. 

In figure 35 the half-life of the even-even nuclei calcu­
lated wi th various equations is compared with the experimental 
one, То aid the еуе, the consecutive isotopes of а given ele­
ment are connected with а segment of line; а dashed line is 
used if one or more isotopes of а sequence are missing, From 
N = 60 to 82 there is а gap of staЬle nuclides toward alpha 
decay, or emitters undiscovered yet, Up to now only а few com­
ponents of the new island of alpha activity, close to the douЬle 
magic 100sn, have been found. 

As can Ье seen from figure 35а, the formula presented Ьу 
Taagepera and Nurmia (1961) 

- 2/ З 
logT = 1.61(Zdl vEa- z d ) +с т (7.6) 

where Z d= Z- 2 is the atomic number of the daughter nucleus, 
and С т was allowed to vary in different groups of nuclei, re­
mains one of the best; it is practically exceeded (Fig.35b) 
only Ьу а new variant (Keller and Milnzel 1972) 

- 2 / З. 
logT = к2 (Z/vQ - zd J + ck • (7.7) 

where Н к = 1 • б 1 for even-even (е-е); 1 • 65 for even-odd (е- о) ; 
1. 66 for odd-even (о-е) and 1. 77 for odd-odd (о-о) nuclei. 

The equation presented Ьу Viola and Seaborg (1966) is of 
the form 

log Т = (а 1 z - а2 ) 1 v Q - ь 1 z - Ь2 + С v (7 .8) 
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where а 1 = 2 .42151; а 2 = 62.3848; Ь 1 = 0.59015; Ь 2 = 4,2109 
for N < 126 and а 1 = 2.11329; а 2 = 48.9879; Ь1 = 0.39004; 
Ь2= 16.9543 for N > 126, Z > 82. It gives excellent agree-

50 

ment in the region of actinides with N > 128, but as it can 
Ье seen from figure 35с for even-even nuclei it underestimates 
the lifetime of lighter nuclei in contrast with the overesti­
mates of the eq.(7.4). 

Hornshфj et al. (1974) have proposed the formula 

л41 3 z 11 2 -
logT=0.80307( d d) (arccosyx -vТ:Х)+Сн (7.9) 

А уХ 

in which х = О. 538243 QA 1: 3 / Z d and Сн is not changed in va­
rious groups of nuclei, l1ke Cr of eq.(7.4) and Cw of eq. 
(7.5). 

In spite of the strong influence of the neutron shell ef­
fec ts, in eqs. (7.4)-(7.9), mainly the Z dependence was stres­
sed. From figure 35 (except the region of low Z up to 72 in 
figure 35с), one can see that for е-е nuclei in all equations 
а good enough dependence on z was chosen, because at а given 
Z the spread of the resul ts for various Z is not very large. 

The dispersion of results for о-е, е-о and о-о (fig.36) 
nuclei is larger. In all cases one has а large negative peak 
at N = 126 or 127 which is approximately of one order of mag­
nitude for о-е nuclei, but around 2 order of magnitude for 
е-о and 5 for о-о. In fig.36 there are very pronounced nega-
tive errors (-5.6; -5.2; -6.4 and -5.8 orders of magnitude) 
for Z = 83 N = 127. The fact that the neighbourhood of the 
magic number of nucleons is very badly described Ьу all these 
formulae, is attested Ьу the presence of the negative peaks 

_in figures 35 and 36. 

7.3. New Formula Based on Approximation 
of the Potential Barrier Penetrability 

Ву applying the phenomenological fission theory with 
а Myers-Swiatecki~s (1967) variant of the liquid drop model 
to the alpha decay, it was shown (Poenaru et al.l979a) that 
the potential barrier, for the split of а particular parent 
nucleus in its daughter and an alpha particle, is of the shape 
shown in figure 37, where Е'". Q + Е vib and Е vib is the zero 
point vibration frequency. For Evib = 0.4 MeV one has 

-21 ) Т = 3.58 х 10 ехр(К (7.10)· 

and the WКВ formula of penetrability leads to the eq.(2.4) 
for the action integral К. 

Ву choosing two intervals of integration (R 8 , R1 ) and (R 1 , 

Rь), the action integral is split in two terms К=К-'+К' 
corresponding to the overlapping and to separated fiagme~ts, 
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respectively. The main contribution, К', comes from the sepa-
• 8 • • 

rated fragments, where the potent1al energy 1s the Coulomb 1n-
teraction 

E(R) 

52 

2Zd е 2 

R 
R :::_ R 1 = R d+ Ra ( 7. 1 1) 

Fig . 37 . The barrier shape 
for alpha deaay . 
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in which е is the electron charge and R d = r 0 А ~/З , r 0 
= 1.2249 fm. With the substitution R =Rj,cos 2 ~, the integra­
tion К~ is performed easily and leads to an analytical rela­
tionship. It is approximated Ьу а larger quantity obtained Ьу 
replacing Е' Ьу Q and consequently Rl, Ьу Rь = 2Zde

2
/ Q, Now 

К= K i + К 5 and 

8 2 - А 1/ 2 -
К = ~y'2m Z d(-) [arccos у'х -у' x(l- х)) 

8 h AQ (7. 12) 
1/ 3 1/ 3 2 

х = R t / R Ь = r 0 (А d + 4 ) Q 1 (2Z d е ) • 

The term K'i is а consequence of the strong interaction in the 
overlapping region; it was computed numerically and can Ье ap­
proximated as а srnall percent frorn К 8 leading to 

of neutrons is greater. The е-о nuclei (fig.38b) show а very 
sharp peak at N = 127. The very special behaviour of the data 
for Z = 83, N = 127, which was observed in figure 36, is also 
present in the figure 38с. 

The variation of Хех plotted in figures 33с and 38 suggests 
that the rising part of х could Ье approximated Ьу some simple 
laws of variation with z and N: а constant value, а first or­
der polynomial or а second order polynomial. The saw tooth is 
obtained if N and Z are replaced Ьу the reduced variaЬles у 

and z: 

х = , в 1 + В2 у + в3 z + в 4у 2 + в 5z у + в6 z 2 (7.17) 

expressing the distance from the closest magic-plus-one number 
N i (or Zi ) : 

K=xK s ' (7.13)1 '/ = (N-N)/(N 1+1 -N1); N 1<N~N 1+ 1 , Ni= ...... ,51,83,127,185, ...... (7.18) 

where х is different ·for various nuclides; it can Ье either 
greater or lower than unity, due to the fact that К 5 > К'5 , 
hence sometimes it happens that К 8 - К~ over compensates Ki. 
For each of the nuclei of our set of experimental data one can 
determine an "experirnental" value 

Х ехр = lnlO(logTexp+ 20.446) / К 5 , ( 7. 14 

where, after replacing the nurnerical constants, one has frorn 
eq. (7. 12) 

А 1/ 2 _ 
К = 2.52956Zd (-d) [arccosy'x -у' x(l- х)) , 

s AQ . 

z= cz-zi)/(Zi+cz1 ); Zi < z,:: zi+ 1 , Zi= ...... ,29,51,83,115, ..... .. 
(7. 19) 

The pa.rameters \В kl are obtained frorn the fit with our set of 
experirnental data, 

7,4, The Fit with Experimental Data 

The value of the parameter В1 for the simple constant ap­
proximation of х е B1,can Ье obtained straightforwardly Ьу using 

D 

1/ 3 1 
( 7 • IS I the least squares m~thod. The sum i ,;.

