

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

E4-84-377

V.V.Voronov

ON FRAGMENTATION OF TWO-QUASIPARTICLE STATES IN SOME SPHERICAL NUCLEI

1. INTRODUCTION

In recent years the strength distributions of simple nuclear states for wide energy regions have successfully been studied experimentally and theoretically. The one- and two-nucleon transfer reactions serve as an effective tool for an experimental study of the two-quasiparticle state strength distributions. The resonance-like structures are observed in the two-neutron transfer reaction cross sections $^{/1-6/}$.

The two-quasiparticle state strength distributions for different spherical nuclei have been calculated within the quasiparticle-phonon model ⁽⁷⁾ (QPM) in ref. ⁽⁸⁻¹⁰⁾. It was shown that the resonance-like structures observed in (p,t) reactions are specified by the fragmentation of two-quasiparticle states. The existence of two substructures in ¹¹⁴Sn observed ⁽⁵⁾ via the (a, ⁶He) reaction on ¹¹⁶Sn and in other Sn isotopes has been explained in our paper ⁽¹⁰⁾.

The present paper is aimed at calculating the fragmentation of two-quasiparticle states which can be excited in the twoneutron transfer reactions in some Zn, Zr and Mo isotopes. We analyse recent experimental data $^{/4,6/}$.

2. BASIC FORMULAE AND NUMERICAL DETAILS

The method of calculation of the two-quasiparticle state fragmentation within QPM is presented in ref.^{/8/}; here we give only a brief description of the method.

The QPM Hamiltonian includes the average field as Saxon-Woods potential, the pairing interaction and the separable multipole and spin-multipole forces. The excited state wave function of a doubly even spherical nucleus is

$$\Psi_{\nu} (\mathbf{JM}) = \{ \sum_{i} \mathbf{R}_{i} (\mathbf{J}_{\nu}) \mathbf{Q}_{\mathbf{JM}i}^{+} + \sum_{\substack{\lambda_{1} i \\ \lambda_{2} i_{2}}} \mathbf{P}_{\lambda_{2} i_{2}}^{\lambda_{1} i_{1}} (\mathbf{J}_{\nu}) [\mathbf{Q}_{\lambda_{1} \mu_{1} i_{1}}^{+} \mathbf{Q}_{\lambda_{2} \mu_{2} i_{2}}^{+}]_{\mathbf{JM}} \} \Psi_{0}, \quad (1)$$

where Ψ_0 is the ground-state wave function and $\mathbf{Q}_{\lambda\mu i}^{+}$ is the phonon creation operator

$$Q_{\lambda\mu i} = \frac{1}{2} \sum_{jj_0} \{\psi_{jj_0}^{\lambda i} [a_{j_m}^{+} a_{j_0m_0}^{+}]_{\lambda\mu} - (-)^{\lambda-\mu} \phi_{jj_0}^{\lambda i} [a_{j_0m_0}^{-} a_{j_m}]_{\lambda-\mu} \}.$$
(2)

$$Q_{\lambda\mu i} = \frac{1}{2} \sum_{jj_0} \{\psi_{jj_0}^{\lambda i} [a_{j_m}^{+} a_{j_0m_0}^{+}]_{\lambda\mu} - (-)^{\lambda-\mu} \phi_{jj_0}^{\lambda i} [a_{j_0m_0}^{-} a_{j_m}]_{\lambda-\mu} \}.$$
(2)

$$Q_{\lambda\mu i} = \frac{1}{2} \sum_{jj_0} \{\psi_{jj_0}^{\lambda i} [a_{j_m}^{+} a_{j_0m_0}^{+}]_{\lambda\mu} - (-)^{\lambda-\mu} \phi_{jj_0}^{\lambda i} [a_{j_0m_0}^{-} a_{j_m}]_{\lambda-\mu} \}.$$
(2)

$$Q_{\lambda\mu i} = \frac{1}{2} \sum_{jj_0} \{\psi_{jj_0}^{\lambda i} [a_{j_m}^{+} a_{j_0m_0}^{+}]_{\lambda\mu} - (-)^{\lambda-\mu} \phi_{jj_0}^{\lambda i} [a_{j_0m_0}^{-} a_{j_m}]_{\lambda-\mu} \}.$$
(2)

