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1. INTRODUCTION

The induced fission (Hahn and Strassmann 1939, Meitner and
Frisch 1939) and the spontaneous fission (Petrjak and Flerov
1940) have been discovered long time after the alpha decay (Bec-
querel 1896, Rutherford and Geiger 1908). One of the first suc-
cesses of the quantum mechanics was the explanation of the alpha
tunnelling through the Coulomb barrier (Gamow 1928, Condon and
Gurney 1929),

The similarity between fission and alpha decay was recogni-
zed in the early stages of the fission theory (Bohr and Whee-
ler 1939, Frenkel 1946). Nevertheless, the theories of these
phenomena were developed on essentially different grounds, Nuc-
lear reaction microscopic methods have been used in alpha decay,
but for many years the phenomenological liquid-drop model (LDM)
dominated the fission,

The asymmetrical distribution of the fragment masses from
the spontaneous or low excitation energy induced fission was
a longstanding puzzle of the theory.

The first attempt to consider both the collective nature
of the nucleonic motion and the single particle effects by ad-
ding the shell corrections to the LDM energy (Myers and Swia-
tecki 1966) offered a good estimation of nuclear ground state
(gs) deformations. The next important step, producing a renewed
interest for the development of the fission theory was the idea
of deformed nuclear shells and the microscopic shell correction
method (Strutinsky 1967) strongly stimulated by the experimental
discovery (Polikanov et al,1962) of fission isomers (Poenaru
1977, Metag et al. 1980, Bjérnholm and Lynn 1980).

In this way it was possible to explain qualitatively the
fission asymmetry (Mdller and Nilsson 1970, Pashkevich 1971,
Adeev et al., 1970, Brack et al, 1972, Méller 1972, Mustafa et
al. 1972) as it is essentially due to shell effects. The frag-
mentation theory (Fink et al. 1974) was also successful in both
regions of low and high mass asymmetry (Maruhn 1976, Sindulescu
et al. 1980).

Alternatively, the phenomenological shell corrections were
extended (Schultheis et al. 1970) to the high deformations en-
countered in a fission process. New variants of the LDM: the
finite range of nuclear forces model (FRNFM) (Krappe and Nix
1974) and the Yukawa-plus-exponential folding model (Y+EM)
(Krappe et al, 1979) were especially developed to describe both
the fission and fusion processes taking place in the heavy ion
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reactions, The extension of these models to the systems with
different charge densities (Poenaru et al, 1979d, 1980a, 1980c)
offered a good basis for the fission theory of the alpha decay
(Poenaru et al. 1979a, 1979b, 1979c, Poenaru and Ivagcu 1980,
1982) -~ an attempt toward a unified treatment of these only ap-
parently distinct processes.

Another model describing in a continuous way the transition
from light particle emission to fission in the decay of the
compound nucleus at higher excitation energies above the bar-
rier was developed by Moretto (1975) and by Swiatecki (quoted by
Sobotka et al.1983); it was recently tested (Sobotka et al. 1983
by studying the production of ‘He, Li, 79Be, B G, N30,
and F in the reaction 90 MeV °He - "%'Ag.It is based on the sta-
tistical transition state formalism and allows to compute the
angular and energy distributions. Unlike this model dealing with
excited states above the barrier, we are concerned with ground
states or lower excited states, below the barrier where quantum
-mechanical tunnelling and shell effects are extremely important.

The purpose of this paper is to present the formalism used
in our model; the results obtained and its extensions allowing
to predict other decaying modes intermediate between alpha de-
cay and fission (Sandulescu et al.1980a,Poenaru and Ivascu 1980,
poenaru et al. 1983a, 1984). The first evidence for such a mode
was reported recently by Rose and Jones (1984); they discovered
the spontaneous emission of !14C from 223Ra. The results were con-
firmed by Dr.0Ogloblin from Kurchatov Institute in Moscow *,

2, NUCLEAR STABILITY
2.1, Metastability

In order to see whether a nucleus #Z is stable or not with
respect to the split in two nuclei AIZ1 and 27,,0ne can use
(Blatt and Weisskopf 1956) the deformation energy curve of the
system vs, separation distance between fragments (fig.l1). If
the energy of the two nuclei at infinite separation is taken
as the origin of the potential, the initial energy
E(R)IH=Q =Q(A2o Zz) = M(A. Z) —[M(AX,Z1)+M(A2,Z2)] (2.1)
is the Q-value (the energy release), which can be easily com-
puted from the well-known experimental masses (Wapstra and
Bos 1977). The fission barrier height is the difference

Esp—Q- (2.2)

*Talk presented at the 34th conference on nuclear spectro-
scopy and structure of atomic nucleus (Alma-Ata, 1984).
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Fig.1l. Stability (1), meta-
stability (2), and instability
(3) of the nuclear systems
with respect to the fission
process.

Three distinct cases are shown in figure 1: . .

1) STABILITY: Q< 0, E;>0. The nucleus “Z is in the posi-
tion of minimum potential energy; its split is prevented by an
infinitely thick barrier.

2) METASTABILITY: Q >0, Ep> 0. The.fragments are held to-
gether temporarily by a potential barrier. Be?agse of the.q?an—
tum-mechanical tunnelling effect, there is a flane prob§b111t¥
P per unit time for the penetration through this barrier which
decreases with an increase in E} and in the reduced mass p =
= (A1A2/A)m, where m is the nucleon mass.

The radioactive nuclei
are metastable.
3) INSTABILITY: Q> 0, E < 0.’ L
mainly due to the spontaneous f1551on: L
One has to consider also the beta instability,

the scope of this work.

The compound nucleus is unstable

which is beyond

2.2, The Lifetime

Like in fission (Brack et al. 1972) the half-life T of the
metastable system is given by

T=11n2/ = In2/vP, (2.3)

where I' is the partial width and v =w/2r = 2E 4 /h  represents
the number of assaults on the barrier per second (Fhe characte-
ristic frequency of the collective mode)..If th? time T for
a particular split is very long in comparison with tbe half-
life of the other one, this emission cannot be experimentally
observed. In spite of the metastability with respect to many
disintegration modes, only the faster processes are o?serYed.
According to the WKB theory the probability per unit time of

penetration through the barrier is expressed as
Rp
Aq11/2
P~ ep(-K):K = 2 [ (lE® -Q7T] % g,
R .

(2.4)
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where K is the action integral, Q°=Q +Ey;, is the initial
excitation energy, E ,;p=0w/2 is the zero point vibration energy
and g is the mass parameter approximated by the reduced mass,

R, and Ry are the entrance and exit points E(R,) = E(R,)=Q".
This approximation is valid for a barrier height high enough;
otherwise
P=[1+expK)]~! . (2.5)
In the framework of the R -matrix theory of alpha decay, the
disintegration constant A=1n2/T, 1s given by
A=52Pn, (2.6)
where 5% is the reduced width, which is proportional to the
alpha preformation probability., In fission theory, the role of
52 is played by the zero point vibration emergy E;, but
this quantity is present also in P, as it is shown by eq.(2.4).
Consequently, E.;;, has smaller variations than 52 with z and
N, even in the neighbourhood of magic numbers.

3., DEFORMATION ENERGIES FOR BINARY SYSTEMS
WITH CHARGE ASYMMETRY DIFFERENT FROM THE MASS ASYMMETRY

The LDM of Myers and Swiatecki (1966, 1967) and its genera-
lisation replacing the surface energy by double folded Y+EM
over a sharp surface density distribution (Krappe et al.1979)
are used in fission theory and heavy-ion physics. The Y+EM pa-
rameters have been determined by fitting nuclear ground state
masses, fission barriers, heavy ion elastic scattering and elas-
tic electron scattering data, New physical effects have been
introduced (M8ller and Nix 1981) in the mass formulae: a pro-
ton form factor, an exact diffuseness correction, a charge asym—
metry term,and microscopic zero point energies.

In order to reduce the number of independent parameters,
some authors (Krappe 1976, Moller and Nix 1977) have assumed
the same charge-to-mass ratio (Z/A) by choosing one of the re-
action partners to be off the line of beta stability., On the
other hand, Zohni and Blann (1978) considered the realistic com—
binations but ignored the different charge~to-mass ratio. The
difference between the mass—,n, ,and charge-, ny, asymmetry pa-—
rameters has been considered by only some authors (Gupta et al,
1975, Adeev et al. 1976, Gupta 1977) when potential energy sur-
faces (PES) have been calculated, though the asymmetric mass
and charge fragmentation (Fink et al, 1974) in a case frequent-
ly met in heavy-ion collisions, due to the fact that for the
light beta-stable nuclei Zy=N,, but for the heavy ones N> Z;.
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We have shown (Ivagcu and Poenaru 1978, Poenaru and Ivagcu
1979, Poenaru et al. 1979d) both f9r LDM §nd FSNFM.that the @e-
formation energy could be u“derestlyated if this dlfferen?e is
ignored. An extension for systems with charge asymmetry diffe-
rent from the mass asymmetry of these two models (Poenaru et
al. 1979d) and of Y+EM (Poenaru et al.1980a, 1980c) has been

developed. -
It is obvious that the condition

n,=@,- A )/A dn, =(Z,~2y)/Z (3.1
for mass— and charge—asymmetry parameters, where A=A1+Ag
and Z =21+ 2Zy, isequivalent to
I=(N-2)/A #1,=(N;=Z;)/A; (i=1,2) (3.2)
for the nuclear composition, where N=A-Z and with

(3.3)

- aZ /A2 o 3
Pis # Py, # Poe = eZ / 3rrl‘oA)

for the charge densities, where e is the electron charge and Ig

radius constant. : :
= If we ignore the difference

- ctually the
9708 S haYeAeiz A%’Z
pair of nuckel el L
instead of "7, 27, , where

(3.4)

?Zqz

We take into consideration the
difference in charge densities
for fusion or binary fragmen—
tation assuming uniformity in
each of the two fragments. In
an intermediate stage of a fu-
sion (or fissiom) reaction, when the two fragments are clised
together, like in figure 2, we assume that the nuclear volume Y
is divided in two parts V; and V; and that each fragment is ho

mogeneously charged with a density

Fig.2. Binary system Qi?h
different charge densities.

-

rev,
el
re V2 2

3.5

p ) = {Fle (3.5)
Poe

The deformation dependent terms of the potential energy, Ey,

(3.6)
Ed =E5 +EC+EV
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are the surface energy, E,, the Coulomb energy, E,, and the
volume energy E ..

3.1, LDM Surface Energy

Due to the proportionality between the surface energy E; and
the surface area, one has

E:

8

g1 A28 B, 1+ 0,,A 3B, , B, m E,/ES = (0,1/6,)B, + (Cee/C.)B 4o

where (3.7)

B, =8;/8, ¢, =a,1~-«ID) (i=12),a,=17.9439 MeV, « = 17826 (3.8)
S; is the surface area of the fragment i

tion area between V; and V) and S§°
spherical fused nucleus AZ, for which

(without the separa-

" 2/3
E0=c A (3.9)

with c¢gcalculated as in equation (3.8) but with I;
by I.

3.2, Coulomb Energy for Various Macroscopic Models

The general expression of the Coulomb energy can be split
into three parts: by taking into account the two integration
domains

L
2

1

E = 3

2 3. iy
Pre J 4°r [1d%r, +

~143
v J 12 d r, +
1 1

2 3
p2e{,' d rlv;r 5
2 2

(3.10)

3 Sy
+PreP oo J A1 [ 1Ty @0y 0 rp= [F) = Ty,
v, v,
B e /ey ) B 14 (s /og ) By 1l /pl)B
c (ple Poe cl 2¢/ Poe c2 T \WP1eP 2./ P0e Bel2

where the first two terms represent the self-energies of the two
fragments; and the last one, their interaction energy. For
a spherical homogeneously charged nucleus

i 2n 2 1/3
E: = 3e“Z /5roA

with ry = 1.2249 fm for LDM, r, = 1.16 fm for FRNFM and r4 =
= 1,18 fm for Y+EM. A more recent value (Méller and Nix 1981)
is tp = 1.16 fm for Y+EM.

6

is the surface area of the

substituted

(3.11)

3.3. FRNFM Surface Energy

In the FRNFM (Krappe and Nix 1974), the surface energy i§
eplaced by the folded Yukawa potential energy* E_ , from which
he spurious contribution to the volume energy, E_ v, has'to ?e
ubtracted out, If the nuclear matter is homogene9u§1y distri-
uted in the two fragments (p; =p2==p0) one has similarly

1 3 3 1/2 3 3
S (Vy, [ @'ty [ a"ry8(x) + 2(V5y Vo) foar [ d'r,ex) +
m3 Oy lv1 ; Vi Vo
3 s
+V02_f d '1 f d tzg(x))y
Y2 Ve (3.12)
ﬂg(x) = expl-x)/x; X = rjp/a,
1/2
(C51Cq2)
Bn = (En B EnV)/(Ei o E:V) = (cgl /os )Bnl 3 (052 /e B)Bn2 + nl2?’
Phere we have assumed
1/2 2
Vg = (Vg G Vo @l) 2, V@ = Voi= oy /2matg, 1€ V; (1=12)  (3.13)
bnd a = 1.4 fm, a_ = 24.7 MeV, « = 4 as usual,
For separated nuclei
av= Bay * By, = (@rg/39) (0 A1+ 0 ) (3.14)

nd for a spherical fused nucleus

1/3
E° ~E°, = o, (AY%-(a/r))? + (/% a/r)? exp(-2Ry/2) , Ry rh /3(3.15)

nV

3.4. Y+EM Surface Energy

The double folded Yukawa-plus-exponential potential energy
is also splitted into three parts

1 3 3 3 3
Y=“"“"2—'§':[°sl f @ [ ®a'rve,fd 'lvf f(x)d7ry+
8r°r fa v \ \J) 2

[t ddnl, @ =GE-2e®;ix = n,/a,

1/2 3
+ e, ¢ )Y vfd f
1 2

—

*This type of potential energy was used by Greiner and co-
workers: see, for example, Holm and Greiner (1970).
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BY = EY/E% = (Csl :/cs )BY1+ (082 -/cs ).BY2+[(CSICS2) / /CS].Ble'

—~2R/a (3.1
E =csA2/3x1 -3(a/R0)2+ (1+Ry/3)[2 +3a/R+ 3(a/R ) Je L

In spite of the same notations, for Y+EM we have ¢4 = 21,7 MeV,
k=3 and a = 0.65 fm or the new values, allowing one to obtai
smaller RMS errors for the ground state masses without micro-
scopic zero point corrections (Moler and Nix 1981): ag = 21.14
k= 2,4 and a = 0,68 fm,

3.5. Volume Energy

Because in the LDM the symmetry energy is included in the
volume energy Ev,for Ny £ 7, one also has to add the volume
contribution to the deformation energy (though the volume con-
servation is assumed):

Ey +By, ~By £0; Ey=--cyA;icys= ay(l-xy1%), (3.17
where ay= 15.4941 MeV, ky=« for LDM and ay= 16,4696, xky =

= 2,31015 for FRNFM (Mdller and Nix 1976), These values are on-
ly slightly different from those adopted by Méller et al. (1974
For Y+EM, the corresponding quantities are: ay = 16,012 MeV,
ky= 2.64 and the new ones ay= 16,0053 MeV, xy = 1.959.

The equations (3.7), (3.10), (3.12), and (3.16) are generall]j
valid for binary fragmentation even in the absence of axial
symeetry. They can be easily generalized for ternary or quater-
nary fragmentation.

4, COMPUTATION OF THE DEFORMATION DEPENDENT TERMS
OF THE POTENTIAL ENERGY

4.1, Reducing the Order of Integration for General Shapes

Only for very simple nuclear surface shapes (see section 4.5]
the eqs. (3.8), (3.10), (3.12), and (3.16) could be integrated
in order to obtain an analytical result. Usually for a given
parametrization p =p(z, ¢) of the nuclear shape, this is not
possible; one has to apply appropriate method of numerical quad-
rature. Unfortunately, in order to achieve the required accu-
racy (more than 5 significant digits) in case of six fold in-
tegrals like those from egs.(3.10), (3.12),and (3.16), one has
to spend a long time even with a fast computer., Consequently,
it is very important to try to reduce the problem complexity.

8

1f (p, ¢,2) are the cylindrical coordinates of a point on
the nuclear surface, the surface area (Junker 1974) is given

by

S:f . (4.1)

T aainia )1 497 (221 12
21 Q

Jz dé

where 2z, Z, are the intersection points of the z—éx%s with
the nuclear surface. This double integral needs negligible short
computer time in comparison with all other. Of course, the cal-
culation of the volume energy with eq.(3.17) is even faster,
once the quantities A; and l; are determined for a given defor-
mation.

The double-volume integral expressing the Coulomb energy of
a uniform charge distribution, or the gravitational potential
energy of a uniform mass distribution, can be converted (Daj
vies and Sierk 1975) in various ways into a double-surface in-
tegral by using Gauss divergence theorem twice., In this way
one has :

g (d51r12)(dSyr 3g)

1 4,2)

E =~ 66p (4.