1 
log(T i ex/Ti) is minimized 

х = 0.4253 Q (1.5874 + А d ) Z d 

The eq.(7. 10) becornes 

logT = К 
8
/ ln10 - 20.446 . ( 7. 1 б 

The figures 33с and 38а,Ь,с show the variation of the quantity 
х ехр for е- е , о- е , е- о, and о- о groups of nuclei, res­
pectively. For е-е nuclei (fig.33c), there is а systernatic 
sawtooth variation; Хехр increases slowly when N is increased 
between two successive rnagic nurnbers and decreases steeply from 
magic to magic plus two neutron nurnbers. The same thing hap­
pens for о- е nuclei (fig.38a), though the dispersion of data 
is more pronounced. For е-о (fig.38b) and о-о (fig.38c) nucle 
the maxirnurn value of Хехр re~hed at the magic plus one nurnber 
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with respect to х leading to 

D D 2 
В 1 "' ln 10. I (log Т1 ехр + 20.446 Жsi 1 I К si •= 1 i= 1 

(7. 20) 

in each of the four groups of nuclei (n = 123 for е-е, 83 for 
о-е, 111 for е-о and 59 for о-о nuclei). In this way, the 
following figures have been obtained: В 1 = 1.002 410 for е-е; 
В1= 1.016 046 for о-е; в 1 = 1.019 613 for е-о and в 1 = 1,049 

592 for о-о nuclei. 
For the first order and the second order polynomial х = x(y,z), 

а numerical procedure (Poenaru et al, 1982) has been used in 
order to find the parameters B=IBk 1 minimizing the sum of 
the squared of the deviations. In case of the second order po-
lynomial one seeks to minimize the functional и : R 6 -+ R , de-
fined Ьу х 
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n 2 
ах (В) = . ~ ( Хехр (У; ' Z J - Х (у ; ' Z; )] • 

1 = 1 

From the condition of minimum, the set of normal equations of 
the least-squares proЬlem is derived: 

n ~ 
~ [х (y.,z . ) -x(y . ,z . )]-(y.,z,)=O. (k=1,2, ... ,6). 

i= 1 ехр 1 1 1 1 дВk. 1 
(7.22) 

For the first order polynomial the similar set has only 3 equa­
tions. The Gauss elimination method with complete pivot has 
been used to solve these systems. The parameter values obtained 
in this way are given in taЬle 2 (see section 7,6), 

The capacity of our formula to describe the experimental 
data can Ье appreciated from figure 39, For even-even nuclei, 
fig.39a shows the constant approximation; fig.39b, the first 
order polynomial approximation, and fig,39c, the second order 
polynomial approximation, The increased error in the vicinity 
of the magic number of . neutrons N = 126, which is present for 
all known formulae (see figures 35 and 36) and for the constant 
х (fig.39a), is practically smoothed out Ьу the second order 
polynomial approximation, This performance is only partly ac­
hieved for о-е (fig,39d), е-о (fig.39e) and о-о (fig,39f) 
nuclei, In any case а comparison with figures 35 and 36 demon­
strates the advantage of using our formula, Even the very large 
errors of 5-6 orders of magnitude obtained for Z = 83, N= 
= 127 in figure 36 are greatly reduced below 0.4 orders. 

An overall estimation of how well various formulae can desc­
ribe the experimental data, could Ье quantitatively obtained 
Ьу introducing the standard rms deviations of logT values: 

n 2 ~ 
а= 1 ~ [log(Ti /Техр)] / (n-1)1 

i= 1 
(7.23) 

This quantity was displayed in figure 40а for the original (old) 
and in figure 40Ь for the improved additive coefficients (new) 
in each of the four groups of nuclei. Only for some particular 
cases (hatched area at the top of the column) the reduction of 
а is not larger than 0.02. This is а property of the experi­
mental data used Ьу various authors in comparison with our set, 

Even the constant х approximation of our formula has а 
somewhat lower than the best of the known relationships (Keller­
Milnzel 1972), Of course the second order polynomial approxima­
tion leads to smaller standard deviations, 

In the future when а better set of experimental data (more 
accurate or more complete) will Ье availaЬle, t~e parameters 
1 Bk 1 and lck 1 could Ье automatically improved with а computer 
program (Poenaru et al, 1982), 
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parame t ers. 

7.5. Partial Alpha Decoy Half-Life of the Nuclei 
with Known Q-Values 

For all parent and daughter nuclei with Z > 48, which have 
· masses tabulated Ьу Wapstra and Bos ( 1977) the- Q values were 
calculated. Ву using our serniernpirical forrnula it was possiЬle 
to predict (Poenaru and Ivascu 1981а) the partial alpha decay 
lifetirne Т for all gs-gs transitions for which Q >O, Ьу using 
our serniernpirical relationship given above, Onl y the values 
I0-7 < Т < 10 30 (interesting frorn the experirnental point of view , 
were plotted in figure 41. In this way, rnany isotopes with srnalll 
Q-values and consequently very small probability to decay, are 

not present on this fi gure. 
The systernatics of the alpha decay half-life are s hown se­

parately for even-even ( fig.41 a ), odd-even (fig.41b), even-odd 
(f ig.41c), and odd-odd (fig.41d) nuclei. One can see that for 
а given Z, the lifetirne rises when the neutron nurnber increa­
ses, except in the neighbourhood of the rnagic nurnbers of the 
daughter nuclei, where it steeply decreases, frorn N = 82 to 
84 and 126 to 128 when N is even, or frorn N = 81 to 85 and 
125 to 129 when N . is odd. 
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Fig . 41. Systematics of the gs- gs transitions life- time 
predicted values in the interval 10 - 7 to 10 3 s for our • 
set of experimental data (х) and for the other alpha 
emitters (е) (а) even- even; (bJ odd- even; (с) even- odd 
and (d) odd-odd nuclei . 
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The nuclei with known values of the half-life, used to ob­
tain Ьу fit the coefficients !В 1 1 were marked with а cross on 
the figure, where the estimat ed value of Т is plotted. 

After а small island of alpha emitters (Z =51-56 and N = 
= 55-65), there is а gap of relative stability to the alpha de­
cay (very long decay time) or even negative Q-values. After 
that, with Z= 59 and N = 83 begins the main region of alpha 
instab ility. It would Ье interesting to find also other com­
peting modes of disintegration (beta decay or spontaneous fis­
sion) for those nuclei. 

Predictions for nuclei with 62 < Z < 76, have been made also 
Ьу Rurarz (1982) who found good agreement of the results ob­
tained Ьу using our formula with experimental data. Не extended 
the calculations for nuclei far off the beta stability line Ьу 
using mass formulae to find the Q -values. 