Here $a_{jm}^{+}(a_{jm})$ is the quasiparticle creation (annihilation) operator. The RPA equations for the phonon amplitudes and the sequar equation defining the eigenenergies η_{ν} of the states (1) and the quantities R and P are given in ref.^{77/}. The twoquasiparticle component $\{jj_0\}_J$ with spin J of the states ν , described by the wave function (1), is

$$\Phi_{jj_0}(J,\eta) = \frac{1}{2} |\sum_{i} R_i(J_{\nu})\psi_{jj_0}^{Ji}|^2 .$$
(3)

At intermediate and high excitation energies the level density is high, and therefore to calculate the average values one can use the strength function

$$\Phi_{jj_{0}}(J,\eta) = \frac{1}{2\pi} \sum_{\nu} \Phi_{jj_{0}}(J,\eta_{\nu}) \frac{\Delta}{(\eta-\eta_{\nu})^{2} + \Delta^{2}/4}.$$
(4)

One can find the expression for $\Phi_{jj_0}(J,\eta)$ in terms of the QPM Hamiltonian parameters in ref.^{7,8/jj_0} (J, \eta) The energy interval Δ determines the method of presenting the results of calculations. With Φ_{jj_0} one can calculate the spectroscopic factors $S'_{jj_0}(\eta)$ of nucleon transfer on the subshell j (j₀ is the target spin)^{/8/} and the spectroscopic amplitudes for pick-up of two-neutrons from deeply-bound hole states ^{/11/}. In the last case

$$S_{jj_0}(\mathbf{J},\eta) = \mathbf{v}_j \mathbf{v}_{j_0} \Phi_{jj_0} (\mathbf{J},\eta), \qquad (5)$$

where v_j is the Bogolubov transformation coefficient. The integral characteristics of the two-quasiparticle strength distribution in the energy interval ΔE are the centroid energy

$$\mathbf{E}_{\mathbf{jj}_{0}} = \sum_{\nu \in \Delta \mathbf{E}} \eta_{\nu} \Phi_{\mathbf{jj}_{0}}(\mathbf{J}, \eta_{\nu}) / \sum_{\nu \in \Delta \mathbf{E}} \Phi_{\mathbf{jj}_{0}}(\mathbf{J}, \eta_{\nu})$$
(6)

and the summed strength

$$N_{jj_0} = \sum_{\nu \in \Delta E} \Phi_{jj_0} (J, \eta_{\nu}).$$
⁽⁷⁾

The spreading widths of strength distributions are often extracted experimentally:

$$\Gamma_{jj_0} = 2,35\sigma, \quad \sigma^2 = \frac{1}{N_{jj_0}} \int_{\Delta E} (E_{jj_0} - \eta)^2 \Phi_{jj_0}(J,\eta) d\eta.$$
(8)

In our calculations we use the same set of parameters for the Saxon-Woods potential and pairing interaction as in ref.^{12/}. All our calculations of the fragmention of two-quasiparticle states have been performed with the code GIRES ^{13/}.

3. RESULTS OF CALCULATION

To extract any information on the two-quasiparticle states from the two-nucleon transfer reactions data is a rather hard task due to a simultaneous excitation of many configurations with different spin values. The states being excited from pickup of a neutron from a deep orbit and a neutron from the Fermi level or nearest hole level are called the valence-hole (v - d)states $\frac{2^{-4}}{2}$. The states being arised from pick-up of two neutrons from deep orbits are called two-hole (d - d) states.

The cross sections of the (p, t) reactions with 52 MeV protons on nuclei in a broad range of masses have been measured in ref.^{4/}. Bumps of two-hole states at excitation energies (7-9) MeV were observed. The classification of excited states in accordance with v-d and d-d types within the pairing model^{14/} have been performed in ref.^{4/}.

We analysed these and other experimental data for some spherical nuclei.