< 12 £ g
or
- (@S, (d8,85) .9

£ 10 5 T2 ‘
or

@S,1,)(d8 ,fyq)
Ec=~%-§ﬁpg 12 2°12 (4.4)
Tie

The computer time can be reduced by exp%Pitingathe symmétry.of
the eq. (4.2) under the interchange of r; and ry. In cylindrical
coordinates, the eq. (4.3) is written as

) 22 2 2w s 542 . ,
B = [dz [ dz’ [ ag [ b p2lp? - 2= 2B )[2p2 - 2ppcos(g™
z] 2y 0 0 2 9z

_ : (4.5)
~¢)~(z -2") —aﬂz = 2p’-§£’— sin(¢ ~ ¢} /[ (z ~ 2)24p24p’2-2ppcos(¢— )
dJ P

zZ
where p’=p’(z%, ¢ and p =p(z, &) is the nuclear surface equation.
Similarly, one gets for E, and Ey the double-surface integrals:
12/2
]

(46.6)
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and

h iy 5 & T r =T 2/“i
E, = —tr—r 6 6 0, (5, F1)(@,7 ) 1222 gy v2le P 22y,
87°rya r a
0 : 12 4.7

To pass from Cartesian coordinates (x, y,2) to cylindrical ones

(p, ¢, 2) (like from.eq.(4.3) to eq.(4.5)) one uses the follow-
ing expressions

e e )
f=xi+y] +2K; x=pcosd; y=psing , dS*=(%)x(%;—)4zd¢, (4.8)

- -
where i, |, i are the unit vectors of the Cartesian system
of coordinates,

The general relationships given in this section are not par-
ticularized for binary systems with different charge densities.
In order to obtain such expressions one has to apply the method
used in the precedent section.

If the nuclear shape has a symmetry with respect to z-axis,
the order of integration in the eqs.(4.1)-(4.7) could be redu-
ced further by one unit.

4,2. Various Methods for the Computation
of the Coulomb Energy of an Axially Symmetric Nucleus

Three methods were frequently used in the past to compute
the electrostatic energy E, of an axially symmetric nucleus:
Lawrence (1965) method in which E_ 1is expressed as a three
fold integral; Hill and Wheeler (1953) method derived from
the eq.(4.5), in which E; is a two fold integral, and Beringer
(1963) method containing only a sum of terms, A comparison of
these methods was made by Poenaru and Galeriu (1975).

4.2,1, Beringer method

In the Beringer method, the nucleus is divided into N sli-
ces of the same thickness A, and each slice is replaced by one
cylinder with the height A and the radius Ry, G=1,2,.,N)
derived from the condition that the two equivalent bodies have
the same volume. The Coulomb energy is composed from the self-

energy of cylinders, E; and the interaction energy Ej; between
them:

B 4.9)

where E; is approximated by a semiempirical relatioship:

Br s, pug¢ w A TA e+ _pu A
Ei=-_3-p¢A Rcill 2 ) + —( Yl 5 (

ci 8 ci ci

M (4.10)

and

2 1 2 i 2 . % o
Eij = 41r2pe AzRiil—?kiJ g” +"§(1+kij) g +

g2n+2 ng2 2 —2n+% 1 (l"z“)
o i ij (A2 Tt 1. k2
+ 2 G Pe, 0L 2nl+ 5 61 (—==)"11 + ks ) Fen,-n+l,5 ki)

n=1 ci
in which D = 0.155241;

. (3/2 + n) ;

2n

=(-DA/Rg ;3 Cqq —__;1——(‘7(“'1) the coefficient ofl_t;e X
term in the binomial expansion of (1+x2) ; Py, @ =-—al——l;(n_l)(0)

is the Legendre polynomial (G =F (0) =1) and F i§ th(.a hyper-
geometric function (Abramowitz and Stegun 1964) which is calcu-
lated by using the relationships:

-1 (n- 0+ 1XL - n)
§ o1 Toee Poiiog? S oln B
F 1+ X [ [ ((._0,5)[

<l =1. (4.12)
f=1 1

g-1° To

For reflexion symmetric body, the amount of numerical computa-
tions can be significantly reduced (Galeriu and Poenaru 1976)
because R = Ry, 13 i€, m); m= (N-1)/2; N- odd positive
integer

m m m+1 N
E.=2 2 E; +E_,,+ % 2 £ E;+ X

(4.13)
i=1 jel =i+l M jem+2

E §j ).
One obtains an error smaller than 5.107° if 05A/Rci50.5.

4,2.,2, Lawrence method

Usually the integrals in the above formula are comput.:ed by
using Gauss-Legendre numerical quadrature. It is convenient
(Poenaru and Ivagcu 1979) to express the equation of the nuclear
surface in cylindrical coordinates y=y(x) Wwith a prope'arly se-
lected scale factor [y=p/(z9~2;); X = 2/(z,y- 21)] . leading to
(-1, +1) instead of (zl.zz) intercepts of the surface with the
Symmetry axis.

This interval is reduced to (0,!) in case of the Lawrence
method for which the nuclear surface eq. is vy =vl(u). For
a uniformly charged body, Lawrence (1965) slices the volume

11



into infinitesimal disks. He obtains an exact equation for the
electrostatic energy expressed as a three-dimensional integral
with a relatively simple integrand

(4.14)

1 1 1 ]
Bc=120d5f vlzudu fvgdy f ;1“ ("w)zdw R i
0 0 0 Wl-y)+[u*(1-y) “+v{ + vy - 2v;v,cos(rw)]

is the nuclear length along the symmetr

and vy =V, (uy) .

where 2d = (z4- 2;)/R
axis, in units og Ro

4,2,3, Davies—Sierk method

For axially symmetric shapes one can reduce further the orde
of integration in the eq.(4.5). The integration over one of the
angles ¢ gives a factor of 2r and from the remaining angular
integration one gets an integrand containing complete elliptic
integrals (Hill and Wheeler 1953), With a reliable method for
evaluating the elliptic integrals (Cody 1965), Hill-Wheeler in-
tegral should be faster to compute than eq.(4.14) involving an
extra numerical integration. All three methods based on egs.
(4.2)-(4.4) are much more accurate in a given time than the
methods of Beringer or Lawrence. The symmetry of eq.(4.2) for
interchange of ¥} to fy makes this Davies-Sierk formula faster
than eqs. (4.3) or (4.4).

This formula adapted to our case of a binary system with
charge asymmetry different from the mass asymmetry (Poenaru et
al, 1980a) leads to the following relationships for the quanti-
ties from eq.(3.10)

Xs X3 1 1 X3 1
B,=b, [ & [ &’F(x,x7; By =b, [ & [ &’F(x,x); B;jo= b, [ & [ dx’F(x,x7;
~1 -1 xg xg <1  xg

(4.15)
where b.=5d 5/87, x3 is the position of separation planes bet-

ween fragments and

ot oy
s d

F(X, x’) = {yyl [(K - 2D)/3][ 2(y2+ yzl) E (x_. x')2+ l.ax ~xl)(
X

+Kly?y2/3 + [y %0 dy2: 2 o 9 o
yiyl/3 + 1y % .5(x—x’)71;][y1+0.5(x-—x)a;;]ﬂ/ap )

in which y1 =y(x) is the nuclear surface eq. with -1,+]1 inter-
cepts on the symmetry axis and
af,= v+y?+@-x9% D=K-KI/&k% k’= 4yy1/a§. (4.17)

12

where K and K’ are complete elliptic integrals of the first and
second kind, respectively with argument ki
2 n/2 _ "
"{ - ks ™% at; K® = [ (1-k sint) * dt.
' 0
0

K() =

These elliptic integrals are computed by using Chebyshev poly-

nomial approximation. : . . .
By removing the indetermination arising for x =x’, the func

tion to be integrated takes the value F(x, %) = 4y3/3.

4.3. Surface Energies

The expressions of B°s from the eqs.(3.7),.(3.12), and
(3.16) will be explicitly written in this section.

4,3.1. LDM

The quantities Bg; and Bgy from eq.(7) are given by

*3 2 1 2 awz 2}
7 2 &) 1%, B ,- 0807 25(422°1%4.18)
B,y - 0542 axly?r025¢) 1%, B, 0507 [ axly®+ 0250500 1%

for the axially symmetric nuclei. We use the same notations as
in the preceding section.

4.3.2., FRNFM

One has, similarly, for B, ;, B o and B ;,from eq.(3.12)

X3 x3

1
By = by, (-0.50° [ [ ax’[awFiF,Q + 28,/38),
o o 0

1. 1 1
By =b_ (-0.5a° [ dx [ dx’ [ awF F,Q + 24,/34) ,
X3 X3 0
(4.19)

X3 1 1
3 4

B, ,~-0.5b d° [ dx [ dx” [ dwF, F,Q,
-1 x4 0

where
2 »dy?, 2 cosg +0 5(x-x’)i}2— (4.20)
.F‘l-_-y_yylczos<;s---0.5(x--x)dx s Fy=y =,y A s (4

(4.21)
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1= 2 wl'F(xi)' ( )

i=1

P =y2+y12—2yy1 cosg + (x ~x)2; ¢ =2rw. (4.2

here X; are the abscissas and W; the weights, tabulated (Abra-
owitz and Stegun 1964) for some values of N. A FORTRAN program
llowing to compute {x;, w;} for any value of N is presented by
avis and Rabinowitz (1975).

In order to obtain a nuclear shape with neck, the nuclear
arametrization is usually given (Nix 1972) by three different
eometric bodies (for example two ellipsoids and a hyperboloid
n the neck region) smoothly joined. In spite of the maching
ondition for the function y(x) and its first derivative dy(x)/dx,
here still remain the discontinuities of the higher order de-
ivatives at the two junction planes. In this case the accuracy
nd speed of numerical quadrature are improved by dividing the
ntegration interval -1,+]1 along 0x in four subinterva%s with
he following boundary values: the intercepts on 0x axis gz, =

-1 and z5 = +1; the positions of two junction planes gz, and
4 and the position of extremum of p(z) in the neck region z,.
n our case, z, gives the position of separation plane between

When x =x’we have y =y, and the integrand becomes

(F; F,Q);; = 0.5y sin(¢/2) - a/Ryf + [y sin(¢/2) +a/Ryd] x

(4.2
x exp[-—(2Rod/a) y sin(é/2)1} .

Unlike B, which depends only on the nuclear shapes and allows
fast computation for many nuclei simultaneously, By; depends
also on the nuclear mass. Hence the computation for this model
has to be done for each nucleus separately, The same is true

for -By's in the Y+EM,

4,3.3. Y+EM

By,» By, and By, from eq.(3.16) are expressed by:

53 X3 1 1 1 1 ragments as it was mentioned above, If the shape has no discon-
Byy=by [ a&x [ dx* [ dwF F, Qy, By, = by fdax [ dx’ [ dwF, F,Qy inuity, z, and 2z, are arbitrarily chosen. .
= 9 xg xg 0 The transformation from abscissas t; and weights vy; for

3 1 1 (4.2%he interval (-1,+1) to abscissas x. and weights w., for the
'BY12=bY [ dx fdl'deFleQy, four subintervals is made easily by using the following rela-
" *z 9 ionships:

where

=a,t;+ b sw=a,v;; p=1,2349, (4.29)

j i p

S 4 2 o
bY d (r0/2a )csR0 A/EY, here
(4.2

Qy =HP% (P* +2a/Rod) +282/(Ry ) N expR\aP % /a) - 2a V(R @) 2/P e = Foe 17 272 By = (B y+ 225 (1= 1.2,0M); (=12, N=4M) (4, 30)

P
and F,, F, and P remain unchanged.

he integral implied in the computation of B ,of the following
ype

1 1
J = [ & [ dyG(x,y) (4.31)
-1 =1

is computed with double Gauss-Legendre numerical quadrature

4.4, Numerical Integration

4.,4.1, Reflection asymmetric nuclei

The integral
. 42M M M M .
2 —i=l jzl w, wj G(xi ,xj) = i=zl wi [Wi C\(xi ’xi)+ ?-_-'zi-{-le (x] ,X’)],
(4.32)
here we have used the symmetry of the function to be integrated

1
J, = [ &xF(x) (4.2
-1
like that of eq.(4.18), can be computed numerically with a Gau
Legendre quadrature of order N (Davis and Rabinowitz 1975),
using the relationship:

G(xi’xj) = G(xj,xi ). (4.33)
14
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In the same way, for the computation of B, and By one needs

1 1 1
[ dx [ dy [ dz H(x,y,z),

v (4.34
-1 -1 0
4M 4M L
T3 _i-_-zl jélkil w; w; U HGxg, x5, 8,) =

M L M L (4.35
=i=21 w; [Wi kél ukH(xi’xi’ Sk) + 2]'=§+1 kél wj ukH(xi ,xj' sk)] ’

where s, and u, are the abscissas and weights for L -order Gau
Legendre quadrature on the interval (0,!). The abscissas, for an
gular quadrature in B, and By appears as sin(¢/2) and cosd¢;
hence the functions 8in(m8;), cos(2ss;) (i=1,2,...,L) are compute
only once for given L, and are transmitted through a COMMON
statement to the subroutine for computation of B,, B,, B,
or By by (Poenaru and Ivagcu 1978, Poenaru et al. 1980a).

The integrals (4.15), (4.19) and (4.25) are computed by

Gauss-Legendre numerical quadrature with 4m.4m and 4m.4m.n mesh

points, respectively. The variation of IBM 370/135 running time
T, with the time of mesh points n and m is presented in fig.3
(solid lines), On the same figure one can see that the CDC-6500
computer (dotted lines) is approximately two times faster, For
most purposes n=m = 12 allow to obtain satisfactory small er-—
rors even for large deformationms,
The three fold integrals in the eqs. for B ,, B o, B, jjand
By,» B By, are computed by using the eq. (4.35) where the
summation is performed over the

Y2?

=il 200 R k= 12000 001)
Ci= Ktl,...,4M; §= K+1,...,4M;

F=K¥l, ... 0M: k=1.2,0..,1),
respectively,

for one deformation set with
the number of integration mesh
point on IBM 370/135 (solid
line) and CDC-6500 (dotted line)
computers.

nsequently
:?1:’(2?32)qcan be’reduced. In fact, eqs.(4.28) and (4.32) be-

following indices: (i =1,2,...,K;

k= 1,2,...,L) and (i =1,2,...,K}

Fig.3. Variation of running time |

l; 4.2. Reflection symmetric nuclei

1f the nuclear shape has reflection symmetry, one can write:

(i=1,2,..,2M) (4.36)

. . :
Xomai =~ FoMalei VoMai T VoM41~i

the number of summation terms in eqs.(4.28)

come in this case:

2M
2 T Wi F&). (4.37)

ey
—
n

2M 2M
2 = w,(w;Gj;+2 X
ey | j=i+l

M
Wj Gi' + b (4.38)

j Wi‘Gij)’
j=2M +1

[}
[X)
1]

where G = 'G(xi,xaj)

By using eq. (4 8) in place of eq.(4.32), the computatlot;
time for a given nuclear shape is reduced from 13.2 s to 9.5 s
for M= 16; from 7.1 s to 5.3 s for M = 12; from 3.2 s to
2.5 s for M = 8 and from 0.88 s to 0.65 s for M= 4 (Poenaru
and Ivagcu 1979), The effective increase_a in computation speggs)
is important because usually for pot.:entlal energy surface (
one needs to consider many deformations.

4.5, Analytical Relationships

For spherical shapes we have already sh<?wn that simple ana-
lytical relationships are available, allowing to calculate in
a short time the selfenergies in the framework of all models.
In the following we would like to present brief}y some other
cases for which closed formulae are known to exist.