7.6. The Island of Alpha Activity Close 
to the DouЬle Hagic IOO Sn 

The island of alpha emitters close to the douЬle magic nuc­
l eus 100 sn, has been extensively studied ( Schardt et al. 1979, 
1981) experimentally at the GSI on-line mass separator. Due to 
the douЬle magicity the mass surface is lowered , leading to 
increased Q-values for alpha decay of nuclei with z, N >52 . 
Complex decay paths are presented Ьу the very neutron defiёient 
trans-tin isotopes, because the {3+ decay Q -value increases and 
the charged particles binding energies decrease with increasing 
distance from the line of f3 -stabi lity. For example 11 4 cs has 
an alpha transition from t he ground state and f3 - delayed pro­
tons, alpha particles and y-rays (Tidemans - Petersson et al. 
1981 ) . 

At the beginning , the alpha activities detected following 
96Ru(lб О, xn) reaction (Macfarlane and Siivola 1965) have been 
assigned to the isotopes 107• lОВте. After that, Karnaukhov and 
Ter-Akopyan (1967) corrected this result showing that one has 
lOB,l0 9 тe. At the GSI UNULAC accelerator, 14 alpha emitters, 
isotopes of Те, 1 , Хе, and Cs, have been identified. These are 
not tabulated in the catalogues of alpha decaying nuclei, pub­
lished Ьу Gauvin et al. (1975) and Rytz ( 1979). 

The alpha transitions between ground states of the nucle i 
with Z = 52-61 have been studied (Poenaru and Ivascu 1984Ь) 
Ьу using our semiempirical formula based on the fission theory 
of alpha decay. 

I n our previous paper s (Poenaru and Ivascu 198За) we have 
used for Те, 1 , Хе, and Cs isotopes the data from Schardt et 
al. (1979) with which the old values "ov" of B~r given in 
taЬle 2, have been obtained. Recently, the authors have pub-
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lished (Schardt et al . 1981) improved data. In taЬle 3 the com­
puted results, obtained for the new data both with the old and 
new Bk values, are compared with experiment. The errors obtained 
with other semiempirical formulae are also given. 

ТаЬlе 3 includes the new isotopes 106 Те and 110 Хе and more 
accurate data for 108 • 1 10 те" llO,ll 2, ll 3 1 , 1 11 • 112 хе and 114 cs.There 
are two alpha lines for 11 1 Хе; that with lower energy and inten­
sity was not introduced in taЬle 2, assuming that it does not 
corresponds to t ransition between ground states. The lightest 
emi tter discovered up to now is 1 06 Те. Its daughter, 102 Sn, is the 
closes t isotope to the douЬle magic 100Sn reached till now. 

As in our preceding paper (Poenaru et al. 1983Ь) where more 
data have been analysed, allowing to obtain the results shown · 
in figure 40, from taЬle 3 one сап see t hat also for this island 
of 14 alpha emitters, smaller errors are given Ьу our equation 
(PI) , followed Ьу Keller-Mtinzel (К-М), Taagepera-Nurmia (TN), 
Hornshфj et al. (Н . . . ) and Viola-Seaborg (VS) . 

The differences between the errors of our formula with the 
old and new Bk values, are not large. Concerning their variation 
trend, one can say that except the odd-N Те and Хе isotopes,for 
which one get а slight increase, for o t her groups of nuclei the 
errors become lower when the new Bk values are used. 

7.6.1. Computa t ion of Q-values with various 
mass formulae 

Only three isotopes of Те and two of 1, from that given in 
taЬle 3, have alpha dec ay Q-values tabulated Ьу Wap s tra and 
Bos ( 1977): for 108, 1 О9те they correspond to older measurements 
and for IIOтe" ll2, !131 they have been estimated from systematics 
and are smaller than the experimental results . 

The Q -value variation trend given Ьу the liquid drop model 
is to increase when the distance from the line of beta stability 
is increased. The superposed shell effects produce an important 
rise of Q for nuclei having а daughter with magic number of 
neutrons (or protons), that is N = Z = 52 or N = 84. This shell 
effect explains the existence of the island of al~ha emitters 
in the neighbourhood of the douЬle magic nucleus ОО Sn, far off 
the main region of alpha emitters having N ;:: 84. 

When the Q -value for Те isotopes is splitted in two terms 
given Ьу the droplet model (Myers 1977) and the shell effects, 
one ob tains that 90% is given Ьу the second term, which is an 
additional support for the douЬle magicity of IOOsn. 

Concerning the proton drip line in this region Plochocki et 
al. (1982) predicts that 104 sь or 105 sь 1оз Те 1091 and 
11з ' " ' Cs are (very likely ) protons emitters . 
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The coтputed Q-values with various тass formulae, are coт­
pared with the experiтental ones (Schardt et al.1981)in taЬle 4. 
one can see that systematically Beiner-LomЪard-Mas (BLM) (1976) 
Q-values are too high and those obtained with Bauer (В) (1976) 
forтula for Те isotopes, are too sтall. None of the nine mass 
fo rmulae can reproduce all the experiтental results, but one 
can say that таnу good estiтates are obtained Ьу Myers (}1)(1977) 
fo llowed Ьу Groote-Hilf-Takahashi (GHT) (1976), Liran-Zeldes 
(LZ ) (1976), Janecke-Eynon (JE) (1976), and Janecke (J) with 
Garvey-Kelson relationships (1976). The best description of Q­
values for Те isotopes is given Ьу LZ, for I isotopes Ьу М, 
fo r Хе isotopes Ьу GHT and J and for 114 Cs Ьу J. 

The sтall errors obtained with LZ for the masses of Cs iso­
topes, for which Wapstra-Bos (WВ) тasses estimated froт syste­
тatics are too sтall, have been тentioned Ьу Epherre (1983) . 
Also the good results given Ьу GHT have been stressed Ьу Epherre 
( 1983) and Schardt et al. (1981), Ьу М- in ref. (Schardt et 
al. l981) and Ьу GHT and JE in ref. (Plochocki et al.1982). 

7.6. 2.Predictions for alpha decay 
of sоте nuclides with Z = 52-61 

In а previous work (Poenaru and Ivascu 1981а) we have coт­
puted the partial alpha decay lifetiтes , Ьу using Q-values cal­
culated froт WB masses (see figure 41). In this figure one can 
see that for the range of Т < loЗOs, the island of alpha eтit­
ters with Z = 52-56, N = 55-65 is well s eparated froт the 
тain region of alpha radioactivity having Z ~ 60, N ~ 82. 

Due to the fact that WB тasses for neutron deficient nuclei , 
estiтated froт systematics do not allow а good reproduction f or 
all the тasses in this region and таnу nuclei far off the beta 
stab ility line have not been tabula ted Ьу WВ, the estimations 
made in this section for Z = 52-61 alpha eтitters, are based 
on the 1975 тass predictions (Maripuu 1976). The range Z = 62- 76 
has been analysed Ьу Rurarz (198 2) . 

The result s for Q-values and partia l alpha decay lifetimes 
coтputed with our semieтpirical forтula with old {Bkl val ues, 
are plotted in f i gures 42-44 for various i sotopes of an e leтent 
versus the neutron nuтber N. 