The experimental energy dependence $^{/4/}$ of the cross section of the 68 Zn(p, t) 66 Zn reaction is shown in fig. 1a). There are three bumps at energies 6.9, 9.5 and 12 MeV in the experimental cross section. The widths of these bumps are of about 2-3 MeV. Fig. 1b) shows the calculated strength function $\Phi_{jj}(\eta)$ which is summed with statistical weights $g(J) = (2J+1)/(2j+1)(2j_0+1)$ over all possible spins of final states for the v-d configurations $|1f_{5/2}, 1f_{7/2}|, |2p_{3/2}, 1f_{7/2}|, |2p_{3/2}, 2s_{1/2}|, |2p_{3/2},$ $1d_{3/2}$, $\{1f_{6/2}, 2s_{1/2}\}$, $\{1f_{5/2}, 2d_{3/2}\}$ and the d-d configuration $\{1f_{7/2}, 1f_{7/2}\}$ in 66 Zn. We calculated the strength distribution of all two-quasiparticle states which could be excited in two-neutron transfer reactions in ⁶⁶Zn within the excitation energy interval (6-15) MeV. The integral characteristics of these states for different energy intervals ΔE are given in table 1. As can be seen from fig. 1 there are three prominent bumps in the calculated strength distribution of the v-d and d-d configurations in 66 Zn. The calculated energies to two high-lying bumps are shifted up to 1 MeV in comparison with experimental values. The experimentally observed bump at the energy 6.9 MeV corresponds to the excitation of the v - d configurations {115/2, 117/2 }, {2p3/2, 117/2 }. The calculated value $\Gamma_{jj_0} = 1.9 \text{ MeV}$ of the width for the configuration $\{2p_{3/2}, 1f_{7/2}\}$ is in good agreement with the experimental one $\Gamma_{jj_0} = 2.1 \text{ MeV}$.

The small bump in the experimental cross section at the energy 8 MeV corresponds to the excitation of the d-d configuration $\{1f_{7/2}, 1f_{7/2}\}$. As can be seen from fig. 1b) and table 1 19% of the strength of the afore-mentioned configuration is located around 8 MeV. The bump at the energy 9.5 MeV has a complex structure and is formed by the v-d and d-d configurations.

Fig. 1. a) Energy dependence of the 68 Zn(p,t) 66 Zn cross section; b) Strength functions for the v-d and d-d configurations in 66 Zn

circle curve	-	1117/2	,	2p3/2 }	configuration
chain curve	-	11f 7/2	,	1f5/2 }	configuration
triangle curve	-	11f 7/2	,	1f7/8 }	configuration
broken curve	-	11f5/2	,	281/2	configuration
cross curve	-	2p3/2	,	251/2	configuration
dotted curve	-	11f 5/2	,	1d 3/2 }	configuration
full curve	-	12p 3/2	,	1d 3/2 }	configuration

					Tabl	le 1	
Integral	characteristics	of	the	v – d	and	d - (d
	configurations	in	66 Zn				

{j]_}}	∆E, MeV	Ejjo, MeV	ſ _{jj₀} , MeV	Njjo (%)
110 10 2	4.0 - 5.7	5.1	0.91	10.6
{1 / 3/2, 1/5/2)	5.8 - 8.2 8.2 - 10.5	6.9 9.2	1.1	19.2
1152 2023	4.0 - 8.5	6.9	1.9	64.8
(*1 1/2)~ 1/2]	8.5 - 11.0	9.1	1.3	10.2
{1f 3/2, 1f 3/2 }	6.0 - 9.5	8.5	1.4	19.3
	9.5 - 12.5	10.8	1.3	48.8
{2p3/2,2\$%}	10.0 - 12.5	11.5	1.2	32.3
	12.5 - 14.4	13.5	1.0	31.9
{1fs12,2\$12}	9.0 - 12.1	11.1	1.3	34•3
	12.1 - 14.4	13.1	1.2	43•1
{1fs1/2, 1d31/2}	10.0 - 12.1	11.8	-	18.1
	12.1 - 14.2	12.9	1.2	56.0
{2p3/2, 1d3/2}	10.0 - 12.5	11.9	-	21.3
	12.5 - 14.6	13.1	1.2	48.7