4,5.1. Self energy of a spheroid and ellipsoid
There are analytical relationships (Beringer and Knox 1961)

for the LDM self-energy of a spheriodal nucleus with the semit
axes ratio n=c¢/a (¢ is the slzmi—axis along the symmetry axis)

and an excentricity € =|1 0
arcain ¢/(1 ~¢)l; 7n >1 (prolate)
B a5y i N : (4.39)
2 In(e + 3~ )en~"]; n<1 (oblate),
ml+d/Q~6; n>1
n ~2/37.y. (4.40)
Bos @by /o) | 2 aretge ; n<1

17



or c=a one obtains the Coulomb interaction energy of the two
pheres which is expressed as in case of two point charges se-
arated by the distance R. In the overlapplng'reglon (R<R,)
he deformation dependent terms of the potential energy are
alculated by using numerical methods.,

For an ellipsoid with semiaxes ¢ > b>a expressed in units
of Ry, due to the volume conservation condition

abc =1 4.4

there are only two independent deformation parameters; one
choice can be 8= ¢/a, r=0b/a, In this case Carlson (1961) ha

found that .5.3. Interaction energies between two spheres

in FRNFM and Y+EM

BS=0‘5132+-— b -——[(C2_a2)E(¢g ks)"‘ 3,2F(¢’ ks)]l ’ (404 At Sma].l di.StanceS R'—Rt zo'in case Of FRNFM and Y+Eb:1’ be-
(6% ad) 18 ides the electrostatic energy, there is also a nuclear interac-
e ion term due to finite range of nuclear forces. For separated
b - Flg, ko) (4.4 pherical shapes, in the framework of FRNFM one has
(c2- a?) 1/2
where F and E are the generalized elliptic integrals of the ®) = Z1Z292_. 232 0 ¢ )% g exp(-R/a) (4.48)
first and second kind, respectively d & sl “s2 1®2  Rsa
¢ . é here
F=[Q-kZin2)~%a; E=[1-k?sint) % at ¢G4 |
¢ 9 Ry & R
k) ch(—%) - sh(——li) (k =1,2) . (4.49)
and k a a a
-2 2_¢2 imilarly, in the Y+EM
tg¢=\/82‘1;‘ kz"'—l—‘r—?; kz=—s—2——£—— (4.4 > . /)
1-8~ 8c-~1 1 exp(-R/a
are the arguments of F and E. d R 'y bl 4
(4.50)
here
B E (4.5
4,5.2, Coulomb interaction energy kg a4

of a spheroid with a sphere .
In order to find the separation distance Ry at which the
interaction energy has its maximum, one has to find numerically
he root of a nonlinear equation dE, /dR|R=RM= 0, which can be

ut in the form

After Cohen and Swiatecki (1962), the Coulomb interaction
energy of a spheroid having the semiaxis (c,a) with a sphere
of radius Rgat a separation distance R between centers is
given by: :
+p(x+1)=0 for FRNFM
E, =Z,Z,e%8(x)/R; x2={c2-a?|/R%; R2R, =c+R, (4.46 (4.52)

g x

+p  +x(p +%p) =0 for Y+EM; x=R/a,
where e2 = 1.4399764 MeV,fm, and

3
15 c=3a here p=..4_‘?'.__(clc2)% _.ELEL_; pl=p(4_f1/gl._12/g2).
: 3 5l s 2
ro e“Z,Z, .
8(x) = 0.75{(x - 1/x) In[(1 + x)/Q - x)] +2}/x%  e¢> a (4,47 The firsi': gq:(A.SZ) is solved by Newton iteration t}lethodAre-
ining the initial guess x_ = 1.5[3“ /a. Mueller 1terat10n.schgme
1.5 [(x+ 1/x) aretg(x) -11/x2; ¢ < a (oblate) f successive bisection and inverse parabolic interpolation in
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the range of x from X, =R,/t to X;+5,is used to find the so
lution of the second eq.(4.52).

4,6, Interaction Barriers.
Q -Values and Fission Barriers

One can obtain some information concerning the fission and
fusion phenomena, by studying the potential energy of a syste
of two spherical nuclei (Z,, A}), (24,A,) at the touching point
Ry=R;+ Ry and infinite separation R =, relative to the ene
gy E° of a spherical compound nucleus (Z,A) (see fig.4).

Fig.4. Variatton of potential
energy of a system of two sphe-
rical nuclei with the separatio
distance between centers,

| LDOM

|
= {A
o R=F*k, R, 9 =
P2

Fig.5. Charge asymmetry para-
meter 7, and difference An =
=n4 -ny between mass and
charge asymmetry for nuclear '
combinations along the Green
approximation for the line of
beta stability. :

-

The interaction barrier, E;, of two heavy ions is usually
calculated in a very simple one dimensional parametrisation as
the maximum of the interaction potential energy. For two sphe-
rical nuclei this maximum occurs at the touching point (LDM) o
not far from it (FRNFM or Y+EM), as it is shown schematically
in figure 4, In this parametrization Ep is a rough approxima-
tion of the fission barrier. In the LDM, E; is simply the Cou-
lomb interaction at the touching point, but in FRNFM or Y+EM,
the interaction due to nuclear forces must be also taken into
account,

The general trends in the variation of interaction barriers
fusion Q values and fission barriers for various projectile (Z
target (Z,) combinations along the Green approximation for the
line of beta stability can be found by computing the energies

20

E° ,E.,and E® for the fused system, touching-point configu-
ration and separated fragments. . .

Values for 77 and A"""’A""Z _for these pa.1r§ of nuclei are
plotted in figure 5. Due to the 1nte1:'changeab111ty of Zy and
Zg we have used only half of the figure, from Z,=0 to Z;=72,,
for m, and the other one, from Z;=0 to Zl.=Z2 , for 1.311. (?ne
can see that for each target nucleus there is one projectile
which gives the maximum of An. A similar trend can be expected
for the influence of charge density differences on EES__.E"_Ew
(figure 6(a),(a'),(a'')), @=E®-E° ﬁlgure 6(b), ("), (®""))
and E, =E - E° (figure 6(c),(c'),(c'")) for LDM, FRNFM and
Y+EM. : : .

At given pair (A, A,) the interaction barrier in the case
ng # n, is lower than %or.n%f-.,u . For Ap of.the.order of 9.05
AE; =El(7lz=71A)"EIiS as high as - 30 MeV, This <.11fference is
due mainly to different values of Coulomb energies at the tou-
ching point. .

A first approximation for a fusion reaction Q@ value (flgure
6(b), (b'),(b'')) is obtained as a difference of deformation-—
dependent terms of potential energy. In order to get accurate

% values of @, one has also to consider the other terms of a mass

formula (surface diffuseness and exchange corrections, pairing
and shell corrections, Wigner term, etc.). Nevertheless the
approximation reproduces the general trend as one can see from
figure 6(b),(b'),(b''). For light systems one has positive va-
lues of Q (energy release). The transition from positive to
negative values of Q@ occurs at smaller Z in the FRNFM or Y+EM
than in LDM. Due to partial compensation of the Coulomb energy
by the volume (symmetry) energy at R= R; , |AQ| is lower than
|AEf |: 18 MeV for LDM, 10 MeV for FRNFM and 14 MeV for Y+EM com-
pared with 30 MeV. Here AQ = Q(ny =74 )~ Q.

Ep overestimates the fission barrier not only because the
saddle-point shape is different from two spheres at the tou-
ching point, but also because the shell and pairing corrections
were not taken into account. As one can see from figure 6(c),
(c'),(c'") the region of nuclei stable against fission (E,>0)
is larger than that predicted by more realistic calculations,

In spite of these considerations, AEh=Eb("Z="A)"Eb gives the
order of magnitude of the difference in energy between the
saddle-point energies of systems (Alz, ,.Azzb)and (A lZl.Azzz) res—
pectively. For Ap =0.05, the FRNFM and Y+EM are more sensitive
than LDM in this respect: - 20 MeV and -16 MeV compared with
~12 MeV. The sign of E} shows that except for shell effects
there is no driving force towards different N/Z ratios in the
two fission fragments, at least in case of neutron-deficient
systems formed in heavy-ion reactions., In fission, PES for

ng #n,4 Aare useful for the computation of charge distributions.
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Fig.7. LDM interaction barriers (a),
fuston Q-values (b) and fission bar-
riers (c¢): trend of variation with mass
and charge asymmetry for the 1891y com—
posite system.

into account the charge density asymmet-
ry particularly in the initial stages of
fusion reactions. This is also interes-
ting for the calculation of the charge
distribution in fission (Gupta et al.
1975, Gupta 1977).

The influence of charge and mass asym-~
metries on the above-mentioned LDM quan-
tities in the case of the 4°Tb compo-
site system is shown in figure 7. Only
a relatively narrow surface of the plane
na-ny has physical meaning. The fron-
tiers of this surface (chain lines) could
be set by the requirement A, > Z; (the
upper limit) and c 20 (the lower limit).
1f n,= n, one follows the dotted lines:
the interaction energy (figure 7(a)),
fission Q-value Qfe =-Qpys (figure
7(b)) and fission barrier (figure 7(c))
become smaller if the asymmetry is in-
creased. The interaction energy is very
sensitive to the charge asymmetry: for
a given g, it increases when 77 is de-

creased from pn, =9, and decrease when
SRS ERSRERRLRE
[ (a) T [1b) [(C)
- - I 3
B Il 8 ]
- 1k ” !
i i | g & :
g 5 50 - T o 7
. ; i/ 7 I : )
Fig.6. LDM, FRNFM and Y+EM interaction barriers ((a) l | b 1
(a:)', (a'')), fusion reaction Q-values ((b), (b'),’ -0 /)'4 ) ;
(b'')) and fusion barriers ((c), (c'), (e'')). The i / ] Arcly ! ]
corresponding errors are obtained if the charge density S B8 Ll
difference is ignored. All energies are expressed in MeV. ~05 0 5 =1 a5
z

f Due to the fact that the charge equilibration process is ve Fig.8. The same quantities as in fig.7, computed in the frame-
ast with respect to the fission time, it is important to take work of Y+EM.
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ith a first guess Rjg= 15 2, =0.5[0~ R})/R +R]. 1In this
section all the lengths R, Rp, R‘z am.i 7z, are expressed in
its of Ry. We presume a proportionality between the fragment
and Ay and their volumes V; and V. At the tou-

ching point A=A ;(R;)=A-Ay=A~- 4 and Ay =A4(Ry) = 4.

7y is increased. The fusion Q value and fission barrier are
almost symmetric with respect to the line y,=7,: both increase
for A>0 and Ap<0.A similar trend shows the figure 8, dis-

playing the results computed in the framework of Y+EM.

5. ALPHA DECAY AS A FISSION-LIKE PROCESS.

NUMERICAL RESULTS 5.1.2. Deformed parent and daughter

For deformed nuclei, the ground state shapes of.the parent.:
and daughter nuclei are approximated by two spheroids of semi-
respectively (see fig.10) the ratio

of which can be determined from tables of nuclear deformations

(Seeger and Howard 1975)

5.1. Nuclear Shape Parametrization

If a simple parametrization of the nuclear shape is used,
one needs the numerical time consuming procedure only in the
overlapping region of the two fragments; for the touching poin
configuration and the separated objects, one can get simple
analy%ical relationshipsr.) - : . P Bo = S/3¢ =(l+agyg +a)/(1-0.5ay, + 0.375a 45 ). (5.3)
One assumes a spherical shape with constant radius Rz=1'0A12/f3
for the emitted particle. During the deformation process, the
distance between centres, R, is increased from R;=c¢y- Ry to
Ry=c; +Ry at the touching point, then to e in such a way
that the volume is conserved and the ratio of semiaxis of the
large fragment B=o/a is a linear extrapolation between the

parent B, and daughter 8, ratio:

5.1.1. Spherical nuclei

The ground state shapes of the parent, daughter nuclei and
of the alpha particle are approximated by spheres of radii Ry,
R, ,and Ry, respectively. In an intermediate stage during the
deformation process (see figure 9), the distance between cent-
res is R. It increases from Rij=Ry-R, to R,=R; 4 R, at the
touching point in such a way that
by Rg 1is kept constant and the vo-
lume V, + Vois conserved. The sur-
face equation y(x),in cylindrical
coordinates, with -1,+1 inter-
® "X, 7 7 cepts on the symmetry axis is

/\' R¥E2-(x+x))2, x<x,
R/ y 2= (5.1

B =8, "(Bo‘ﬁl)(R‘Ri)/(R:‘Ri): R,<R<R,. (5.4)

In cylindrical coordinates (p, z) the surface equation is given
by

al(1-z%cH, z<z,
bl = : 2 = (5.5)
Rz—(z—R)., 2>z, .

<Y

2 ,,2 2
:——/(%5/?2 *R)//?/[ i i Rt G xpoRE) x> Te Fig.10. Spheroid intersected
. . with a sphere. (a) initial
: ; wiiere 2f - R+ R, ¢ Rg3 xp=((~Ry)/L configurgtion' (b)  interme-
Fig.9, Sphertcal two X,=2,/0~x%,. For a given defor- BEi L (¢) touchi
centers parametrization mation parameter, R, the position 03 ¢ pogrieon, 1o/ toucaing
of the nuclear surface. of the separation plane between addaled

fragments relative to the heavy
fragment center, z_,, and the radius of the large fragment, R,
are determined by solving iteratively the nonlinear system o%
eqs. expressing the matching and volume conservation condi-
tions:
R{- 2Rz .+ RZ-R2 -0,

The volume conservation condition can be written as

3 2
4nR /3 = moco-‘/a = &r(alzol + Rg);/a =V, + V2 ’ (5.6)

(5.2) 1/3
2R?+ 3Rlzzc— 3R22c +3(R 2__ Rg)zc + R22(2R2+ 3R) & R3 —4=0 . where Ro = roA and
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3V, /m = c2[2 +2,B-22/cH))/B? , .

3V, /m = 22 - 8RzZ2+3RZ-RDz + R} 2R,+3R) -R .

c

We presume a proportionality between the fragment mass num~
bers Al and A2 (at the touching point A1f and A2 ) and thelr
volumes V1 and Vz.From the matching condition at the separa-
tion plane z =1z, we get:

cz-z§=Bz[R§~(zc- R)21. (5.8)

In this way, for a given value of one independent deforma-
tion parameter R, the geometry of the systems is perfectly de-
termined. The two unknown quantities x=c¢ and y =z, are the
simultaneous solutions of the following nonlinear system of
eqs.:

2R2_R2)
x2+ (B2-1)y2 -2RB2y + BERI-R}) = 0, (5'9)

3 %
2x3%: 3x2y+(82-1)y 3 3RBZ%y2+ 3(R2-RDBY + BA RY(2R +3R) ~R°-4R] = 0.
This can be solved by refining an initial guess
T e e (5.10)
Vo= ¢ %g=tyl+ BURL- (5, - RN

with the Newton iteration numerical method.

5.2. Variation of the Charge Density

From heavy ion collision studies it is known that the charge
density equilibration process is very fast, Hence, the charge
densities of the two fragments are considered to be the same
until R = R, =R; +07(R,-R;); then the charge number Z, of
the small fragment increases linearly with R up to Z,.= 2.

( = R>R.,. (5.11
Z,=Zy,+ (2 gy~ Z27)(R—R7)7/[3(R., R R2R, )

As we mentioned above only deformation depet.ldent terms are
taken into account when the macroscopicC potential energy is
calculated. In the LDM, FRNFM and Y+EM, one has:

E,R) = B, j(R) — B (=) B4 (R) = Bpga(R) = Epgle)s B jR)= By () - (F‘;+]é;)’
where the potential E(w) = E{+E, of the two fraglgen;s at infi-
nite separation distance (R-»w) is the origin o the energy.
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5.3. Fission @Q-Values

For R=R] one obtains the macroscopic model deformation
dependent part Q-value of the fission reaction
Ed(R)ll\:Ri:Qd' (5.13)
This quantity is different from experimental value Q,,, because
the ground state deformations of the parent and daughter nuclei
could not be reproduced by the chosen parametrization, other
terms of a macroscopic model mass formula were ignored and the
shell correction energy 8E was not yet introduced.

For each of the three models mentioned above, one has
Qexp =Q=M —(M1+ Mz) =QM +8Q; 5Q =8E -(SEI +8E2) » (S.ll')

where Qy is the contribution of the macroscopic model terms of
the mass formula and 8Q is the shell correction part.

if Qeﬂ,<0 for a particular nucleus, it is stable with res~
pect to the spontaneous emission of an alpha particle. This is
the case of the light - and most of the neutron excess nuclei
far off the line of beta stability, The Q-values contour li-
nes for even-even nuclei with Z and N protons and neutrons
are given in figure 11, The dashed area corresponds to nuclei
with experimentally measured masses tabulated by Wapstra and
Bos (1977)., Calculated values using the code kindly supplied
by Dr.Jdnecke (1980), the results of various authors (Maripuu
1976) and the Myers~Swiatecki (1967) mass formula for spherical
shapes are used beyond this area.

120
z

100 § £

80+

i

i

3

i
s} =

i Q
- g
W ] ] w0y 20
Fig.11. Contour maps of the m b7/ /A )} W i
alpha decay Q ey, —value for

even—even nuclei with 7 pro-

Fig.12. Qexp-—value systema—
tong and N neutrons.

tics of some alpha emitters.
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The point-dotted curve is the Green approximation of the
line of beta stability. From this figure one can see the gene-
ral trend of increased alpha instability toward neutron defi-
cient and heavy nuclei, well explained by the macroscopic part
of the mass formula and the important variation from magic pa-
rent to magic daughter nuclei, due to the strong increase of
the shell effects &Q.

The pronounced instability corresponding to the daughter
nuclei with magic neutron number (N~ 2 = 126) is more trans-
parent from the figure 12.