In the fi gures 42 and 43, only the r ange of N values 1n 
which Q >O, has been plo tted . Due to the fact t hat all 10 curves 
could not Ье clearly shown at this scale , t he regions in which 
таnу тas s forтulae give closer r esult s have been ha t ched in 
figures 42-44; only the curves for wh i ch confusions could not 
arise , have been plotted in the usua l тanner. Wi th f ull l ine 
are dr awn the WB dat a f or Q -values and the corresponding hal f ­
lives. In orde r to show very roughly а po ssiЬle proxiтity of 
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Fig. 42 . Alpha decay Q -values pr>edicted Ъу var>ious mass 
for>mulae and the cor>r>esponding life- times computed ыith 
our> for>mula ver>sus neutr>on number> N~ for> Те~ 1 ~ Хе 
and Cs isotopes . 

the proton drip-line, an arrow has been placed at the distance 
of 18 units of N, from the closest staЬle isotope. 

The increased stability of the closed shell nucle i is il­
lustrated on figures 42-44 Ьу the small Q-values for magic 
neutron numbers of the parent nuclei (N = 50 in figure 42 and 
N = 82 in figure 44) and large Q -values for the magic neutron 
numbers of the daughter (N = 52 in figure 42 and N = 84 in 
figure 44). For all other N values between these two extremes 
one obtains monotonously decreasing Q-values with increasing 
except for the steep increase between magic and magic-plus-two 
neutron numbers. 

The dispersion of 1 MeV of the Q-values gives rise of 6-8 
orders of magnitude dispersion of the half-lives. Hence, from 
this point of view, the nowadays mass predictions are not satis­
factory. 

The computations based on BL~1 masses are too optimistic 
(large Q-values and correspondingly small half-lives) for 
this range of Z values; moreover they lead to а very steep 
decrease with the neutron number, as it is shown in figure 44. 
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Fig .43. The same quantities as in figur>e 42~ for> Ва~ La~ 
Се and Pr isotopes. 

Beginning with Z = 55, the JE Q -values are coming closer and 
for Z ~ 57 they even surpass them. 

The figure 42 shows the results for the isotopes of the ele­
ments with Z = 52-55, for which some alpha emitters have been 
already identified. The experimental data are plotted with hea­
vy points and the predictions from ref. (Schardt et al.1981) 
with crosses. It was mentioned that the alpha branching ratio 
is small for the high mass number isotopes and is close to 100% 
for small mass number isotopes. Very likely, for 109 I and 113 Cs 
one has to consider also the competition of the proton radioac..; ­
tivity. 

The figure 43 shows two extreme limits: the high Q -values 
and alpha decay probabilities given Ьу BLM and JE and the low 
Q -values and alpha decay probabilities (long half-lives) of 
М and GHT. For the La and Се isotopes, this trend is very clear­
ly seen. From the results plotted in this figure, one can hope 
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that some new alpha emitters could Ье found especially for the 
Ба and Се isotopes. 

The shell effects in the neighbourhood of N = 82 magic num­
bers are shown in figure 44. For N = 74-84 there is а gap in 
which no alpha activity could Ье detected wither because one 
has Q <O, or, if it is positive, its value is very low,leading 
to extremely long half-lives. 

8. ANALYTICAL APPROXIМATION OF ТНЕ POTENTIAL BARRIER 

We have performed (Poenaru and Ivascu 1984а) а systematic 
investigation of the stability of about 2000 nuclei, with known 
masses tabulated Ьу Wapstra and Bos, toward the emission of 
isotopes (Z 2 = 2) with various mass numbers А 2 = 3,4, ..• ,10. 
It was possiЬle to consider this large number of cases (about 
16,000) Ьу using а model leading to analytical results both 
for the states (potential energy) and the dynamics (barrier 
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penetrability) of the process. In 
the following we would like to pre~ 
sent this model allowing to account 
for angular momentum and nuclear 
excitation effects. This version 
can Ье used to find new kinds of 
radioactivities, as will Ье shown 
below. 

The figure 45 illustrates the 
fact that for some Ро isotopes, 
besides the well-known alpha de­
cay, the exotic 5 Не spontaneous 

· emission from the ground state is 
possiЬle. All other Не isotopes (Az = 3,6, 
emitted only from excited states, because 

Unfortunately 5 Не is not staЬle (see Ajzenberg-Selove and 
Lauritsen (1974) and the references cited therein). Its ground 
state has а width Г = 600+20 keV (Nyman et al.1981). Conse­
quently, the 5 не radioactivity could Ье experimentally deter­
mi ned Ьу alpha-particles or the neutrons produced Ьу its own 
dis integration, as well as Ьу the presence of the daughter nuc­
l eus. In this respect it is encouraging that recently (СаЬlе 
et al. 1983) the existence of two-proton radioactivity predicted 
l ong time ago (Goldansky 1960) was experimentally confirmed. Of 
course, the diproton, like 5He,is not а staЬle particle but from 
t he analysis undertaken Ьу Goldansky it seems that the two pro­
t ons separates practically only after the passage of the cluster 
t hr ough the potential barrier. We presume that the same is true 
for 5 Не, i.e., it disintegrates into а neutron and an alpha par­
t ic le after tunnelling. 

8. 1. Parabolic Approximation of the Interaction Potential 
Containing а Centrifugal Term 

In the framework of LDM two center spherical parametrization 
(see sections 5.1. 1, 5.3 and 5.5) for separat ed fr agments, 
R ~ R , only the Coulomb interaction energy Z1Z2e 2/ R has been 
cons id~red for alpha decay of even-even nucle i . The maximum of 
the potential energy at R=R 1 was 
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Е с = z1 z 2 е 2 / R t • (8. 1) 

where е is the electron charge. In this way, а barrier shape 
like that shown in figure 37 was obtained. ~ 

Now, for 5не, which has а spin !2 = 3/2, the spin, I, and 
parity, rт, conservation тust Ье fulfilled: 

.... ... -+ -+ 

1=11+l2+f 
f 

" = 171 • 172 • (-1 ) . (8 . 2) 

Any quantity belonging to the parent nucleus is written with­
out subscript, those of the daughter and eтitted particle have 
the subscript 1 and 2, respectively. 

То the Couloтb interaction Ее one has to add also the con­
tribution of the angular тотеntuт f~ - the centrifugal terт 

Ef = n2f (f + 1)/(2/LR~), (8.3) 

where 1.1 = тА 1А 2/А is the reduced тass and т is the nucleon тass, 
Ву substituting the nQтerical values one obtains, for R = Rt 
in fт, the tota1 interaction energy at R = R , in MeV: 

t 

2 
Ei =Ее+ Е f = 1.43998Z1 Z2/ Rt + 20.735f (f + l) А / (A1A2Rt). (8.4) 

In the overlapping region, а convenient analytical approxi­
тation of the potential energy curve E(R), leading froт E(R i) = 
to E(Rt) = Ei, suggested Ьу the potential barrier shape (fig.37) 
and allowing to get а closed forтula for the lifetiтe Т (see 
the next section), is а second order polyniтial in R. Finally , 
one has 

E(R) о { 
Q + (Е i - Q) [ (R - R i) / (R t- R i)] 2 ; R:;: Rt 

z1 z2 е 
2/ R + n2 е (У + l)/(2~LR2); R ~ R t • 

where Ei is given Ьу eq. (8.4). 
For а nonzero excitation energy (а nuclear teтperature т), 

the Couloтb energy is only slightly reduced (Sauer et al. 1976), 
being тultiplied Ьу the factor (1-10-3

• т 2), where т is ex­
pressed in MeV. Consequently, at relatively sтall excitation 
energies, it reтains practically unchanged. 