In accordance with our calculations about 50% of the strength of the state {1f $_{7/2}$, 1f $_{7/2}$ } and about 30% of the strength of the states {2p $_{3/2}$, $2s_{1/2}$ } {1f_{5/2}, $2s_{1/2}$ } are localized within the energy interval (9-12) MeV. The contribution of other states is not more than 20% in this energy region. So, a broad bump observed in the (p, t) cross section at energies (8,5-11) MeV is caused by the excitation of many two-quasiparticle states. It should have a fine substructure. It is interesting to investigate a fine substructure of this bump via the (a, ⁶He) reaction which is selective towards a large angular momentum transfer at high incident energy. The overlaped configurations {2p $_{3/2}$, $2s_{1/2}$ } {1f $_{5/2}$, $2s_{1/2}$ }, $1f_{5/2}$, $1d_{3/2}$ }, $\{2p_{3/2}$, $1d_{3/2}$ } form the third observed bump. About 32% to 56%

of their strengths are exhausted in the energy interval (12-14.5) MeV. So, we can conclude that the bumps observed recently $^{/4/}$ in the 68 Zn(p,t) 66 Zn cross sections are caused by the excitation of different two-quasiparticle states. Modifying slightly the parameters of the Saxon-Woods potential one can remove a disagreement between the theoretical and experimental values of bump energies.

In the (p,t) reactions ⁴/₄ peaks in the cross sections are observed for the Mo and Zr isotopes. The centres of gravity of the bumps are located at excitation energies of about 8 to 9 MeV. For example, the centre of gravity of the observed bump is located at the energy 8,3 MeV. The calculated strength functions for the v-d configurations $\{2d_{5/2}, 1f_{5/2}\}, \{2d_{5/2},$ $2p_{1/2,3/2}$, $\{2d_{5/2}$, $1g_{9/2}\}$ and the d-d configuration $\{1g_{9/2}, \dots, n_{9/2}\}$ $1g_{9/2}$ are shown in fig. 2. The centres of gravity of the bumps observed in the (p,t) reactions are denoted by arrows. The integral characteristics of two-quasiparticle states are given in table 2. As can be seen from fig. 2 and table 2 the centre of gravity of the bump in ⁹⁴ Mo is close to the calculated centroid energies for the v-d configuration $\{12d_{5/2}, 1f_{7/2}\}$ and the d-d configuration $\{1g_{g/2}, 1g_{g/2}\}$. These configurations are overlapped. They both should be excited via the (p,t) reaction. Apart from the afore-mentioned configurations the v-d states {2d5/2 , 2p1/2 }, {2d5/2 , 2p3/2 } are located within the energy interval (6-10) MeV. Four configurations form a broad bump having a fine structure. There is some indication to an existence of such a fine structure in the triton spectrum from the ${}^{96}Mo(p, t){}^{94}Mo$ reaction ${}^{/4/}$. A bump in the ${}^{95}Mo(p, d){}^{94}Mo$ cross section has been observed $^{15/}$ at the energy 4.9 MeV. Only v-d states could be excited in this reaction. It is seen from fig. 2 and table 2 that 67.5% of the strength of the v-d state $\{2d_{5/2}, 1g_{9/2}\}$ is concentrated at the energy 5 MeV in good agreement with experimental data. Similar two-quasiparticle strength distributions take place in ⁹⁶ Mo (see fig.2) and ⁹⁸ Mo. In all Mo isotopes an excitation of the d-d configurations is accompanied by an excitation of the v-d configurations. Using the (p,d) reactions on odd Mo isotopes one can test excitation of the v-d configurations in even Mo isotopes. The existence of bumps in the (p, d) and (p, t) cross sections at the same energies would give a strong support for excitation of the v-d configurations. The 94 Zr(p,t)92 Zr cross section has a bump at the energy $E_{jj_0} = 8.6$ MeV. One can see from fig. 1a that the same v-d and d-d states are excited in 92Zr as in 94 Mo. The strength distributions of these states in both nuclei are similar.