For a given nucleus(let’s say 2880) it is interesting to
see other possible very asymmetric spontaneous fission activi-
ties in competition with alpha decay. As is shown in figure 13
the neighbouring nuclei are not emitted spontaneously because
the corresponding processes have negative Q-values, but for

emission of many other nuclei with NyZ, > 4, 248Cm has Q>0.
The shell effects, 8Q favouring the alpha decay of this
nucleus with respect to that of its neighbours are presented
in figure 14. These were computed with the Myers-Swiatecki
(1966) formula, for spherical nuclei, eq.(5.15)). At each of
the double shell closure (Ng= Z, =2,8 and 14 on figure 14),
8Q has a maxumum value (3,7 and 12 MeV, respectively). In spite
of the increased Q for 160 and 28Si in comparison with 4 He,
the emission of these clusters (Sandulescu et al.1980) is strong-
ly hindered with respect to the alpha decay. One has to consi-
der also the macroscopic model contribution to the fission bar-
rier, the vibration frequency and the inertial mass parameters,
playing an important part in this competition, The delta-func-~
tion-like mass and charge distributions in this region of asym-
metry are due to the fact that the asymmetric fission leading
to a light fragment different from ¢ He is not possible (Q<0)
or has a very low probability (10~° for 1C than ).
The barrier shapes for this very asymmetric fission will be
plotted in figure 19. The barrier height Ep is given by Ej=
= E4g(R ) ~Q=E[;-Q.For the same nuclei as in figure 12, we
. have plotted in figure 15a the LDM touching point interaction
energy E;=E (R,), in figure 15b the shell effects §Q, and in
figure 15c the barrier heights By = E; ~Q,,,: The figure 15c
is almost the figure 12 with the upside down, because E; is
a smoothly varying quantity. The pronounced reduction of the
barrier height for the magic neutron number due to the steep
variation of 6Q (figure 15b) is very clear in figure 15c,

5.4, Shell Corrections

Usually the macroscopic-microscopic method (Brack et al,
1972) is applied to heavy nuclei. For instance the mass table
of Seeger and Howard (1975) refers to Z, N > 22 and that of
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\ Fig.13, Contour maps of
metric splitting of the 248Cm nyecleus,

the Q-values for various asym-

' 5 Ny 20
Fig.14. Shell effect contribution 8Q to the Q-values
for the same processes as in fig.13.
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Moller and Nix (1981) to Z,N > 8. The Strutinsky prescription
for light nuclei or for very large mass—asymmetry was nothyelzi
developed. Nevertheless, one can use a phenomenolc.)glgal she .
correction method sometimes called cluste.:r pregcrlptlon, exten
ding for large deformations the Myers-Swiatecki (1977) formula

for the g.s. of spherical nuclei:

SN, Z) = CILF(N) + F(Z)1/(0.68) /3~ cal/3}, 0
P = 080 - N (m-N,_ /@, -N,_)-m¥ N,

€ (N:_1,N,):N:are the spherical magic numbers N,Z = 2,8,
‘ﬁ:e,rGZaS,mSOf é-?:,l Nl)= i26, 184; Z = 114, and the parametefgrs
C= 5.8 MeV; ¢ = 0,325, This eq. was used to calculate 8E,
5E1 , SEg and 5Q plotted in figure 14 and flg:ISb. Accorglnﬁ
to Schultheis and Schultheis (1973), the damping terms o 1t:.e
Myers-Swiatecki shell correction formula.x for de?ormed nuclei, .
were replaced by a curvature-dependent integration usually per

formed numerically:

58 = — C _ kitFavA®) « FzaiNe ¥? k% - caldo, (5.16)
4nr 2AY/3
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where

l-a a do
k=2R, (=—— 4t — fo—); 2 =0T, 5.17)
Cqg ‘Gl g ¢
2., R g are the curvature radii and [S| is the surface area.
For two intersected spheres (Schultheis et al. 1970) one has

a simple formula:

2R (Ry+2 ) 2rR,(R~2_+R,)
AR sAmN. Lz —loliis gy gy atan e o (s (g)
arr? 4nR%

During the deformation, the variation of R induces the varia-
tion of z.,, Ry, V;, V,, A,, Ay, and consequently of Z,,
N;, Z, and Ny Each time when one of the nucleon numbers reaches
a magic number, the correction energy has a minimum (negative
value) and it has a maximum at mid-shell number,

For alpha decay, the variation of the fission fragment nuc-
leon numbers during the deformation from R =R; to R=R, is as
low as 2 units at all, Hence the shell correction energy is
a smooth function of R (see figure 16),

By assuming that the top of the barrier is not affected by
the shell correction, which agree with experimental data on fu-
sion interaction barriers (Poenaru et al. 1979d) the shell cor-
rection

5 ,E(R) = 3S(R) -0S(R,) , (5.19)

when added to the deformation energy E4 of the LDM, rises the
theoretical Qg4-values of the heavy nuclei with 3-6 MeV. In
spite of this improvement, there still remains a smoothly va-
rying shift mentioned above. In order to reproduce the expe-
rimental Q-value exactly, we have introduced a phenomenologi-
cal correction energy E (R), containing both the shell cor-
rection and the smooth shift:

ER) = E;(R) + E

®); E., R =0Q (L~ Vy (R)/Vyy 1 Q= Qeyq)"ad'

corr

(5.20)
where Vgs= V4(R,) is the alpha particle volume. It seems reaso-
nable to scale the shell correction with V,(R)/Vgy;, by rela-
ting its variation to the bulk properties of the nascent alpha .
fragment. Another choice could be the ratio 8§,(R)/Sy; of the
surface area of the small fragment to Sg¢=Sg l{g)o or the ra-
tio -R{)/(R,~ R ;) as shown in figure 17 for the example
of 222Ra, A best choice for the scaling parameters S, and R
(Poenaru et al. 1979b) have yield a negligible difference of
logT(8,) and logT(R) with respect to logT(V,), so we decided
to use the eq.(5.20).

corr
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Fig.19. Barrier shapes for the alpha
decay of 238Cm,without (broken curve)
and with (full curve) shell correc-
tion. a - LDM; b — FRNFM; ¢ - Y+ EM.
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The experimental corrections Qeorr defined by eq. (5.20) are
plotted in figure 18a for the LDM, in figure 18b for the FRNFM
and in figure 18c for the Y+EM. As was expected, the very strong
shell effects at the magic neutron number in the daughter nuc-
leus are the same, but the deformation dependent part Qq of
the Y+EM and FRNFM give a good approximation of the alpha Q-
values., On the other hand LDM, giving a large error for the

alpha particle mass leads to large discrepancies (even negative
Q4 -values).

5.,5. Barrier Shape

The corrections of the barrier for the alpha decay of non-
magic nuclei are very small in the framework of FRNFM and Y+EM,
As an example in figure 19 the barrier shapes for the alpha de-
cay of 238Cm are shown. The LDM (a), FRNFM (b) and Y+EM (c) po-
tential energies without (broken lines) and with (full line)
corrections are plotted. As we have mentioned in the preceeding
section, one can see that in the last two models R >R,. In
the LDM, R=R;; the top of the barrier is very sharp and higher
in energy. Due to the different values of the radius' constant
rg the initial separation distance R; (in fm) is also diffe-
rent from model to model,

5.6, Alpha Decay Lifetime of Heavy and Superheavy Nuclei

After replacement of numerical values of the parameters,from
eqs.(2.3) and (2.4), one obtains:
-21 Rp 3
exp(0.4239 [ {uA(R)[E(R) -Q’} " dR),
R

. 14333 10
Evib

(5.21)

where T is expressed in 8; R, R, and Ry in fm; E;, E and
Q’ in MeV, The penetrability integral is computed by Gauss-—
Legendre numerical quadrature, dividing the whole range (R ,R))
in two subintervals (R,,R_ ) and (R, Ry).For R € (Ry, R))the po-
tential energy E(R) is calculated numerically, hence the lower
limit of the integral, R,, the solution of the eq. E(R,) = Q’
in this interval, is found by a searching computer code., The
upper limit, Ry, is given by the Coulomb interaction energy:
Ry=Z1Zge /Q, because the nuclear interaction term is vani-
shingly small at large distances.

For the mass parameter g ,(R) = u(R)/m, where m is the nuc-
leon mass, we have tried three kinds of variations: 1) the in-
stantaneous reduced mass

ki(R) =A) (R)A(R)/A, (5.22)
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Fig.21. Experimental (points)
and theoretical (lines) alpha }
decay half-lives for the same
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3-Th; 4 -U; 5 -Pu;6 -Cm;
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which is an increasing function of R; 2) the final reduced
mass

and 3) the semiempirical relationship sugggsted by Randrup et
al. (1973) for the almost symmetrical fission

R~ R;
: 5.24
Rt—Ri)]' ( )

g (R) = uel1l + 7.37 exp(-2.452
The zero point vibration energy E.), was adjusted for eac?

time: 0.37 MeV for u;; 0.4 MeV for uy and 0.63 MeV for p, in
the LDM. The difference between the maximum and minimum value
of log(T/T ) for the seven isotopes of U 1s a good measure
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exp

of the deviation of theoretical values from the experimental
ones. This is practically the same (1.4 and 1.5) for pg; and pu;
but much higher (2.2) for p_. Hence we decided to use for the
moment the simple law of pug.

As one can see from figure 20, on the example of 230Th (1),
248Gt (2) and 252No (3), the half-life is very sensitive to
the variation of E.;y . In order to obtain a good overall fit
with experimental data, following values of Eyp = 0.37; 0.37
and 0,30 MeV were chosen for LDM, FRNFM and Y+EM respectively,
with uj.

5.6.1, Heavy nuclei

Experimental half-lives (heavy points) after Rytz (1979) and
Nuclear Data Sheets (vol.5, no.3 and 6; vol.6, no.4; vol.7,
no.2 and vol.8, no,2) are used in figure 21. By comparing this,
with figure 15c, one can see an almost identical trend, revea-
ling the importance of the barrier height in this process. The
good agreement with experimental data of the theoretical life-
times irrespective of the model used for the macroscopic energy
E4. in the range of T of 24 orders of magnitude, suggests
that the alpha decay process could be interpreted as a fission
phenomenon. This conclusion is also supported by the fact that
a new semiempirical relationship (Poenaru et al.1980b, 1982,
Poenaru and Ivagcu 1983 a) for T (Q), derived on the basis of
fission theory of alpha decay, gives the best agreement with ex-
perimental data., In the following we will use the LDM, by ex-
ploiting the advantage of its simplicity.

When compared with other theories of alpha decay, these com-
putations are faster and more accurate., To calculate the life-
time for one nucleus, the IBM 370/135 computer running time is
of the order of 45 s for LDM and 2m 20 s for FRNFM or Y+EM,

5.6.,2, Superheavy nuclei

On the basis of our method one can predict reliable values
of the alpha decay lifetimes in the new region of nuclei in-
cluding the superheavies. Alpha disintegration of these nuc-
lei is particularly important because in many cases it puts
a limit of the survival,

As an example we have studied (Poenaru et al,1981) the even-
even isotopes of the elements with Z = 106-120'and N = 172-190,
where there are no experimental data. In order to have a comp-
lete systematic trend of variation withh N between 110 and 190
(see fig.22) the isotopes of the element 104 with N = 154-190
have been also considered. The Q-values for correction energy
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were taken from Fiset and Nix (1972), As it is seen on the -
fig.22, the shell effects of the daughter nuclei with magic
number of neutrons, for which N = 128 and 186, induces a steep
increase of the Q_ . .The same thing happens at the magic pro-
ton number 114 (Z = 116),

A corresponding increase of the decay probability is shown
in fig.23, One can see that nuclei with Z > 114 decay particu-
larly faster. For some isotopes of the elements 104, 106 and
108 we predict lower half-lives than Fiset and Nix (1972), but
in general the present results are more optimistic: about an
order of magnitude larger, When other competing modes of decay
(fission and beta decay) are also taken into account, the nuc—~
leus 24110  has the longest calculated total half-life, Of
course the centrifugal barrier (M&ller and Aberg 1980) can
change drastically the situation.,

5.7. Transitions between Deformed Ground States
and Fission Isomers Alpha Decay

5.7.1, Transitions between ground states

In section 5.6. the g.s., nuclear deformations of the parent
and daughter nuclei (Seeger and Howard 1975) was not taken in-
to consideration explicitly; it was introduced only through
the experimental @Q-value in the correction energy. The para-
metrization of a spheroid intersected with a sphere, presented
in section 5.1.2., (Poenaru and Ivascu 1981b) is able to con-
sider the deformations and at the same time preserves the ad-
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vantage of the analytical relationship for Ed(R),in the LDM,
when the fragments are separated (R> R,).

The spheroidal deformation B of some even-even parent and
daughter nuclei, calculated with the eq.(5.3) from the quad-
rupole and hexadecapole deformation pz.aramgters a, and a4 ;
(Seeger and Howard 1975) are plotted in flg.?.lo. The arrows di-
rected from the parents to the daughters (which are displayed
at the same N as the parents). _

Due to the deformation, Q4 increases, improving the agree-

" ment with experimental values. The reduction of the Qg with
0.6-1,2 MeV is clearly seen in fig.25. :

Because of the increase of R,, the LDM barrier height
(fig.26) and consequently the zero point vibration energy are
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now smaller (E,; = 0.2 MeV for the case of constant reduced
mass pg ).

Another interesting effect is illustrated in fig.27 where
an enlarged view of the residual discrepancies is displayed,
without (a) or with (b) deformations taken into account, It
is obvious that the dependence on Z of the discrepancies are
greatly reduced in the presence of deformation. This is an ar-
gument that the neutron shell effects shadow the proton ones
in this region. The same conclusion can be drawn from the fi-
gure 28 where the individual zero-point vibration energy of
each nucleus, determined from the condition T =T,y were
plotted, assuming a constant inertial mass parameter p,=pg §.

5.7.2. Alpha decay of fission isomers

The parametrization of a spheroid for the parent and daugh-
ter nuclei and of a sphere for alpha fragment allowed us to
study the alpha transition aj, gfrom a shape isomeric state
(Vandenbosch 1977, Poenaru 1977, Metag et al.1980) of a parent
nucleus to the ground state of the daughter. In this case
Qisg=05g+ E"p » (5-25)
where Ejj, is the fission isomer excitation energy (Britt 1973,
Ivagcu and Poenaru 1981) of the parent nucleus and Qgg is the
Q-value for the alpha decay between ground states (called
Q.,, above). The shape isomeric state has a large deformation
Bp= 2 (Bjérnholm and Lynn 1980), but the ground state deforma-
tion of the daughter nucleus is of the order of B4 = 1.24.

The results obtained for the known even N isotopes of U,

Pu and Cmare plotted in fig,29. On the same figure one can
see the measured lifetime for the decay by spontaneous fission
from the isomeric state f;, .This process is much faster. The
branching ratio for the alpha decay is lower than 108 - a fi-
gure which explains why the alpha particles of the fission iso~
mers could not be found experimentally (Leachman and Erkkila
1966, Belov et al, 1973),

Another type of alpha transition a; , between the shape

isomeric states of the parent and daughter nuclei, has a lower
Q-value

Qis ie= Qisg'EIId=Qgg"’(EHp,'E”d) (5.26)

and the shape of the daughter nucleus is also well deformed

B4 =2, As it is shown in fig.29, the probability of this pro-

cess is at least 5 orders of magnitude lower than that of Ag e
The measured lifetime of other processes occurring in these

nuclei are drawn in fig,29: the spontaneous fission of the
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ground state F,, and the gs-gs alpha decay a ... For low neutron
number the alpha decay dominates, but for large N values the
fission process competition became stronger and stronger.

6. TIME DEPENDENT HARTREE-FOCK STUDY OF ALPHA DECAY

It was shown (Sandulescu et al,1983) that in TDHF approxima-
tion, the collision of an alpha particle with a lead nucleus
leads to nuclear dynamical effects during the capture process
and to periodic oscillations of the compound system. The oscil-
lations were interpreted as zero point motions associated with
the’ alpha decay collective mode. The computed frequency corres-—
ponds exactly with the experimentally deduced value based on
the alpha decay description as a fission process,

6.1, The Model

It is known that in the time-dependent Hartree-~Fock (TDHF)
approximation only a very limited set of physical quantities
can reasonably be compared with the experiment, Up to now, the
contact with experiment was restricted to the fusion cross sec-
tions and to the gross behaviour of the Wilcynski plots.

Recently Weiss (1981) has suggested that the TDHF-approxi-
mation may include also some high energy collective excitations
of the residual nuclei after a grazing collision., It was shown
that the high frequency structures of the Fourier transform of
the Cartesian moments of the density of the residual nuclei for
several moments are correlated. This may explain the observed
bumps in the cross section versus the final kinetic energy for
different species in the system %°Ca + %Ca at Ejap = 100 MeV
(Roynette et al, 1981), From these calculations it is not clear
if the frequency components represent nonlinearity effects,
multiple phonon or primary collective excitations.

In the following we present the results of a study in the
TDHF approximation of another collective mode, which cannot be
simply described by multipole expansion of the surface, the
collective mode associated with alpha decay. In order to excite
such a collective mode, the central collision of an alpha par-
ticle with a lead nucleus at relative kinetic energy just above
the Coulomb barrier, was considered.

The calculation has been done, due to the extremely large
asymmetry of the considered system, only in two dimensions and
using the advanced array processing techniques, A simplified
Skyrme plus Yukawa interaction was used, the small Coulomb ex-
change correction energy was neglected and no spin-orbit inter-
action was included. The effective charge quartet model with
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the filling approximation for the outermost shells (Cusson et
al. 1980, Stiécker et al.1980), has been used.