8.2. Closed Forтula for the Lifetiтe 

Like in fission the halflife of а тetastaЬle systeт is given 
Ьу eqs. (2.3)-(2.5), in which Q'=Q +Evib+ Е* and Е*< Ег 
-(Q + Evib) is the fraction of the excitation energy concen­
trated in the separation degree of freedoт. This barrier trans-
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тission тodel, used in the present work, describes only low 
excitations (Bjфrnholт and Lynn 1980) . Statistical equilibriuт 
aтong all the degrees of freedoт of the nucleus is reached for 
high excitation energies U. In this case E*=U- (Е 1 + Erot), 
where U = ат 2 ; а = А/10 MeV - 1 is the level density paraтeter, 
Ei is the internal energy availaЬle for other degrees of free­
doт; Erot is the rotational energy. In а hot nucleus the energy 
concentrated on тotion in the deformation тоdе is of the order 
of the nuclear teтperature . Hence the residual nucleus is usu­
ally left in а highly excited state, too. According to the sta­
tistical тodel (Michaudon 1981) the probability to excite а col­
lective state of Е* energy is roughly proportional to ехр(-Е*/т ). 
Due to the fact that E(R

3
) = Е(Rь') = Q' = Е' it follows that 

Ra = Ri + (Rt- Ri)[(Eviь+E*)/Eь]1 / 2' (8.6) 

Е~= Ei - Q, (8 . 7) 

RЬ = Щ Ее / Q')[ 0.5 + (0.25 + Q'Er1E~) 1 1 2]. (8.8) 

According to the eq.(8 . 5), one can split the action integral 
in two terтs К= K

0
v+ К Ьу integrating froт R

8 
to Rt in the 

overlapping region and lroт Rt to Rь' for separated fragments. 
Ву expressing the tiтe in seconds, the energies in MeV and the 
lengths in fт, one obtains, after replacing the nuтerical con­
stants, the following relationships: 

1.4333 х 10 
-21 

Т= [ l + ехр (К) ] ; к = KOV +к s • 
Е vib 

К =0 . 1296(ЕьА 1 А /А)1 / 2у'Ь2-а2 _ ~ln Ь+у'Ь 2 +а2 ] 
ov 2 ь а ' 

К 8 = 0.4392(Q' А 1А 2/А) 
112 Rь J cm 

1/ 2 1/ 2 с . c-2r 
Jcm=(C+rn-1) -[r(c-r)+rn] +-(arcsш-=~==-

с-2 -- arcsin ) + y'rn ln 1 
у' с 2 + 4rn 

where 

2 у' с 2 + 4rn 

2Гrn [ r (c- r ) + rn] 112+ cr + 2m 

r[ 2 у--;;-( с+ rn -1 ) 112+ с + 2m] 

а = R - R . = Ь [ (Q , - Q ) / Е оЬ ] 1 1 2 
а 1 b =R t - R i, 

(8.9) 

(8. 1 О) 

(8. 11) 

(8. 12) 

(8. 13) 
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с = rE с /Q' ; m = r 2Е f / Q' r = R1 / R ь • (8. 14 ) 

If f = О, one has с = 1, m = О and the well-known formula 

J 10 = arccos·/r - ...; r(l- r) (8. 15) 

is obtained. 
The zero point vibration energy, Evib = 0.51 MeV, was deter­

mined Ьу fit with experimental data, Texp•on 376 alpha emitters, 
the same given as input data in the computer program described 
Ьу Poenaru et al.(l982). In the variation with Evib of the 
r.m.s. deviation of logT values defined Ьу the eq.(7.23) there 
is aminimum amin = 1.02 at Evib = 0.51 MeV. For Evib = 0.2 and 
0.9 MeV, one has а = 2.20. It is assumed that the optimum va­
lue for alpha decay could Ье used also for 5 не radioactivity. 
Of course, this assumption which presumaЬly is an optimistic 
one , needs further theoretical (or experimental) support . Con­
sequently, the absolute values for Т given in the following sec· 
tions should Ье taken only as tentative lower limits. 

8.3. 5HeRadioactivity 

The variation of Q -values for the emission of 5 Не from the 
ground states of nuclei with masses tabulated Ьу Wapstra and 
Bos (1977) is plotted in figure 46. One can see the pronounced 
odd-even effect, which is present for all odd-mass Не isotopes 
(see also figure 45). 

There are two islands (in fact two archipelagos due to odd­
even effects) of 5 Не radioactivity. The figure 46 shows the 
detailed position of 5 Не emitters, relative to the Green appro­
ximation for the line of beta stability. The main archipelago 
formed from two islands involves the medium-mass nuclei with 
Z= 83-92 and N= 127-137. The enhanced Q of N= 129, Z= 
= 84 nucleus, leading to the douЬle magic daughter N1 = 126, 
Z 1 = 82, is а strong shell effect, disturbing the smooth LDM­
like trend, toward larger Q -values of the neutron deficient 
nuclei. This trend is manifested in the second archipelago of 
4 islands heavy transcurium nuclei with Z= 97-105, N = 145-157. 
Similarly, the neutron subshell N1 = 152 explains the larger 
Q -values for N = 155 . 

Unfortunately the lifetimes for 5 Не spontaneous emission from 
the ground states of the above-mentioned nuclei, are very long 
even with the optimistic assumption mentioned above. Only 15 of 
all 110 emitters have the disintegration period, Т, smaller 
than 10 45 s (see figure 47). Such а reduced probability, as in 
the case of spontaneous fission of some actinides, will make 
difficult to observe experimentally this phenomenon, in the 
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presence of other competing decay modes. For example the partial 
lifetime, for 5 не radioactivity of 213ро is 10 20.9 s, but its 
total half-life due to а emission is only 4.2 ~s. 

One has to consider also the contribution of the angular 
momentum f~. rising the potential barrier. This is determined 
f rom the spin and parity conservation condition (see eq.(8.2)). 
For example when 5 Не is emi tted from 213 Ро, one obtains f = 3 
or 5, because 1" = 9/2+, 1 ~1 = о+ and 1~2 = 3/2-. Five units 
of angular momentum produce an increase of about an order of 
magnitude of the lifetime as it is shown in figure 47. In the 
opposite direction acts the energy E*,as will Ье shown below. 73 
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Shorter l ifetime s a re expected to Ье met i n the region of 
superheavy nuclei. The result s presented i n f igure 48а, obta ined 
Ьу us i ng the binding energies calculated Ьу Seeger and Howard 
(1 975) show that the i sland of 5 не radioact i ve heavy nuclei со 
tinue in the superheavy region. Larger Q - values lead to shor ­
ter li f etimes (fig.48b) . Of course, the partial hal f -lives of 
5 Не d i sintegration computed in thi s work has to Ье composed 

wi t h the lifetimes of other competing decay modes like а or f3 
decay, spontaneous f ission. etc . , i n order to obtain the total 
disintegration period Т1 • The variat i on of Т with the energy 
Е* (fraction of the excitation energy concentrated in this col~ 
lective mode), plotted in figure 49 for some nuclei, suggests 
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that а convenient method to obtain shorter lifetimes is to 
· h 5 н · exc ~te t е е em~tters. 

As it was expected from the beginning, the odd- N nuclei 
are better candidates, for 5 Не emission, than their even- N 
neighbours. At Е*= б MeV energy, lifetime of some 5 не emitters 
ьecomes measuraЬle. This can Ье seen from the figure 50, gi ven 
only to illustrate that in principle, Ьу raising the tunnelling 
energy, the partial half-lives for 5 Не emis s ion could Ье con­
veniently diminished. А more detailed analysis, of both proba­
bil ities to excite the nuclear states and to compete with other 
di sintegration modes of these states, should Ье undertaken in 
order to plan an experiment. Such an analysis can Ье made simi­
l ar l y with that of а {3-delayed proton emission (Ka rnaukhov 
1974). 

One way to excite the parent nucleus is to populate some of 
its excited levels Ьу {3-decay of а precursor . The {3-delayed 
5не radioactivity (Poenaru and Ivascu 1984 а ) has а better chance 
to Ье experimentally determined. In this respe c t , from the avai­
laЬl e energy of the analysed nuclei, one can s ay that 155 УЬ, 
175 Pt and 209 •217Ra after {3+-decay, as well as 9 -11 ве, 13 -14 В, 
13-1 7 С , , 19-21 О etc. , after {3- -decay , are in а privi leged po­
sition. 

The 5не decay of the 9ве excited states fed Ьу the {3 - -decay 
of the 9 Li precursor have been already experimenta lly determined 
(Nyman et al. 1981) . 

Up to now we have considered only the nuc le i with masses ta­
bu l a ted in 197 7 Ьу Wapstra and Bos. Taking into account that 
the beta decays of exo t ic nuclei (far of f the {3 - stability line ) 
have hi gh Q -values and can populate а large number of excited 
leve l s , i t is expected that many other {3 - delayed 5 Не radioac­
t ive nuclei could Ье found in the yet unexplored regions. 

8.4. Emis s ion of Heavy Не Isotopes from Excited States 

The light Не iso t opes, like alpha particles, are eaэily 
emitted usually Ьу neutron deficient nuclei: in figure 51 the 
trend of increasing Q-value is clear ly seen. The same is true 
fo r 5 Не, but this t r end is weaker . 

On the contr ary , the neutron-rich nucl e i have l arger Q-va­
lues for the heavy isotopes 8Не, 9Не (figure 52) and 10 Не (fi­
gure 53). For 1°не, the mass exce ss of 50 . 13 MeV estimated Ьу 
Janecke (19 76) have been used . Due to the fact that Q <O, these 
heavy Не isotopes could not escape spont aneously from heavy 
nuclei , but they could Ье emitted from excited states. 

If we assume that the fraction of the excitation energy con­
centrated in this collective mode is Е*= 40 MeV, one finds, 
very tent atively, the lifetime for 10 не emission, given in 
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f igure 53 (Poenaru e t а1.198За). Due to the shell effects, the 
smalles t lifetime is obtained for а parent nucleus like 218ро, 
leading to the douЬle magic daughter 208рь, 

In spite of the experimental effort, the exotic nucleus 10 не 
is undi s covered up t o now and moreover, it is not def inetly 
sett l ed whether it is staЬl e or not. Our calculations show that 
in order to obtain the minimum lifetime (for Е* under the bar­
rier height), the region best suited for experimental search 
is tha t of excited compound neutron-rich isotopes of the trans­
lead element s . 
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8.5. Spontaneous Emission of 14С and of Other Heavy Clusters 

In two papers entitles "New Туре of Decay of Heavy Nuclei 
Intermediate between Fission and Alpha Decay" (Sandulescu et al, 
1980) and "Emission of Alpha Particles and Other Light Nuclei 
as а Fission Process" (Poenaru and Ivascu. 1980), we have shown 
that for таnу heavy nuclei, the ground state is metastaЬle (the 
released energy Q > О ) with respect to the very asynпnetric split 
and this phenomenon, like alpha decay (Poenaru et al.1979) could 
Ье considered а fission process described with the Strutinsky 
(1967) macroscopic-microscopic method adopted for this super­
asynпnetric case. 

Initially (Sandulescu et al. 19НО), the emission of various 
heavy clusters like 14 С, 24 Ne, 24 Mg, 32•34 si, , 46 Ar , 48 Са, 
etc., from some particular parents 1 ike 222, 224 Ra, 230, 232 Th and 
heavier nuclides up to 254 No have been predicted on the basis 
of very simple calculations of penetrability . Then, an analyti­
cal expression of the lifetime have been obtained (Poenaru and 
Ivascu 1980) and was used to made а systematic study of various 
cluster emission from the ground state or low excited states 
populated Ьу beta decay of а precursor (beta delayed heavy clus­
ter radioactivity). If we consider all nuclei (-2000) with mas­
ses tabulated Ьу \lapstra and Bos (1 977) and the 100 isotopes 
of the emitted elements with Z = 1-10, the number of the pos­
siЬle comЬinations ground state parent - cluster eшitted is of 
the order of 2·10 5

. Of course, only а closed formula can Ье used 
for such а purpose, but in the futu re the most interesting cases 
revealed in this way could Ье studied with more refined methods. 

As was shown in the preceding sections, the Не isotopes with 
А= 3-10 have been studied firstl?,, allowing to predict 5 Не 
radioactivity and deta delayed He-radioactivity (Poenaru and 
Ivascu 1983Ь, 1984а) and to show the regions of the nuclear 
chart where 10 Не emission from excited states has the most im­
portant chance to Ье met (Poenaru et al.l983). It was stressed 
that the maximum probability is encountered for the processes 
leading to а douЬle magic daughter. 

This conclusion was also advanced Ьу Rose and Jones (1984) 
whi discovered the 12 С radioactivity * of 223 Ra - giving the 
first evidence for such а new type of decay mode. 

In our computations, initially, the zero point vibration 
energy Evib = 0.51 l1eV was determined Ьу fit with experimental 
data on 376 alpha emitters - the same given as input in the 
computer program described Ьу Poenaru et al.(1980). ~ith this 
value one obtains (Poenaru and Ivascu 1984Ь) the results from 
which the optimum-optimorum cases are shown in ТаЬlе 5. For 

* Confimed also Ьу Dr.OgloЬlin (1984) and coworkers from Kur­
chatow Institute in lfuscow (see р.2 of the present paper). 
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а very large numb er of cases taken into consideration (approxi­
тately 2х10 5 ) only that leading to shortest lifetimes are given 
in this taЬJe. One can see that the high probability processes 
are encountered for that comЬination leading to а daughter nuc­
leus (A1Z1) with magic numЬer of neutrons N1= 126. The Z1 op­
timum proton number is not always а тagic one, z 1 = 82; it can 
Ье also 83, 84, 85 or 86. This shown once more that in the lead 
region of the nuclear chart of neutron shell effects, included 
in Q-values Ьу this model, are stronger than the proton ones. 
The shell effects a t N1 = 126 are much stronger than that for 
lighter nuclei. 