6.2, Alpha Decay Collective Mode

The process was computer over a long period of time
(3.315 fm/c). From the total number of the pictures taken in
steps of 19.5 fm/c only few were selected, which were conside-
red to be characteristic for the alpha decay process.

In fig,30, the first 10 shapes which illustrate the capture
of the alpha particle by the lead nucleus have been plotted.
It is evident that if we assume that the emission process is
just the capture process reflected in time, the alpha decay
process implies many dynamical effects, like the polarization
of the heavy nucleus in the vicinity of the alpha particle and
the formation of a long neck before the alpha particle is emit-
ted,

In the usual description of alpha decay, based on the R-mat-
rix theory of nuclear reactions, these dynamical effects are
neglected. The barrier is considered to be a one-body process
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Fig.30. The capture of an alpha
particle by the 28 Pb” nucleus
tllustrated in time-steps of

19,5 fm/e.

Fig.31. The shapes which ap~
pear periodically in the time
evolution of the compound
system 212p,,
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and the alpha reduced widths are evaluated in the one-center
shell model.

From the TDHF calculations it was concluded that the whole
process looks like a fission process. This gives a full support
of the theory of alpha decay as a fission process based on the
liquid drop model with phenomenological shell corrections (Poe-
naru et al, 1979a).

The dynamical effects suggested by the TDHF description of
alpha decay, i.e., the modification of the self consistent
field during the emission process have been recently taken into
account by evaluating the alpha reduced widths in a very asym-
metric two-center shell model, Comparatively to the one-center
shell model, the asymmetric two-center shell model amplifies
the single particle wave functions at the surface of the nuc-
leus, Consequently the absolute values of the alpha reduced
widths are increased. This increase may possibly explain the
well-known theoretical underestimation of the alpha reduced
widths, in the frame of R-matrix description of alpha decay,
at least with two orders of magnitude,

After the capture process, the compound system has quite
complicated shape oscillations., Looking at the time evolution
of these shapes we can see clearly some shapes which appear
periodically. First the compound system reaches a more or less
symmetric shape, similar with a sphere with two bumps on the
opposite sides and second an asymmetric shape which can be
approximately described by a sphere with only one bump on the
side on which the two partners come first in contact. These
shapes which appear geriodically with a half period T/2 =
= 780 fm/c = 2.6:10"2!s are given in fig.3l.

These oscillations have been interpreted as zero point os~
cillations of the collective mode associated with alpha decay
E vip =Tw/2= 0.4 MeV. We should like to stress that this va-
lue Eyjp = 0.4 MeV corresponds exactly with the experimental-
ly deduced value based on the description of alpha decay as
a fission process (Poenaru et al. 1979a). :

7. SEMIEMPIRICAL FORMULAE FOR ALPHA DECAY HALF-LIVES

During the last few years, the number of the known alpha
emitters have been increased mainly by measuring the activity
of the new neutron deficient nuclei produced in heavy ion reac-
tion (Gauvin et al.1975, Cabot et al., 1978, Hagberg et al.1979,
Hofmann et al. 1979, Ritchie et al, 1981, Schmidt et al.1979),
A new island of alpha activity in the neighbourhood of the

double magic nucleus 1098Sn was studied (Schardt et al.1979,1981).

Alpha decay competes usually with fission and beta decay
in the disintegration of heaviest nuclei synthesized up to now

42

(Bemis et al, 1981) and it is expected to be frequently met in
the superheavy region (Nix 1972).

As far back as 1911, Geiger and Nuttall have found a simple
dependence of the alpha decay partial half-life, T,on the
alpha particle range in air, Now the disintegration period can
be estimated, if the kinetic energy of the emitted particle,
E,,is known, by using semiempirical relationships (Fr&man
1957, Wapstra et al. 1959, Taagepera and Nurmia 1961, Viola
and Seaborg 1966, Keller and Minzel 1972, Hornshoj et al.1974).
Some of these formulae were derived only for a limited region
of the parent proton and neutron numbers Z and N. Their para-
meters have been determined by fitting a given set of experi-
mental data selected by the authors from the available measure—
ments on large collectivity of even-even, even-odd and odd-odd
nuclides,

Since then the precision of some measurements was increased
and new alpha emitters were discovered. This process of improv-
ing both the quality and the quantity of data will continue in
the future. Consequently it is interesting to have from time
to time the possibility of changing some of the parameter va-
lues. In the following it will be shown that a better agree-
ment with experimental results can be obtained by requiring
a vanishing mean value of the absolute errors for each group
of nuclei, leading to new parameters {C 1 of the various for-
mulae presented below.

In an attempt to improve the description of data even in
the neighbourhood of the magic neutron and proton numbers,
where the errors of the other relationships are large, a new
formula with six parameters {B,},based on the fission theory
of alpha decay have been derived (Poenaru et al. 1980b, Poe-
naru and Ivascu 1983a). This formula takes into consideration
explicitly not only the dependence on the proton number, but
also on the neutron number and their difference from magicity.
A corresponding computer program (Poenaru et al,1982) allows
us to improve automatically the parameters {Cy} and {By} men-
tioned above, every time a better set of experimental data is
available (Poenaru and Ivascu 1984b).

7.1. A Basic Set of Experimental Data
on the Strong Alpha Transitions

Our set of 376 data Q, T on the most probable (ground
State to ground state or favoured) alpha transitions of 123
éven-even, 111 even-odd, 83 odd-even and 59 odd~odd nuclei,

18 presented elsewhere (Poenaru and Ivascu 1983b). They are
Selected to meet in each of the four groups, the criteria of
best fitting the systematics of Q-value, 1ogT, of the quantity
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X exp defined below, versus neutron number and the Geiger—-Nut-
tall plot.

From these data, the parameters of our formula were obtained,
Many of the alpha active nuclei have also other competing decay
modes (beta decay, spontaneous fission, etc.), hence the par-—
tial alpha life time represents only a fraction, given by bran-
ching ratio, by, of the total disintegration period, T;. From
all the alpha transitions, we have selected the strongest ones:
ground state to ground state transitions in even-even nuclei and
the so-called favoured transitions in the odd-odd and odd-mass
nuclei, The ratio of the intensity of this alpha line to the
total alpha strength will be called ip, 1in the following. Con-
sequently, the partial decay lifetime, T,, of the most probable
alpha transition is given by

g 100 1004

a t
ba i,

(7.1)

where b, and i, are expressed in percent.
The released energy, Q, is related to the alpha particle
kinetic energy, E,, by the relationship

Q =EaA‘/Ad' (7.2)

where A and A = A -4 are the mass numbers of the parent and
daughter nucleus, respectively. For alpha transitions from the
ground state of the parent nucleus to the ground state of the
daughter, Q is given by the mass difference Q= M(A, zZ) -
M4,2) ~M(Ay,Z4)otherwise (for favoured transitions) one has
to add also the difference of the excitation energies.

Except a small number of cases (some isotopes of Te, Xe ,
1, Cs, Hf , Ta, Os, Ir, and No ), for the energy release
in alpha decay, the Q-values - derived from the masses of
nuclei tabulated by Wapstra and Bos (1977) were used. Some
authors (Perlman and Rasmussen 1957, Keller and Miinzel 1972)
take into consideration a small term, AE_,due to the electro-
nic shielding :

AE _ = (85.327/°% - 802%/%) 1076 mev. (7.3)

They use an effective @-value Q. y=Q +AE_ . The contribution
of this term is only of the order of 15-30 keV. For a semiempi-
rical relationship the complication introduced is not justified
by an improvement of the agreement with experimental data. Con-
sequently this term will be ignored in the following.
Informations concerning the quantities T,, b, and i, of the
eq.(7.1) were compiled by Rytz (1979). Our basic set of expe-
rimental data was selected from these tables and from the pub-
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Fig.32, Selected alpha emitters J&. @) and beta-stable
nuclet, (m).

lications by Gauvin et al, (1975), Gorbachev et al, (1975),
Cabot et al. (1978), Lederer and Shirley (1978), Hagberg et al.
(1979), Hofmann et al. (1979), Schardt et al. (1979) and
Schmidt et al. (1979). As the range of lifetimes of different
nuclides extends over many orders of magnitude,it is more prac-
tical to use the decimal logarithm logT. The experimental va-
lues of T will be denoted by Tey,.Unlike the mass tables
(Wapstra and Bos 1977), presenting only one value for a given
nucleus, usually for a given transition there are many measu-
rements of the quantities T,, b, and i,, different from each
other.

In each of the four groups of nuclides: even-even, even-
odd, odd-even, and odd-odd, our selection was guided by the
criteria of the best matching in the general trend of the fol-
lowing four systematics: Q » 18T, Xexp Versus neutron num-
ber, N, and logT, versus 1/yQ.

The quantity x e, is derived (Poenaru and Ivascu 1980) be-
low from the experimental value logT, and the calculated Kg
value,

The position of the selected alpha emitters in a N-Z sys-
tem of coordinates, is shown in Fig.32 where the beta stable
nuclei are marked with heavy squares. One can see that the
majority of the alpha radioactive nuclei are neutron deficient,

The systematics of @, logT; and x eyxp quantities versus the
neutron number, N, for even-even nuclei, are shown in Fig,33a,b
and ¢, respectively, For Q@ values between 2 and 9.8 MeV, the
alpha disintegration lifetime variation extends over 30 orders
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values of the even-even basic set of nuclet,

of magnitude (from 1077 to 10%s) but X exp 1S only slightly
different from unity; it ranges from 0.96g to 1,045,

The most unstable nuclides toward alpha emission have 128
neutrons leading to the magic neutron number of the daughter
nucleus, but the maximum value of X corresponds to N= 126,

For various isotopes of Po, Rn, and Ra ( Z= 84, 86, 88)
the approach of the magic neutron number of the daughter nuc-
leus Ny =126 ( N = 128) is felt beginning with N = 126,
as the half-life for N = 126 (see Fig.33b) is lower than that
for N = 124, but a dramatic decrease is noted when N is in-
creased from 126 to 128, The Cf, Fm, and No (Z = 98, 100,102)
isotopes show a discontinuity for N = 154 due to the subshell
closure at Ny4= 152, :
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A Geiger-Nuttall plot for the same nuclei can be seen in
Fig.34, Some of the points which deviate from the straight
line systematics of the other isotopes of a given nucleus are
connected with a short thin line with their common curve,

The figures similar with Fig,33 and 34 for even-odd, odd-
even abd odd-odd nuclei and the detailed tables of experimen-
tally determined quantities of our set of nuclei, are given
by Poenaru and Ivagcu (1983b).

7.2, New Additive Parameters of the Known Formulae

The formula given by Froman (1957)

1ogT =[139.8 + 1.83(Z - 90) + 0.012(Z - 90)°] /v T
(7:4)

- 0.3(2 - 90) - 0.001(z~90)% 4+,
is limited to the region of even-even nuclei with Z >84, -
Va%ues are expressed in MeV and T in seconds throughout
this work. Consequently some additive parameter "old" values
in table 1 could be different from the original if the author
has used other units for T (years or minutes). 47



Table 1

Additive constants (~c;) of semiempirical relationships

48

new

old

new

old

new

old

new

old

51.336

51.751 52¢3

52,224 52.3 51.863 5263

523

51.524

51.986 53

53

51.992

53

52.421

53

19.758

20.470 20.33

20.86 20. 346 20.64

20.789

21.02

‘-00 962

-0.196

=0,772

-0.339

0,043

20,7 20.643 20.8 20.571

20.383

20.226 20.5

22.5

20. 347 20.279 19.922 20,279 20.051 20,279 19,355

20. 279

Almost all parameters {C,} are negative. Hence the values
-Cy are given in table 1. The original parameter value is
called "old" and the new one is obtained from the condition
that the mean value of the absolute error (1AQi§llog(Ti/Tiexp)
vanishes in each group of the nuclei mentioned above. All diag-
rams presented in this section (except Fig.40a) are computed
by using these new values,

The formula (7.4) gives a very good agreement with experi-~
mental data for N > 128, but for the new region of nuclei pro-
duced in heavy ion reactions, the errors as high as 5 orders
of magnitude are obtained (Poenaru et al. 1984b), because the
eq.(7.4) was not designed for lighter nuclei.

A better overall result, though the dispersion for heavy

nuclei is larger, gives a very simple relationship of Wapstra
et al, (1959).

logT = (1.2Z + 34.9)/VQ + C,, (1.5)

also valid for even-even nuclei with Z > 85, This time the
maximum error affects Z = 60 nucleus, not Z = 52 as in the
preceding case,

In figure 35 the half-life of the even—even nuclei calcu-
lated with various equations is compared with the experimental
one. To aid the eye, the consecutive isotopes of a given ele-
ment are connected with a segment of line; a dashed line is
used if one or more isotopes of a sequence are missing, From
N = 60 to 82 there is a gap of stable nuclides toward alpha
decay, or emitters undiscovered yet. Up to now only a few com—
ponents of the new island of alpha activity, close to the double
magic 1905y, have been found.

As can be seen from figure 35a, the formula presented by
Taagepera and Nurmia (1961)

logT = 1.81(2 ;/VE, - 2¥% + ¢, (7.6)

where Z4=Z-2 1is the atomic number of the daughter nucleus,
and Ct was allowed to vary in different groups of nuclei, re-
mains one of the best; it is practically exceeded (Fig.35b)
only by a new variant (Keller and Miinzel 1972)

logT = K,(Z,/v@ -2;'3 +C_, (7.7)

where HK = 1,61 for even—-even (e—e);1.65 for even-—odd (e-o);
1.66 for odd-even (0-e) and 1,77 for odd-odd (o-0) nuclei.

The equation presented by Viola and Seaborg (1966) is of
the form

logT = (8,2 ~3,)/vVQ -b,Z -b, +Cy , (7.8)
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Fig.35. The errors of life-time predictions with Taage-
pera-Nurmia’s (a), Keller-Minzel’s (b), Viola-Seaborg’s
(¢) and Harmshdj et al. (d) formula for even—even nuclet.

where a;= 2.42151; a,= 62,3848; b, = 0,59015; by = 4.2109
for N< 126 and 8; = 2,11329; a,= 48 9879; bj = 0.39004;
by= 16,9543 for N> 126, Z > 82, It gives excellent agree-
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ment in the region of actinides with N > 128, but as it can
be seen from figure 35c for even—even nuclei it underestimates
the lifetime of lighter nuclei in contrast with the overesti-
mates of the eq.(7.4).

Hornshéj et al. (1974) have proposed the formula

AlSg 1
Jog T = 0.80307 )
A

(arccos\/_x—

N3
in which X = 0,538243 QAI/s/Z and Cy is not changed in va-
rious groups of nuclei, like Cp~ of eq.(7.4) and Cy of eq.
(7.5).

In spite of the strong influence of the neutron shell ef-
fects, in eqs. (7.4)-(7.9), mainly the Z dependence was stres-
sed. From figure 35 (except the region of low Z up to 72 in
figure 35¢), one can see that for e-e nuclei in all equations
a good enough dependence on 7 was chosen, because at a given
Z the spread of the results for various Z 1s not very large.

The dispersion of results for o-e, e-o0 and o-o (fig.36)
nuclei is larger. In all cases one has a large negative peak
at N = 126 or 127 which is approximately of one order of mag-
nitude for o-e nuclei, but around 2 order of magnitude for
e-~o0 and 5 for o-o0. In fig.36 there are very pronounced nega-
tive errors (-5.6; -5.2; -6.4 and -5.8 orders of magnitude)
for 2 = 83 N = 127, The fact that the neighbourhood of the
magic number of nucleons is very badly described by all these
formulae, is attested by the presence of the negative peaks

-v1-%x)+Cy (7.9)

in figures 35 and 36.

7.3. New Formula Based on Approximation
of the Potential Barrier Penetrability

By applying the phenomenological fission theory with
a Myers-Swiatecki”s (1967) variant of the liquid drop model
to the alpha decay, it was shown (Poenaru et al.1979a) that
the potential barrier, for the split of a particular parent
nucleus in its daughter and an alpha particle, is of the shape
shown in figure 37, where E’=Q + E,;, and E,;, is the zero
point vibration frequency. For Evb 0.4 MeV one has

T=-358x10" exp(K) (7.10)
and the WKB formula of penetrability leads to the eq.(2.4)
for the action integral K.
By choosing two intervals of 1ntegrat10n (R,,R,) and (R,,
5). the action integral is split in two terms K K'+.K'

corresponding to the overlapping and to separated fragments,
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Fig.37. The barrier shape
for alpha decay.
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in which e is the electron charge and Rg= roAi/ w.Tg S
= 1,2249 fm. With the substitution R =Rgcoszf, the integra-
tion K. is performed easily and leads to an analytical rela-
tionship. It is approximated by a larger quantity obtained by
replacing E’ by @ and consequently R} by Ry =2Zd92-,/Q.Now
K-K;+K, and

2 — A 1/2 = T
Ks=§3.\/2mzd(_—) arccosvx - v x(1-x)1,

h AQ
(7.12

1/3 1/3
y o B /Ry=c, @ v 4 hasez et

The term K’ is a consequence of the strong interaction in the
overlapping region; it was computed numerically and can be ap-
proximated as a small percent from K, leading to
K=xK_. (7.13
where y is different ‘for various nuclides; it can be either
greater or lower than unity, due to the fact that K > K,
hence sometimes it happens that K —K_ over compensates K.
For each of the nuclei of our set of experimental data one can
determine an "experimental' value

Xaspo In10(logT

+20.448)/K_ , (7.14

P
where, after replacing the numerical constants, one has from
eq.(7.12)

Ay 1/2 e Al
Ks=2.529562d(Ia) : [arccosyvx -V x(1-x)],

1/3 (7.15
X = 0-4253Q(1¢5874 + A d )/Zd .