А pairing effect is also observed: the even Z2 clusters 
have higher probability then their odd Z2 neighbours to escape 
from heavy nuclei. 

The absolute values of logT presented in table 5 are only 
tentative estiтates, due to the fact that the potential barrier 
is overestiтated and the parameter Evib , which can Ье chosen 
Ьу а fitting procedure to compensate this effect, was taken as 
for the alpha decay (0.51 MeV). In this way the heavier is the 
nucleus, the highest is ' the error inlogT. For example in case 
of 14 с radioactivity of 223Ra,one has for the lifetime relative 
to the alpha decay logTa = 6.3 and from the measured (Rose and 
Jones 1984) branching ratio (8.5+2.5)·10-10 one has logTexp= 15.1. 
The corresponding calculated value for N1 = 127 is logT =18.6 -
about three orders of magnitude too pessimistic. This means that 
in the experiment we can expect to find for lifetimes lower va­
lues, than that given in table 5 and this is especially true 
for heavy clusters far from alpha particle. Nevertheless one can 
conclude the discussion concerning table 5 Ьу saying that besides 
the well-known alpha decay, one proton and two-protons emission, 
one can observe таnу other charged particle radioactivities 
like: вве, 12,14,1зс,, 1sN, 16 0 , sне, 118,, 9ве, 22Ne, 
1а 0 , I4N, I7o, IбN, 24Ne, ~2 8 , 2зNе, 21,20F , etc., if 

we refer only to Z2 = 2-1 О for which the search was ini tially 
made. Of course, the intensities of these processes are Ьу таnу 
orders of тagnitude weaker than those of the alpha decay. 

Now the first measured branching ratio, allows us to improve 
our estimations. In the following we present some results ob­
tained Ьу considering that in order to compensate the barrier 
overestimations for various clusters Evlb = 0.51 А2 /4, with 
which logT = 14. 9 f or the 14с emission from 223 Ra. 

The absolute values of logT estiтated in this way for the 
emission of 14 С from various isotopes of Rn, Fr , Ra, Ас, 
Th , Ра , and U are plotted in the lower part of the figure 54, 
where ( -logT) was plotted in order to have an indication abou t 
the relative intensities . One can see that the minimum lifetime 
is obtained at N = 134 ( N1 = 126) for Ra isotopes ( z1 = 82), 
followed Ьу Ас , Th , Fr , Ра , U, and Rn. 
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Usually, the most important competitor of heavy cluster emis­
sion is alpha decay and, from the experimentalist point of view, 
i t is most important to know the ratio Т/Та , as it is presented 
i n figure 55. From this figure, one can see that for some ele­
ments 1 ike Ra, Ас , and Th, the minimum value of Т/Т а is 
not obtained at N 1 = 126 ( N = 134), where Т has its minimum, 
but at N 1 = 127 ( N = 135) because Та, plotted in the upper part 
of the figure 1, has steepest variation with N. 

Another conclusion is that Rose and Jones (1984) discovered 
the best 14 С emitter. Nevertheless, we found that some other 
iso topes of Ra and Ас, like 224• 223Ас., 222•22 4 Ra, 2 25Ас and 221 Ra, 
have also good ratio Т/Та. 

То illustrate the answer to the other problem which is im­
portant for someone planning an experiment, we present in table б 
the most probable emissions from several long -lived nuclides. 
One can see that in all cases the daughter nucleus has тagic 
~umber of neutrons or protons, or it is not far from it. Besides 

23 Ra already measured, for which log(T/T~xp) has the lowest 
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ТаЫе 6 

Most рrоЬаЫе cluster emission from some par ent nuclei 

Parent 

223Ra 

22ЧRа 

227 Ас 

230Th 

232Тh 

231р8 

232u 

233u 

234u 

235u 

238u 

237Np 

252cr 

82 

Daughter 

N1 z1 

127 

128 

1)0 

126 

126 

126 

126 

126 

126 

127 

126 

126 

128 

126 

127 

128 

125 

126 

126 

126 

В2 

В2 

В3 

В1 

во 

82 

во 

82 

В2 

82 

82 

82 

В2 

во 

82 

В2 

80 

во 

81 

80 

Emitted 

E(MeV) logT{s) logr,;r 
Cluster 

14с 31.В4 

14с 28.21 

140 2В.О7 

200 43.09 

24Ne 57.76 

220 4).1) 

2~е 56.59 

23р 51.В) 

24Ne 62.)0 

24Ne 60.49 

25Ne 6О.В2 

2~6 60.09 

2~8 58.В) 

28Мg 74.11 

26Ne 58.73 

25Ne 57.ВО 

JOМg 7).00 

)2Мg 71.15 

)ОМg 75.70 

46Ar 126.72 

14.9 

21.9 

23.2 

24.0 

25.3 

26.2 

27.9 

24.7 

21.3 

23.9 

23.8 

25.2 

26.3 

25.8 

27.3 

2В.3 

2В.О 

)1.0 

25.7 

24.1 

6.3 

10.7 

11.0 

12.5 

17.8 

1.2.0 

9.5 

12.8 

13.0 

16.3 

17.3 

14.2 

8.0 

lo g (Т /Т"' «-<fj 

в.6 

11.2 

12.2 

1). 

12.В 

13.7 

10.1 

12.7 

11.8 

11. 1 

11.0 

12.2 

1).3 

12.В 

11.0 

12.0 

11.7 

13.7 

11.5 

16. 1 

value, there are some other cases deserving attention, like: 
14 С radioactivity of 226 Ra; 26 Ne radioactivity of 232Th; 24·2 5 Ne 
emission from 233 U; 26 Ne emission from 235 u; 3°мg emission from 
237 Np,etc. It is possiЬle to find other more favouraЬle cases 
Ьу doing more systematic search. Of course, one must stress 
again that all absolute values given in this section are only 
tentative estimates because the parameter Evib was fitted only 
fo r alpha particles and 14 С. 

9. CONCLUSIONS 

In order to show that the gap between Az= 4 and А 2 = 70 
(Z2 = 2 and Z2=Зо) in the fission fragment mass distribution 
can Ье fitted Ьу new kinds of radioactivities, we have studied 
systematically the nuclear stability toward very asyrnmetric 
split. The extension of the fission theory to these superasym­
metric processes was tested at the beginning on alpha-decay, 
due to the large wealth of experimental data availaЬle at the 
time. 

Promising results have been obtained Ьу applying the fission 
theory for the calculation of the alpha disintegration half­
lives between ground states or low excited states below the bar­
rier. Consequently, the traditional picture of the alpha prefor­
mation, followed Ьу tunnelin~ through the potential barrier, 
can Ье replaced Ьу the larger amplitude oscillations (asymmet­
ric fissi on mode) of the nuclear surface favoured energetically 
Ьу the shell effects and leading to а very asyrnmetric split also 
Ьу the quantum mechanical tunnel effect. The preformation factor 
role is played Ьу the zero point vibration frequency . 

Fo r а very large mass asymmetric fission, the charge dens ity 
asyrnme try plays an important part. Three macroscopic models have 
been extended for nuclear systems with dif f erent charge densi­
ties. А phenomenological correction was introduced, accounting 
for both the shell effects, the nuclear deformation and the neg­
lected terms of the mass formula. The shell correction part 
could Ье also described Ьу Schultheis cluster prescription. 