The eq.(7.10) becomes

logT = K_/In10 ~ 20.448 . (7.16
The figures 33c and 38a,b,c show the variation of the quantity
Xexp for e-e, o-e , e-o, and ¢-o groups of nuclei, res-
pectively. For e-e nuclei (fig.33c), there is a systematic
sawtooth variation; X exp increases slowly when N is increase
between two successive magic numbers and decreases steeply fro
magic to magic plus two neutron numbers. The same thing hap-
pens for o-e nuclei (fig.38a), though the dispersion of data
is more pronounced. For e-o (fig.38b) and o-o (fig.38c) nucl
the maximum value of X eyp re#ched at the magic plus one number
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of neutrons is greater., The e-o nuclei (fig.38b) show a very
sharp peak at N = 127. The very special behaviour of the data
for Z =.83, N = 127, which was observed in figure 36, is also
present in the figure 38c,

The variation of y ., plotted in figures 33c and 38 suggests
that the rising part ofp x could be approximated by some simple
laws of variation with Z and N: a constant value, a first or-
der polynomial or a second order polynomial. The saw tooth is
obgained if N and Z are replaced by the reduced variables y
and z:

X =:Bl+'B2y + Baz +'B4y2+'B5Zy +'B622 (7.17)

expressing the distance from the closest magic-plus—one number
Ni (Or Zi ):

y=N=N)/N ~N)s N<NSN,  , N = ..., 51,83,127,185, wuvee (7.18)

£= (Z-2)/Z; ~2,)i 2;<Z<Z; + Z;= ......, 29, B1, 83, 115, .......

(7.19)
The parameters lBk! are obtained from the fit with our set of
experimental data,

7.4, The Fit with Experimental Data

Tl}e vglue of the parameter B; for the simple constant ap-
proximation of y = B, can be obtained straightforwardly by using

the least squares method. The sum ;2 log(T;
i=1

iexy/Ti) is minimized

with respect to yx 1leading to

n
a . s k2
1 =110, 3 (0BT, orp+ 20448)K,i/ 2 K7, (7.20)

in each of the four groups of nuclei (n = 123 for e-e, 83 for
g-e, !ll f?r e-0o and 59 for o-o nuclei). In this way, the
I;>llowmg figures have been obtained: Bj= 1.002 410 for e-e;
5912— 1.016 046 for o-e; B)= 1.019 613 for e-o and Bj;= 1.049
for 0-0 nuclei.
For the first order and the second order i
¢ polynomial yx =yx(y,2z),

a numenca].. procedure (Poenaru et al, 1982) has been used in )
:}I‘Ider to find the parameters B={B, | minimizing the sum of

e squared of the deviations. In case of the second order po-

lynomial one seeks to minimi i 6
R - o minimize the functlonalvax :R° SR, de-
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n
2
GX(B) =i§1[xexp(Yi,zi)_x(yiozi)] . (7.2])!
From the condition of minimum, the set of normal equations of

the least-squares problem is derived:

n dx
iz.l[xexp(yi.zi)—x(yi.zi)]—a-g;(yi,zi)=0. (k=12,..,6).  (7.22)

For the first order polynomial the similar set has only 3 equa-
tions. The Gauss elimination method with complete pivot has
been used to solve these systems, The parameter values obtained
in this way are given in table 2 (see section 7.6).

The capacity of our formula to describe the experimental
data can be appreciated from figure 39. For even—even nuclei,
fig.39a shows the constant approximation; fig.39b, the first
order polynomial approximation, and fig.39c, the second order
polynomial approximation, The increased error in the vicinity
of the magic number of .neutrons N = 126, which is present for
all known formulae (see figures 35 and 36) and for the constant
x (fig.39a), is practically smoothed out by the second order
polynomial approximation. This performance is only partly ac-
hieved for o-e (fig.39d), e-o (fig.39e) and o-o (fig.39f)
nuclei. In any case a comparison with figures 35 and 36 demon-
strates the advantage of using our formula, Even the very larg
errors of 5-6 orders of magnitude obtained for Z = 83, N=
= 127 in figure 36 are greatly reduced below 0.4 orders.

An overall estimation of how well various formulae can desc-
ribe the experimental data, could be quantitatively obtained
by introducing the standard rms deviations of logT values:

ool Enl[log(Ti Gt (7.23)

This quantity was displayed in figure 40a for the original (old
and in figure 40b for the improved additive coefficients (new)
in each of the four groups of nuclei. Only for some particular
cases (hatched area at the top of the column) the reduction of
o is not larger than 0.02. This is a property of the experi-
mental data used by various authors in comparison with our set,

Even the constant y approximation of our formula has ¢
somewhat lower than the best of the known relationships (Keller
Miinzel 1972). Of course the second order polynomial approxima-
tion leads to smaller standard deviations.

In the future when a better set of experimental data (more
accurate or more complete) will be available, the parameters
{By} and {C } could be automatically improved with a computer
program (Poenaru et al, 1982).
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Fig.40., The standard deviation
of vartous formulae in each group
of nuclei for both old (a) and

© @) new (b) values of the additive
parameters.
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7.5. Partial Alpha Decay Half-Life of the Nuclei
with Known Q-Values

For all parent and daughter nuclei with Z > 48, which have
-masses tabulated by Wapstra and Bos (1977) the Q values were
calculated. By using our semiempirical formula it was possible
to predict (Poenaru and Ivascu 1981a) the partial alpha decay
lifetime T for all gs-gs transitions for which @Q>0, by using
our_semiempirical relationship given above. Only the values
1077<T < 10% (interesting from the experimental point of view
were plotted in figure 41. In this way, many isotopes with smal
Q-values and consequently very small probability to decay, are
not present on this figure.

The systematics of the alpha decay half-life are shown se-
parately for even-even (fig.4la), odd-even (fig,41b), even-odd
(fig.41c), and odd-odd (fig.41d) nuclei. One can see that for
a given Z, the lifetime rises when the neutron number increa-
ses, except in the neighbourhood of the magic numbers of the
daughter nuclei, where it steeply decreases, from N = 82 to
84 and 126 to 128 when N 1is even, or from N = 81 to 85 and
125 to 129 when N is odd.

Fig.41. Systematics of the gs—gs transitions life-time
predicted values in the interval 1077 to 103 s for our ’
set of experimental data (x) and for the other alpha
emitters (8) (a) even—even; (b) odd-even; (c) even-odd
and (d) odd-odd nucleti.
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The nuclei with known values of the half-life, used to ob-
tain by fit the coefficients {B;}] were marked with a cross on
the figure, where the estimated value of T is plotted.

After a small island of alpha emitters (Z = 51-56 and N =
= 55-65), there is a gap of relative stability to the alpha de-
cay (very long decay time) or even negative Q -values. After
that, with Z= 59 and N = 83 begins the main region of alpha
instability. It would be interesting to find also other com-
peting modes of disintegration (beta decay or spontaneous fis-
sion) for those nuclei.

Predictions for nuclei with 62 < Z < 76, have been made also
by Rurarz (1982) who found good agreement of the results ob-
tained by using our formula with experimental data. He extended
the calculations for nuclei far off the beta stability line by
using mass formulae to find the Q -values.

7.6. The Island of Alpha Activity Close
to the Double Magic '"Ysn

The island of alpha emitters close to the double magic nuc-
leus 1908y, has been extensively studied (Schardt et al. 1979,
1981) experimentally at the GSI on—line mass separator. Due to
the double magicity the mass surface is lowered, leading to
increased Q-values for alpha decay of nuclei with Z, N > 52.
Complex decay paths are presented by the very neutron deficient
trans—tin isotopes, because the B' decay Q-value increases and
the charged particles binding energies decrease with increasing
distance from the line of B-stability. For example !!4Cs has
an alpha transition from the ground state and B8 —delayed pro-
tons, alpha particles and y-rays (Tidemans - Petersson et al.
1981).

At the beginning, the alpha activities detected following
96Ru(160, xn) reaction (Macfarlane and Siivola 1965) have been
assigned to the isotopes 107108 Te, After that, Karnaukhov and
Ter-Akopyan (1967) corrected this result showing that one has
108,109 ¢, At the GSI UNULAC accelerator, 14 alpha emitters,
isotopes of Te, 1, Xe, and Cs, have been identified. These are
not tabulated in the catalogues of alpha decaying nuclei, pub-
lished by Gauvin et al. (1975) and Rytz (1979).

The alpha transitions between ground states of the nuclei
with Z = 52-61 have been studied (Poenaru and Ivascu 1984b)
by using our semiempirical formula based on the fission theory
of alpha decay.

In our previous papers (Poenaru and Ivascu 1983a) we have
used for Te, I, Xe, and Cs isotopes the data from Schardt et
al. (1979) with which the old values "ov" of B, given in
table 2, have been obtained. Recently, the authors have pub-
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Table 2

B, parameter values

Group

nuclei

-0,016 509
-0.022 562
-0,066 147
~-0,079 999

0.001 546
; —0.000 716

0.023 342
0.023 279

0,017 407
0.024 584
0.034 805
0,050 671

0.021 227
0,022 841

0.987 722
0.985 911

122
125

oV

nv

0.039 190
0.043 657

0,000 870

0,021 626

1.003 660

83

ov

0.013 919
0.156 507

0.010 783
-0.119 094
-0.113 054
-0,184 468
~0.184 136

1,000 560

84

nv

-0,109 130

0.228 B48
0.230 300
0.326 171

0.030 606
0.019 057
0.259 041

111 1.014 620

ov

<0.101 523

0.147 320

1.017 560

111

nv

-0.406 200
-0.407 280

0.231 988

59 1,008 070
60

ov

0.326 025

0.231 900

0.260 268

1.007 740

nv

61
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Comparison between experimental data and life time computations
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Schardt et al (1981),
g a

>

(Rasmussen 1959) assumin

by using tranasmission calculations
reduced width E* = (PT)/(PT)2

from

a) Data from Schardt etel (1979); b) Data from Schardt et al (1981); c) b estimated

1ished (Schardt et al. 1981) improved data. In table 3 the com~-
puted results, obtained for the new data both with the old and
new By values, are compared with experiment. The errors obtained
with other semiempirical formulae are also given.

Table 3 includes the new isotoYeSIOGTe and 11%%Xe and more
accurate data for.lOBJlo'Te,, 110,1 2'”31, UL N2ye and H4cg, There
are two alpha lines for !!1Xe; that with lower energy and inten-
sity was not introduced in table 2, assuming that it does not
corresponds to transition between ground states. The lightest
emitter discovered up to now is 106Te, Itg daughter, 28n, is the
closest isotope to the double magic 19°Sn reached till now.

As in our preceding paper (Poenaru et al. 1983b) where more
data have been analysed, allowing to obtain the results shown
in figure 40, from table 3 one can see that also for this island
of 14 alpha emitters, smaller errors are given by our equation
(PI), followed by Keller-Miinzel (K-M), Taagepera-Nurmia (TN),
Hornshdj et al. (H...) and Viola-Seaborg (VS).

The differences between the errors of our formula with the
old and new B, values, are not large. Concerning their variation
trend, one can say that except the odd-N Te and Xe isotopes,for
which one get a slight increase, for other groups of nuclei the
errors become lower when the new B, values are used.

7.6.1. Computation of Q-values with various
mass formulae

Only three isotopes of Te and two of I, from that given in
table 3, have alpha decay Q-values tabulated by Wapstra and
Bos (1977): for 108,1097¢ they correspond to older measurements
and for lloTe,,“2-113lthey have been estimated from systematics
and are smaller than the experimental results.

The Q-value variation trend given by the liquid drop model
is to increase when the distance from the line of beta stability
is increased. The superposed shell effects produce an important
rise of Q@ for nuclei having a daughter with magic number of
neutrons (or protons), that is N= Z= 52 or N = 84. This shell
effect explains the existence of the island of atha emitters
in the neighbourhood of the double magic nucleus !00Sn, far off
the main. region of alpha emitters having N > 84.

When the Q-value for Te isotopes is splitted in two terms
8iven by the droplet model (Myers 1977) and the shell effects,
one obtains that 907 is given by the second term, which is an
additional support for the double magicity of 100gp,

Concerning the proton drip line in this region PJochocki et
?}é (1982) predicts that 104gp or 1055, | 103 Te,, 1991, and

Cs are (very likely) protons emitters.
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and computed Q-values (in MeV)

Comparison between measured

Calculations

JE
3.42

3.27

BIM

Lz

GHT

3.45
3.30
3.03
2485
2,75
2.87
2.63
2.28
2,02

3.22
3012
2,92
3.18
3. 05
3.29
3.22
2,94
2,40
3.15
3643
3e21
2.99
3.12

6.58
6.58
5‘98
50 98
5.38

4,27
3093
3.56
3.26
2,92
3.22
297
2.68
2,38
3.64
3.30
3.05
2.71
2,69

3.88
3.88
3.58
3.87
3.38

3.94
3.63
3.36
3.06
2,77
3.27
3,01
2.72
2.43
3.80
3.52
3.25
2.84
2,72

4.32
4.02
3.74
3.44
3.16
3.61
3.34
3,03
2.77
4010
3.80
3.56
3.24

3.08

4,32
3.98
3.45
3.20
2.72
3657
3.27
2,99
2,71

3.88

3.71

106
107
108
109
110

52(Te)

2.21
2,04
1.80
1. 60

3e41
3.20

3.02
3.7
2.99
3.38
3.22
2.95
2.36
3.60
3.75
3.60
3.34
3.95

2.80 )

110
111

53(1)

6.08

3.88
3.47
3.17
4.17
4.27
4.18
3.38

2,54 *)
2.26 %)

112
113

4.97
6.47
6.38

2.30

2.88
2.72
2452
2428
2,40

110
11

54(Xe)

587
5657

3033
3409
3.36

112
113

114

55(Cs)

14
0.42
26 84

14
0.76
6456

14
0.50
3.40

11
2,69
11.45

14
0.33
2.83

12
0.53
3.30

14
0.29
2.50

14

0.21

n
Errors V&(Mev)

0.36

1.46
15.07

0.J'.og T 1.42

x) Prom systematics

The computed Q-values with various mass formulae, are com-
pared with the experimental ones (Schardt et al.1981)in table 4.
One can see that systematically Beiner-Lombard-Mas (BLM) (1976)
Q-values are too high and those obtained with Bauer (B) (1976)
formula for Te isotopes, are too small. None of the nine mass
formulae can reproduce all the experimental results, but one
can say that many good estimates are obtained by Myers (M)(1977)
followed by Groote-Hilf-Takahashi (GHT) (1976), Liran-Zeldes
(LZ) (1976), Jinecke-Eynon (JE) (1976), and Jdnecke (J) with
Garvey-Kelson relationships (1976). The best description of Q-
values for Te isotopes is given by LZ, for I isotopes by M,
for Xe 1isotopes by GHT and J and for el by J.

The small errors obtained with LZ for the masses of Cs 1iso-
topes, for which Wapstra-Bos (WB) masses estimated from syste-
matics are too small, have been mentioned by Epherre (1983).
Also the good results given by GHT have been stressed by Epherre
(1983) and Schardt et al. (1981), by M - in ref. (Schardt et
al.1981) and by GHT and JE in ref. (Plochocki et al.1982).

7.6.2. Predictions for alpha decay
of some nuclides with Z = 52-61

In a previous work (Poenaru and Ivascu 1981a) we have com~
puted the partial alpha decay lifetimes, by using Q-values cal-
culated from WB masses (see figure 41). In this figure one can
see that for the range of T < 1030s, the island of alpha emit-
ters with Z = 52-56, N = 55-65 is well separated from the
main region of alpha radioactivity having Z > 60, N > 82,

Due to the fact that WB masses for neutron deficient nuclei,
estimated from systematics do not allow a good reproduction for
all the masses in this region and many nuclei far off the beta
stability line have not been tabulated by WB, the estimations
made in this section for Z = 52-61 alpha emitters, are based
on the 1975 mass predictions (Maripuu 1976). The range Z = 62~76
has been analysed by Rurarz (1982).

The results for @-values and partial alpha decay lifetimes
computed with our semiempirical formula with old {B,} values,
are plotted in figures 42-44 for various isotopes of an element
versus the neutron number N.

In the figures 42 and 43, only the range of N values in
which Q>0, has been plotted. Due to the fact that all 10 curves
could not be clearly shown at this scale, the regions in which
many mass formulae give closer results have been hatched in
figures 42-44; only the curves for which confusions could not
arise, have been plotted in the usual manner. With full line
are drawn the WB data for Q -values and the corresponding half-
lives. In order to show very roughly a possible proximity of
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Fig.42. Alpha decay Q-values predicted by various mass
fornulae and the corresponding life-times computed with
our formula versus neutron number N, for Te, 1, Xe
and Cs Zsotopes.

the proton drip-~line, an arrow has been placed at the distance
of 18 units of N, from the closest stable isotope.

The increased stability of the closed shell nuclei is il-
lustrated on figures 42-44 by the small Q-values for magic
neutron numbers of the parent nuclei (N = 50 in figure 42 and
N = 82 in figure 44) and large @ -values for the magic neutron
numbers of the daughter (N = 52 in figure 42 and N = 84 in
figure 44). For all other N values between these two extremes
one obtains monotonously decreasing Q-values with increasing
except for the steep increase between magic and magic-plus—-two
neutron numbers.

The dispersion of 1 MeV of the Q-values gives rise of 6-8
orders of magnitude dispersion of the half-lives. Hence, from

this point of view, the nowadays mass predictions are not satis-

factory.

The computations based on BLM masses are too optimistic
(large Q-values and correspondingly small half-lives) for
this range of Z values; moreover they lead to a very steep
decrease with the neutron number, as it is shown in figure 44,
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Fig.43. The same quantitieé—as in figure 42, for Ba, La,
Ce and Pr isotopes.

Beginning with Z = 55, the JE Q-values are coming closer and
for Z > 57 they even surpass them.

The figure 42 shows the results for the isotopes of the ele-
ments with Z = 52-55, for which some alpha emitters have been
already identified. The experimental data are plotted with hea-
vy points and the predictions from ref. (Schardt et gl.l9812
with crosses. It was mentioned that the alpha branching ratio
is small for the high mass number isotopes and is close t?1;OOZ
for small mass number isotopes. Very likely, for 1991 and - Cs
one has to consider also the competition of the proton radiocac—
tivity.

The figure 43 shows two extreme limits: the high Q-values
and alpha decay probabilities given by BLM and JE and the low
Q ~values and alpha decay probabilities (long half-lives) of
M and GHT. For the La and Ce isotopes, this trend is very clear-
ly seen. From the results plotted in this figure, one can hope
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Fig.44. The same quantities as in figure 42, for Nd and
Pm <sotopes.

that some new alpha emitters could be found especially for the
Ba and Ce isotopes. |

The shell effects in the neighbourhood of N = 82 magic num— |
bers are shown in figure 44. For N = 74-84 there is a gap in |
which no alpha activity could be detected wither because one
has @<0, or, if it is positive, its value is very low,leading
to extremely long half-lives.

8. ANALYTICAL APPROXIMATION OF THE POTENTIAL BARRIER

We have performed (Poenaru and Ivascu 1984a) a systematic
investigation of the stability of about 2000 nuclei, with known |
masses tabulated by Wapstra and Bos, toward the emission of
isotopes (Zy = 2) with various mass numbers Ay,= 3,4,...,10.
It was possible to consider this large number of cases (about
16,000) by using a model leading to analytical results both
for the states (potential energy) and the dynamics (barrier
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Fig.45. Q-values for the emission
of various He isotopes from Z=84
nuclides with different neutron
numbers.

penetrability) of the process. In
the following we would like to pre-=
sent this model allowing to account
for angular momentum and nuclear
excitation effects. This version
can be used to find new kinds of
radioactivities, as will be shown
below.

The figure 45 illustrates the
fact that for some Po isotopes,
besides the well-known alpha de-
cay, the exotic SHe spontaneous
-emission from the ground state is
also energetically possible. All other He isotopes (A2 = 3,6,
7,8,9,10) could be emitted only from excited states, because
Q<0.

Unfortunately SHe is not stable (see Ajzenberg-Selove and
Lauritsen (1974) and the references cited therein). Its ground
state has a width I' = 600+20 keV (Nyman et al.1981). Conse-
quently, the He radioactivity could be experimentally deter-
mined by alpha-particles or the neutrons produced by its own
disintegration, as well as by the presence of the daughter nuc-
leus. In this respect it is encouraging that recently (Cable
et al.1983) the existence of two-proton radioactivity predicted
long time ago (Goldansky 1960) was experimentally confirmed. Of
course, the diproton, like “He,is not a stable particle but from
the analysis undertaken by Goldansky it seems that the two pro-
tons separates practically only after the passage of the cluster
through the potential barrier. We presume that the same is true
for 3He, i.e., it disintegrates into a neutron and an alpha par-
ticle after tunnelling.

S

i
130 N

120

|

i
mw

8.1, Parabolic Approximation of the Interaction Potential
Containing a Centrifugal Term

In the framework of LDM two center spherical parametrization
(see sections 5.1.1, 5.3 and 5.5) for separated fragments,
R > R, only the Coulomb interaction energy Z,Z,e 2/R has been
C0n31dered for alpha decay of even-even nuc1e1. The maximum of
the potential energy at R=R, was
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E,=2Z,¢:R,, (8.1)
where e is the electron charge. In this way, a barrier shape
like that shown in figure 37 was obtained. 7

Now, for SHe, which has a spin 15 = 3/2, the spin, I, and
parity, o, conservation must be fulfilled:

-» - - -> 3
Ui L (8.2)
Any quantity belonging to the parent nucleus is written with-
out subscript, those of the daughter and emitted particle have
the subscript 1 and 2, respectively.

To the Coulomb interaction E. one has to add also the con-
tribution of the angular momentum fB - the centrifugal term

=52 @ +1)/(@uR?), (8.3)
where p = mAjAg/A is the reduced mass and m is the nucleon mass,
By substituting the nymerical values one obtains, for R=R,
in fm, the total interaction energy at R =R, ,in MeV:
E;=E, +E, = 1439982 2, /R +20.735¢ (L + DA /(B A,RY) . (8.4)

In the overlapping region, a convenient analytical approxi-
mation of the potential energy curve E(R), leading from ER;) =
to E(R,) = E,, suggested by the potential barrier shape (fig.37)
and a110w1ng to get a closed formula for the lifetime T (see
the next section), is a second order polynimial in R. Finally,
one has

Qi @® - QUR-R)AR -R)IZ: R<R,

E(R) = (8.5)
Z,Z,e%/R +B20(F +1/(2R®); R > R,,

where E; is given by eq.(8.4).

For a nonzero excitation energy (a nuclear temperature r ),
the Coulomb energy is only slightly reduced (Sauer et al.1976),
being multiplied by the factor (1-10~ ), where r is ex-
pressed in MeV. Consequently, at relatively small excitation
energies, it remains practically unchanged.

8.2. Closed Formula for the Lifetime

Like in fission the halflife of a metastable system is givet|
by eqs. (2.3)-(2.5), 1nwh1chQ'-—Q+E p+ E* and E*<E~ §
-(@Q+ E;,) is the fraction of the exc1tat1on energy concen-
trated in the separation degree of freedom. This barrier trans-
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mission model, used in the present work, describes only low
excitations (Bjdrnholm and Lynn 1980). Statistical equilibrium
among all the degrees of freedom of the nucleus is reached for
high excitation energies U. In this case E*=U- (E '+ Epe) »
where U = ar2;a = A/10 MeV™" is the level density parameter,
E' is the internal energy available for other degrees of free-
dom; Ert 1is the rotational energy. In a hot nucleus the energy
concentrated on motion in the deformation mode is of the order
of the nuclear temperature. Hence the residual nucleus is usu-
ally left in a highly excited state, too. According to the sta-
tistical model (Michaudon 1981) the probability to excite a col-
lective state of E* energy is roughly proportional to exp(-E*/r ).
Due to the fact that E(R,) =E(R,-) =Q"= E‘ it follows that

R, =Ry + (R, - R;M(E , +E*)/E2 12, (8.6)
Eg-E;-Q, (8.7)
- (R E,/Q")[05 + (0.25 + Q"E, /%)), (8.8)

According to the eq.(8.5), one can split the action integral
in two terms K = K,,+K by integrating from R to R, in the
overlapplng reglon and from R, to Ry- for separated fragments.
By expressing the time in seconds, the energies in MeV and the
lengths in fm, one obtains, after replacing the numerical con-
stants, the following relationships:

_ 1.4333x 10 o

T = [1+expK)]l: K=K, +K, (8.9)
vib
K . =0.1208(E°A A,/A) /2 b2 a2 - 22 D+ybiealy (8.10)
(R b1 2 ) v -a —T a ’ o
. 1/2
K, =04392Q"AA,/A) "R T, (8.11)
JCm=(c+m—1)l/2-[r(c-—r)+m]1/2+f-(arcsin——c-l—2-r—~
2 v e?+4m
1/2 (8.12).
 roain 92 y . JE 2\/'7n'.£:(c—r)+m] “or + 2m .
ve?iam r[2\/m(c+m—1)l/2+c+2m]
where
= - A
a=R, -R,-b[@-Q)/EJ] " ; b=R,-R;, (8.13)
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c-tE,/Q°; m=1’E,/Q"; r=R,/Ry. (8.14)

If ¢ = O, one has ¢ = 1, m= 0 and the well-known formula

Jjo = arccosy'r — VT -1) (8.15)
is obtained.

The zero point vibration energy, E . = 0.51 MeV, was deter-
mined by fit with experimental data, Te,p,on 376 alpha emitters
the same given as input data in the computer program described
by Poenaru et al.(1982). In the variation with E ) of the
r.m.s. deviation of logT values defined by the eq.(7.23) there
is a minimum oy, = 1.02 at Ep = 0.51 MeV. For Eyp = 0.2 and
0.9 MeV, one has o = 2.20. It is assumed that the optimum va-
lue for alpha decay could be used also for °He radioactivity.
Of course, this assumption which presumably is an optimistic
one, needs further theoretical (or experimental) support. Con-
sequently, the absolute values for T given in the following se
tions should be taken only as tentative lower limits.

8.3. 5HeRadioactivity

The variation of Q-values for the emission of He from the
ground states of nuclei with masses tabulated by Wapstra and
Bos (1977) is plotted in figure 46. One can see the pronounced
odd-even effect, which is present for all odd-mass He isotopes
(see also figure 45).

There are two islands (in fact two archipelagos due to odd-
even effects) of °He radioactivity. The figure 46 shows the
detailed position of "He emitters, relative to the Green appro-—
ximation for the line of beta stability. The main archipelago
formed from two islands involves the medium-mass nuclei with
Z = 83-92 and N = 127-137. The enhanced Q of N= 129, Z=
= 84 nucleus, leading to the double magic daughter N; = 126,

Z, = 82, is a strong shell effect, disturbing the smooth LDM-
like trend, toward larger Q -values of the neutron deficient
nuclei. This trend is manifested in the second archipelago of

4 islands heavy transcurium nuclei with Z= 97-105, N = 145-15
Similarly, the neutron subshell N; = 152 explains the larger

Q -values for N = 155.

Unfortunately the lifetimes for SHe spontaneous emission fro
the ground states of the above-mentioned nuclei, are very long
even with the optimistic assumption mentioned above. Only 15 of
all 110 emitters have the disintegration period, T, smaller
than 10 %% s (see figure 47). Such a reduced probability, as in
the case of spontaneous fission of some actinides, will make
difficult to observe experimentally this phenomenon, in the

72

5

1w

%

Fig.46. The SHe emitters. The
heavy dotts corresponds to the
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line of beta stability.
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Fig.48. Q-values and life-times
for some superheavy nuclei with
binding energies predicted by
Seeger and Howard (1975).
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presence of other égégeting decay modes. For example the partial
lifetime, for 3He radioactivity of 213pg is 10209 5, but its
total half-l1ife due to a emission is only 4.2 pus.

One has to consider also the contribution of the angular
momentum €1, rising the potential barrier. This is determined
from the spin and parity conservation condition (see eq.(8.2)).
For example when SHe is emitted from 2132?,one obtains ¢ = ?
or 5, because I¥ = 9/2%, 171= 0% and 142 = 3/27. Five units
of angular momentum produce an increase of about an order of
magnitude of the lifetime as it is shown in figure 47. 1In the
opposite direction acts the energy E*,as will be shown below.73
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Fig.49. Variation of the partial
half-lives of some °He emitters
with the energy E*. The total
life-time T, of each isotope is
given on the curves.
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He emission from excited
states with E*= 6 MeV. E*
the fraction of the excitation
energy concentrated in the se-
paration degree of freedom.
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Shorter lifetimes are expected to be met in the region of
superheavy nuclei. The results presented in figure 48a, obtained
by using the binding energies calculated by Seeger and Howard
(1975) show that the island of 5He radioactive heavy nuclei conf
tinue in the superheavy region. Larger Q@Q-values lead to shor-
ter lifetimes (fig.48b). Of course, the partial half-lives of

He disintegration computed in this work has to be composed
with the lifetimes of other competing decay modes like a or g8
decay, spontaneous fission. etc., in order to obtain the total
disintegration period T,. The variation of T with the energy
E* (fraction of the excitation energy concentrated in this col<
lective mode), plotted in figure 49 for some nuclei, suggests

74

that a convenient method to obtain shorter lifetimes is to
excite the °He emitters.

As it was expected from the beginning, the odd- N nuclei
are better candidates, for 5He emission, than their even- N
neighbours. At E* = 6 MeV energy, lifetime of some SHe emitters
pbecomes measurable. This can be seen from the figure 50, given
only to illustrate that in principle, by raising the tunnelling
energy, the partial half-lives for SHe emission could be con-
veniently diminished. A more detailed analysis, of both proba-
bilities to excite the nuclear states and to compete with other
disintegration modes of these states, should be undertaken in
order to plan an experiment. Such an analysis can be made simi-
larly with that of a B-delayed proton emission (Karnaukhov
1974).

One way to excite the parent nucleus is to populate some of
its excited levels by B-decay of a precursor. The B-delayed
SHe radiocactivity (Poenaru and Ivascu 1984a) has a better chance
to be experimentally determined. In this respect, from the avai-
lable energg of the analysed nuclei, one can say that 155Yb,
175py and 299217y after B+—decay, as well as 9-llpge, 13-14 g |
13-17¢ ,, 19-21Q etc., after B~ -decay, are in a privileged po-
sition.

The °He decay of the 9Be excited states fed by the B~ -decay
of the?Li precursor have been already experimentally determined
(Nyman et al.1981).

Up to now we have considered only the nuclei with masses ta-
bulated in 1977 by Wapstra and Bos. Taking into account that
the beta decays of exotic nuclei (far off the PB-stability line)
have high Q -values and can populate a large number of excited
levels, it is expected that many other B -delayed SHe radioac-
tive nuclei could be found in the yet unexplored regions.

8.4, Emission of Heavy He Isotopes from Excited States

The light He isotopes, like alpha particles, are easily
emitted usually by neutron deficient nuclei: in figure 51 the
trend of increasing Q-value is clearly seen. The same is true
for ®He, but this trend is weaker.

On the contrary, the neutron-rich nuclei have larger Q-va-
lues for the heavy isotopes 8He, %He (figure 52) and Wye (fi- .
gure 53). For !OHe, the mass excess of 50.13 MeV estimated by
Jinecke (1976) have been used. Due to the fact that Q<O0, these
heavy He isotopes could not escape spontaneously from heavy
nuclei, but they could be emitted from excited states.

If we assume that the fraction of the excitation energy con-—
centrated in this collective mode is E* = 40 MeV, one finds,
very tentatively, the lifetime for 104e emission, given in
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i

120

Fig.51. Q -values for the emission of alpha particles
and SHe from heavy nuclei. Only even 7 and odd N nuclet
are considered for SHe.

figure 53 (Poenaru et al.1983a). Due to the shell effects, the
smallest lifetime is obtained for a parent nucleus like 218 pg,
leading to the double magic daughter 208pb,

In spite of the experimental effort, the exotic nucleus !OHe
is undiscovered up to now and moreover, it is not definetly
settled whether it is stable or not. Our calculations show that
in order to obtain the minimum lifetime (for E* under the bar-
rier height), the region best suited for experimental search
is that of excited compound neutron-rich isotopes of the trans-—
lead elements.
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Fig.52. Q-values for the emission of 8He and °He from heavy
nuelei. Only even Z and odd N nuclides are considered for?He.
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Fig.53. Q-values for YYHe emis-
sion from ground states and the
lifetime for the fraction of the
excitation energy concentrated
in this collective mode E*=

= 40 MeV.