The fact that the macroscopic models, having the parameters 
obtained from а fit of experimental data for masses and almost 
symmetrical fission and fusion barriers, with а suitaЬle pheno­
menological correction, reproduce the potential barrier shape is . 
attested Ьу the good agreement of the theoretical lifetimes for 
alpha decay with the experimental ones, over а range of some 
24 orders of magnitude. The time dependent Hartree-Fock method 
gives the same zero point vibration frequency with that obtained 
from а fit with experimental data. 
. Ву taking into account the nuclear deformation of the parent 
and daughter nuclei, the agreement of Q-values with experi-
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menta1 resu1ts was improved and it was possiЬle to predict for 
the first time the 1ifetime of the a1pha decay from а shape 
isomeric shate. This is many orders of magnitude larger than 
that of isomeric spontaneous fission, which exp1ains the un­
successfu1 experimenta1 research. 

In princip1e this theory can exp1ain both the Q-va1ues and 
the ha1f-lives. It has to Ье improved Ьу extending the micro­
scopic she11 correction method for 1ight nuc1ei or very asym­
metric fission. A1so the mass parameters and the zero point vir­
ration energy of this mode need further investigation. 

The new semiempirica1 re1ationship for the 1ifetime takes 
into consideration exp1icit1y the dependence not on1y on the 
proton number but a1so on the neutron number and their depar­
ture from magicity. In comparison with other formulae for the 
known regions of a1pha emitters it gives the best estimates. 

The estimation of the genera1 trend of nuc1ear stabi1ity with 
respect to the emission of charged partic1es revea1ed таnу in­
teresting facts. For the spontaneous emission of 2·3 Н,, 3 •6 -1°не, 
4Li , 7 N , 9 с and some other c1usters, а11 nuc1ei with masses 
tabu1ated Ьу Wapstra and Bos are staЬle (Q < 0) in the ground 
state. 5 Не radioactivity is energetica11y possiЬle for some 
110 nuc1ides grouped in two archipe1agos with Z = 83-92, N 
= 127-137, Z = 97-105, N = 145-157. The 1ast region extends 
a1so for superheavy nuc1ei. 

The ana1ytica1 formu1a accounting for angular momentum and 
1ow excitation energies, allow to hand1e а 1arge number of cases 
to search for other new kinds of radioactivities. Among the e1e­
ments with Z = 3-8, good chances to Ье emitted have вве, 
12•13 •14 с , 15 N , 16 о , 5 не, etc. The most favouraЬle case for 
14с · · · · · · h 1 h d 1 d em~ss~on ~n compet~t~on w~t а р а есау was а rea у mea-
sured, but there are some other possiЬle candidates 1ike 
224,223,225 Ас and 222,224,221Ra. Ву ana1ysing severa1 long-1ived 

heavy e1ements, it was found that other c1usters 1ike 20 •22 0 , 
23 F 24,25,26 Ne 28,30,32 Mg cou1d have the ratio Т/Т wi thin 

' ' . а 
10-13 orders of magnitude. In а11 cases this phenomenon, 1ike 
the usua1 sma11 asymmetry we11-known in fission is а new mani­
festation of the nuc1ear she11 structure, being stronger for the 
combinations parent-c1uster 1eading to а magic-daughter or not 
too far from it. 
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Поэнару д.Н. и др. Е4-84-4~ 
Ядерный расnад как эниссиА з•РА•енных частиц-суnерасимметричный 
процесс делениА 

Накро-микроскоnический метод, рассчитанный АЛR суперсимметричного .деле­
ниА, был nрименен к альфа-расnадУ и другим видам испусканиА зарА•енных час­
тиц, которые возмо•ны благодарА структуре идерных оболочек. Три макроскоnи­
ческие модели /•идкокаnельнаА моДель, модель идерных сил конечного nредела 
и Юкава-эксnоненциальнаА модель/ были nрименены к Адерным системам с различ­
ными nлотностАми зарида. Представлены различные цифровые методы АЛR расчета 

кулоновекай и nоеерхностной энергии Адра общей конфигурации, а так•е анали­
тические результаты ДЛR некоторых особых конфигураций. Дли nолучениА экспе­

риментальной величины Q исnользовалась феноменологическа11 коррекции.Этот фор­
мализм был nрименен к альфа-расnадУ из основного состоАниА и изомерного со­
стоинии,расnределАощегосА nутем делении.Дли оценки энергии нулевых колебаний 

исnользоеалсА временнозависимый метод Хартри-Фока. Выведена новаи nолуэмnири­

ческаА формула, даощаи лучwие оценки времен •изни альфа-расnада дли nредска­

заниА ноеых альфа-излучателей. Дли этого нового сnособа распада, nроме•уточ­

ного ме*дУ альфа-распадом и традиционным делением, nолучены больwие веронт-но­

сти комбинаций родительское идро-ти•елый кластер, nривод,..ие к дочерним ма­
гическим Адрам или близким к ним. 

Работа выполнена в Лаборатории теоретической физики ОИЯИ. 

Сооб•еиие Объединенного института вдериых исспедовавиА. Дубна 1984 

Poenaru O.N. et al. 
Nuclear Оесау Ьу Emission of Charged Particle -
Superasymmetrlc Fisslon Process 

The macroscoplc-microscopic method, adapted for superasymmetrlc flsslon 
was applled to the alph• dec•y and other kinds of charged partlcles radlo­
ac:tlvltles, whic:h a·re possiЬie due to the nuclear she11 struc:ture. Three 
mac:rosc:oplc мodels (the llquid drop model, the finlte гange of nuc:lear for­
c:es model •nd the Yukawa-plus-exponentlal model) are extended for nuc:lear 
systems wlth dlfferent c:h•гge densltles. Various numeric:•l methods for the 
c:omputatlon of CoulomЬ •nd surf•c:e energy of а gener•l shape nuc:leus •ге 
presented along wlth an•lytlcal results fог some partlc:ular c:onflgur•tlons. 
А phenaмenologlcal c:orrec:tlon was used toobtaln the experlmental Q-value. 
Thls forмiiSII was applled to the alpha dec:ay fгan the groun_d state •nd ·fr0111 
• flsslon lsanerlc: state. А tlme dependent Hartree-Foc:k method ls used to 
estlmate the zero polnt vlbr•tlon energy. ~ new semlemplrlcal fonmula glvlng 
the Ьest estlмtes for the alpha de~y llfetlmes was derlved and used to 
predlct new alpha .. atters. For thls new 80de of dec:•y lnteгmedlate Ьetween 
alph• d8C8Y and the tr8dltlonal flsslon, l•rger proЬaЬII1tles •re oЬt•lned 
for the ca8Ьinatlans pa"'"t-heavy clusteг leadlng to а -.glc daughter or not 
too far fnlll lt. 

Тhе a....-tlgatlan h8s Ьееn perfo,_d •t the LaЬor•tory of Theoretlcal 

Phy~J.'fto. of СМ~ Iмtitutв for lluclear leaearch. DuЬna 1981t 