8.5. Spontaneous Emission of 1%¢  and of oOther Heavy Clusters

In two papers entitles "New Type of Decay of Heavy KNuclei
Intermediate between Fission and Alpha Decay" (Sandulescu et al,
1980) and "Emission of Alpha Particles and Other Light Nuclei
as a Fission Process" (Poenaru and Ivascu. 1980), we have shown
that for many heavy nuclei, the ground state is metastable (the
released energy Q>0 ) with respect to the very asymmetric splif
and this phenomenon, like alpha decay (Poenaru et al.1979) coulg
be considered a fission process described with the Strutinsky
(1967) macroscopic-microscopic method adopted for this super-
asymmetric case.

Initially (Sandulescu et al.1980), the emission of various
heavy clusters like l4g 2 2iNe 2pyg , I%¥g; | . Yar s 48Ca,
etc., from some particular parents like 222,224p, 230,232qy and
heavier nuclides up to 25¢No have been predicted on the basis
of very simple calculations of penetrability. Then, an analyti-
cal expression of the lifetime have been obtained (Poenaru and
Ivascu 1980) and was used to made a systematic study of various
cluster emission from the ground state or low excited states
populated by beta decay of a precursor (beta delayed heavy clus§
ter radioactivity). If we consider all nuclei (~2000) with mas-
ses tabulated by Wapstra and Bos (1977) and the 100 isotopes
of the emitted elements with Z = 1-10, the number of the pos-—
sible combinations ground state parent - cluster emitted is of
the order of 2-10%. of course, only a closed formula can be used
for such a purpose, but in the future the most interesting caseg
revealed in this way could be studied with more refined methods,

As was shown in the preceding sections, the He isotopes with
A= 3-10 have been studied firstly, allowing to predict °He
radioactivity and deta delayed He -radioactivity (Poenaru and
Ivascu 1983b, 1984a) and to show the regions of the nuclear
chart where !He emission from excited states has the most im-
portant chance to be met (Poenaru et al.1983). It was stressed
that the maximum probability is encountered for the processes
leading to a double magic daughter.

This conclusion was also advanced by Rose and Jones (1984)
whi discovered the !2C radioactivity * of %23Ra - giving the
first evidence for such a new type of decay mode.

In our computations, initially, the zero point vibration
energy E ;; = 0.51 MeV was determined by fit with experimental
data on 376 alpha emitters - the same given as input in the
computer program described by Poenaru et al.(1980). With this
value one obtains (Poenaru and Ivascu 1984b) the results from
which the optimum-optimorum cases are shown in Table 5. For

* Confimed also by Dr.Ogloblin (1984) and coworkers from Kur-
chatow Institute in Moscow (see p.2 of the present paper).

Table 5
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Some high probability heavy cluster emissions (N

.
2

126)

1=

0.61 MeV

Evib

Log T(s)

(MeV)

N,

log T(s)

(MeV)

34.61

5.69

86

-6.52")
20,88

8.95
3.7

82
82

42.08

.42
5459

86
82

(Li)

3

(He)

41.09

57.55

7437
18.27

86
85
82

32.82

18457
21.71

86
82
82

5

11.96
23,90

(Be)

21.99
28. 97

(B)

14.06

(T3}

19.86

37.70

22,96
33.98

85

36.90 24.49

84
82

14.98
17.86
16-37

33.62 *) 18.57 *)

85
82

(c)

19.15
26.11

39.48

(¥)

31.59
33.05

~

36.30

82

82

82

30.58

50,08

82

10

1

39.21

83
83
82

33.64

82 50,65 30,68
82

(F)

20.79

47.32

(0)

29.89
31.86
30.79

29.51
30.90

51.69
51.10

12
13
11

24,76

24.37

44.87

82

45.73

82

58. 69

82

10

30.83

58,02

82

60.69

(Ne) 82

13
15

27.63

61.39
62,30

(Xeo) 82

12
14

60.82

82

27.87

82

*) Experimental value

+) Por 11 = 127
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a very large number of cases taken into consideration (approxi-
mately 2x10%) only that leading to shortest lifetimes are given
in this table. One can see that the high probability processes
are encountered for that combination leading to a daughter nuc-
leus (A1Z)) with magic number of neutrons Nj= 126. The Z; op-
timum proton number is not always a magic one, Z; = 82; it can
be also 83, 84, 85 or 86. This shown once more that in the lead
region of the nuclear chart of neutron shell effects, included
in Q-values by this model, are stronger than the proton omes.
The shell effects at Nj= 126 are much stronger than that for
lighter nuclei.

A pairing effect is also observed: the even Z, clusters
have higher probability then their odd Z, neighbours to escape
from heavy nuclei.

The absolute values of logT presented in table 5 are only
tentative estimates, due to the fact that the potential barrier
is overestimated and the parameter E; , which can be chosen
by a fitting procedure to compensate this effect, was taken as
for the alpha decay (0.51 MeV). In this way the heavier is the
nucleus, the highest is ‘the error in logT. For example in case
of 14C radioactivity of 223Ra,one has for the lifetime relative
to the alpha decay logT, = 6.3 and from the measured (Rose and
Jones 1984) branching ratio (8.5:2.5)-10‘400ne has logT®*P = 15,1,
The corresponding calculated value for Nj= 127 is logT =18.6 -
about three orders of magnitude too pessimistic. This means that
in the experiment we can expect to find for lifetimes lower va-
lues, than that given in table 5 and this is especially true
for heavy clusters far from alpha particle. Nevertheless one can
conclude the discussion concerning table 5 by saying that besides
the well-known alpha decay, one proton and two-protons emission,
one can observe many other charged particle radioactivities
like: 8Be, 121413g 15y i SHe llp g BEg
180 . IQN’ 170’ 16N 3 24Ne, I2B : 23Ne 21'20‘1“ , ete., if
we refer only to Z,= 2-10 for which the search was initially
made. Of course, the intensities of these processes are by many
orders of magnitude weaker than those of the alpha decay.

Now the first measured branching ratio, allows us to improve
our estimations. In the following we present some results ob-
tained by considering that in order to compensate the barrier
overestimations for various clusters E) = 0.51 Ap/4, with
which logT = 14.9 for the !4C emission from 223Ra.

The absolute values of logT estimated in this way for the
emission of 14C from various isotopes of Rn, Fr , Ra, Ac,
Th, Pa, and U are plotted in the lower part of the figure 54,
where (-logT) was plotted in order to have an indication about
the relative intensities. One can see that the minimum lifetime
is obtained at N= 134 (N; = 126) for Ra isotopes (Zl= 82),
followed by Ac, Th, Fr, Pa, U, and Rn,
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Fig.55. The ratio T /T for
the same nuclides as in fi-
gure 54.

130 132 134 136 N
Fig.54. Variation with parent
nucleus neutron number of the
lifetime for 4C and alpha ra-
dioactivities of some isotopes
of Rn, Fr, Ra, Ac, Th, Pa
and U.

Usually, the most important competitor of heavy c}uster e@is-
sion is alpha decay and, from the experimentalist p91nt of view,
it is most important to know the ratio T/T,, as it is presented
in figure 55. From this figure, one can see that for some gle—
ments like Ra, Ac, and Th, the minimum value of T/Tq is
not obtained at N;= 126 (N = 134), where T has its minimum,
but at Ny= 127 (N = 135) because T, ,plotted in the upper part
of the figure 1, has steepest variation with N.

Anothea conclusion is that Rose and Jones (1984) discovired

C emitter. Nevertheless, we found that some other
fi‘itﬁf;i'; of Ra and Ac, like 2“’2231\’0, 222,224y, 225Ac and ?2!Ra,
have also good ratio T/T,. . -

To illustrate the answer to the other problem which is im-
portant for someone planning an experiment, we present 1in table 6
the most probable emissions from several 1ong—1ivednuc11d?s.
One can see that in all cases the daughter nucleus has magic
gumber of neutrons or protons, or it is not far from it. Besides

23Ra  already measured, for which log(T/T;® ) has the lowest
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Table 6

Most probable cluster emission from some parent nuclet

Daughter Emitted
Parent exp
10gT () logly log(T/T,
N, 2, Cluster E(MeV) . <7
223Rq 127 82 Mo 384 129 6.3 8.6
224p, 128 82 %o onoy 399 10.7 11.2
227 ¢ 130 83 Mo 2s07 232 110 12,2
126 B1 Y9 4308 2.0 13.
230qy, 126 80 %we 57.76 25,3 12,5 12.8
126 82 %0 4313 26.2 13.7
232y, 126 B0 %8s 5658 279 1.8 10,1
231pg 126 82 3¢ s51.83 2.7 12.0 12.7
232y 126 82 *we 62.30 21.3 9.5 11.8
233y 127 82 ““e €049 239 12,8 11.1
126 82 One 60.82 23.8 11.0
234y 126 82 ONe 60,09 25.2  13.0 12,2
1288 82 44 58,83  26.3 13.3
126 B0 Pug 7411 258 12.8
235y 127 82 gy 58,73 27,3 16.3 11.0
128 82 2ONe 57.80 28.3 12.0
125 80 Oug 73.00 28.0 11.7
238y 126 s0 2%wg 71015 30 17.3 13.7
237yp 126 81 Pmg 75,70 257 14,2 11.5
2520¢ 126 80  pr 126.72 2441 8.0 16.1
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value, there are some other cases deserving attention, like:

14C  radioactivity of 226Ra; 26 Ne radioactivity of 232Th; 2425Ne
emission from 233 U; 26Ne emission from 235y ; Mg emission from
237 Np, etc., It is possible to find other more favourable cases

by doing more systematic search. Of course, one must stress
again that all absolute values given in this section are only
tentative estimates because the parameter E,;, Wwas fitted only
for alpha particles and 14C.

9. CONCLUSIONS

In order to show that the gap between Ag = 4 and Ay= 70
(Zg= 2 and Z9=30) in the fission fragment mass distribution
can be fitted by new kinds of radioactivities, we have studied
systematically the nuclear stability toward very asymmetric
split. The extension of the fission theory to these superasym-
metric processes was tested at the beginning on alpha-decay,
due to the large wealth of experimental data available at the
time.

Promising results have been obtained by applying the fission
theory for the calculation of the alpha disintegration half-
lives between ground states or low excited states below the bar-
rier. Consequently, the traditional picture of the alpha prefor-
mation, followed by tunneling through the potential barrier,
can be replaced by the larger amplitude oscillations (asymmet-—
ric fission mode) of the nuclear surface favoured energetically
by the shell effects and leading to a very asymmetric split also
by the quantum mechanical tunnel effect. The preformation factor
role is played by the zero point vibration frequency.

For a very large mass asymmetric fission, the charge density
asymmetry plays an important part. Three macroscopic models have
been extended for nuclear systems with different charge densi-
ties. A phenomenological correction was introduced, accounting
for both the shell effects, the nuclear deformation and the neg-
lected terms of the mass formula. The shell correction part
could be also described by Schultheis cluster prescription.

The fact that the macroscopic models, having the parameters
obtained from a fit of experimental data for masses and almost
symmetrical fission and fusion barriers, with a suitable pheno-
menological correction, reproduce the potential barrier shape is.
attested by the good agreement of the theoretical lifetimes for
alpha decay with the experimental ones, over a range of some
24 orders of magnitude. The time dependent Hartree-Fock method
gives the same zero point vibration frequency with that obtained
from a fit with experimental data.

By taking into account the nuclear deformation of the parent
and daughter nuclei, the agreement of @Q-values with experi-
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mental results was improved and it was possible to predict for
the first time the lifetime of the alpha decay from a shape
isomeric shate. This is many orders of magnitude larger than
that of isomeric spontaneous fission, which explains the un-
successful experimental research.

In principle this theory can explain both the @Q-values and
the half-lives. It has to be improved by extending the micro-
scopic shell correction method for light nuclei or very asym—
metric fission. Also the mass parameters and the zero point vir-
ration energy of this mode need further investigation.

The new semiempirical relationship for the lifetime takes
into consideration explicitly the dependence not only on the
proton number but also on the neutron number and their depar-
ture from magicity. In comparison with other formulae for the
known regions of alpha emitters it gives the best estimates.

The estimation of the general trend of nuclear stability with
respect to the emission of charged particles revealed many in-
teresting facts. For the spontaneous emission of 23 jH,, 3:6-10ye
‘Li, 'N ,9C and some other clusters, all nuclei with masses
tabulated by Wapstra and Bos are stable (Q<0) in the ground
state. "He radioactivity is energetically possible for some
110 nuclides grouped in two archipelagos with Z = 83-92, N =
= 127-137, Z = 97-105, N = 145-157. The last region extends
also for superheavy nuclei.

The analytical formula accounting for angular momentum and
low excitation energies, allow to handle a large number of cases
to search for other new kinds of radioactivities. Among the ele-
ments with Z = 3-8, good chances to be emitted have 8Be,
121&140 5 15y ; iy v 5He, etc. The most favourable case for
1% emission in competition with alpha decay was already mea-
sured, but there are some other possible candidates like
224,223,225, . and 222,224,221R,, By analysing several long-lived
heavy elements, it was found that other clusters like 20-220 7
Bp, 242526N, 28,30,32 o could have the ratio T/T, within
10-13 orders of magnitude. In all cases this phenomenon, like
the usual small asymmetry well-known in fission 1is a new mani-
festation of the nuclear shell structure, being stronger for the
combinations parent-cluster leading to a magic~daughter or not
too far from it.
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Noanapy A.H. u gp. E4~-84-446

flnepHwii pacnap KaK IMUCCUA 3aPANEHHHX YACTHL ~CYNEpPaCcHMMETPUUHbIR
npouecc Aenenun

MaKpO-MUKPOCKONUUECKUA METOR, PACCUUTAHHMI ANA CYNEPCHMMMETDUUHOTO Aene-
HKA, Gun NpumeneH K ank®a-pacnagy U APYruM BMA3M MCMYCKAHWA SaPANEHHHX 4ac-
THY, KOTOpwe BOSMONHH Gnarogaps cTpykType raepHux obonouexk. Tpu maxpockonu-
uecKwe MOAeNM /XMAKOKANensHam MOAENs, MOReNb AREPHHX CUN KOHEeUHOro npeaena
u Okasa-axcnoneHymansHan Mopens/ GUNM npuMeHeHN K RAEPHMM CUCTEMaM C pasnuu-
HMMM NNOTHOCTAMM 3apraa. fpepctaasneHn pasnwuxbie ynPPOBME METOAN ANR pacueTa
KyNOHOBCKOH W NOBEPXHOCTHOW 3Hepruu Aapa obuen KOoHPUrypauwu, a Takwe aHanu-
TUUECKME PesynsTaTh AR HEKOTOPHX OCODnX KOHOurypauwi. ANs nonyueHus akcne-
pUMEHTanbHOK BenwuuHe Q ucnons3oBanach (eHOMEHONOrMYECKan KOoppeKkywa.IdToT dop-
Manu3M 6N npuMmened K ansda-pacnany U3 OCHOBHOrO COCTOAHMA W M3OMEDHOro Co-
CTORHHWR, PACNpPERENAUErOCA NyTeM AeneHuA.[AnA OueHKU IHEPrun HyneBwx KonebaHwui
WCMONL3OBANCA BpeMeHHO3aBuCuMuin MeTOA XapTpu-®oka. BwseseHa HOBas nonyamnupu=
yeckan Qopmyna, AaoUan fNyuywMe OUEHKM BpeMeH XM3HM ansda-pacnaga ANR npepcka-
3aHUA HOBHX ansPa-uanyuatenein. [Ana 31oro Hosoro cnocoba pacnafa, NPoOMEKYTOu~
HOrO Mexay ansda-pacnafoM M TPaAMUMOHHLM AefieHueM, nonyuyexs Gonbuwue BEepOATHO=
CcTH KoMBuHauwiA poAUTENbCKOE AAPO-TAMENLA KNAcTep, NPUBORAILME K AOYEPHUM Ma=~
FUUECKUM APaM MM GNAM3KMM K HUM.

Pabora sunonHeHa B JlaGopatopuu Teopertuueckoir dusuku OUAK.

Coobmenye O6penuHeHHOro HHCTHTYTa AOepHHX HMccnenoBanuit. JlyGua 1984

Poenaru D.N. et al. E4-84-446
Nuclear Decay by Emission of Charged Particle -
Superasymmetric Fission Process

The macroscopic-microscopic method, adapted for superasymmetric fission
was applied to the alpha decay and other kinds of charged particles radio-
activities, which are possible due to the nuclear shell structure. Three
macroscopic models (the liquid drop model, the finite range of nuclear for-
ces model and the Yukawa-plus-exponential model) are extended for nuclear
systems with different charge densities. Various numerical methods for the
computation of Coulomb and surface energy of a general shape nucleus are
presented along with analytical results for some particular configurations.
A phenomenological correction was used to obtain the experimental Q-value.
This formalism was applied to the alpha decay from the ground state and from
a fission isomeric state. A time dependent Hartree-Fock method is used to
estimate the zero point vibration energy. A new semiempirical formula giving
the best estimates for the alpha decay lifetimes was derived and used to
predict new alpha emitters. For this new mode of decay intermediate between
alpha decay and the traditional fission, larger probabilities are obtained
for the combinations parent-heavy cluster leading to a magic daughter or not