There is a more complete experimental information for 88 Zr. The experimental cross section $^{/4/}$ of the 90 Zr(p,t) 88 Zr reaction

Fig. 2. Strength functions for the v-d and d-d configurations a) in ⁹²Zr, c) in Mo, d) in dotted curve - $\{1g_{9/2}, 1g_{9/2}\}$ configuration full curve $- [2d_{5/2}, 1f_{5/2}]$ configuration broken curve - [2d5/2, 2p3/2] configuration chain curve - [2d 5/g , 2p 1/g] configuration cross curve - [2d 5/2 , 1gg/2] cobfiguration b) in ⁸⁸Zr dotted curve - {2p3/2 , 2p3/2 configuration full curve $- \frac{12p_{3/2}}{15/2}$, $\frac{11p_{5/2}}{1}$ configuration broken curve - $\{1f_{5/2}, 1f_{5/2}\}$ configuration chain curve - [11 7/2 , 1g9/2] configuration

Table 2

Nucleus	{jj_} A	E, MeV	Ejjo, MeV	Fjj., MeV	Njj. (%).
	(a. a. 1	6.0-8.2	7.0	1.2	51.3
	{2p3/2,2p3/2)	8.3-11.0	9.3	1.1	42.3
		6.0-8.2	7.1	1.2	46.8
⁸⁸ Zr	{2p3/2,1f5/2}	8.3-11.0	8.9	1.1	34.8
	(6.0-8.0	7.5	-	54.9
	$\{1f_{3_{1}}, 1f_{3_{1}}\}$	8.0-10.0	8.4	-	29.7
	119 %, 1f 7/2 3	6.0-10.5	9.2	1.7	85.2
	1.1.1.2	4.0-6.4	5.0	1.1	67.5
	{2dsy2, 199/29	6.5-9.0	7.3	1.2	9.8
	101 00 2	4.1-8.0	6.7	1.7	35.4
	(205h, 2P3h)	8.1-11.5	9.7	1.8	42.6
94 _{Mo}	{2d 5/2, 2p 1/2]	5.0-9.0	7.0	1.8	71.4
		6.0-8.2	7.8	-	34.5
	{2d 5/ 1fs/	8.3-9.5	8.6	-	40.3
		9.6-11.2	10.1	-	11.1
	[da. 10.2	6.0-9.8	8.6	1.5	71.5
	1199/2, 199/2)	9.8-11.5	10.4	0.9	5.8

Integral characteristics of the v-d and d-d configurations in $^{88}{\rm Zr}$ and $^{94}{\rm Mo}$

with 52 MeV protons has rather a broad bump with the centre of gravity $E_{jj_0} = 8.1$ MeV. Experimental data for the same reaction with 168 MeV protons ⁶/₆ show an existence of two peaks at the energies $E_{jj_0} = 7.0$ MeV and $E_{jj_0} = 8.5$ MeV. A bump at the energy $E_{jj_0} = 7.5$ MeV has been observed in the ⁹⁰ Zt(a, ⁶ He) ⁸⁸ Zr cross sections with 218 MeVa - particles ⁶/₆. Calculated strength distributions for the v-d and d-d configurations which could be excited in these reactions in ⁸⁸ Zr at the energies (6-10) MeV are shown in fig. 2. As can be seen from table 2 and fig. 2 51.3% of the state $\{2p_{3/2}, 2p_{3/2}\}$ strength and 46.8% of the state $\{2p_{8/2}, 1f_{5/2}\}$ strength are located at the energies $E_{jj_0} = 7.0$ MeV and $E_{ij_0} = 7.1$ MeV, 54.9% and 30% of the state $\{1f_{5/2}, 9\}$

 $1f_{5/2}$ strength are localized at the energies 7.5 MeV and 8.4 MeV, respectively. It seems quite possible that the aforementioned states are excited via the (p,t) and (a, ⁶He) reactions in ref.^{6/}. Of about 30 to 40% of the strength of the configurations $\{2p_{3/2}, 2p_{3/2}\}$ and $\{2p_{3/2}, 1f_{5/2}\}$ are exhausted within the energy interval (8.0-10.5) MeV. 85% of the strength of the v-d state $\{1g_{9/2}, 1f_{7/2}\}$ is concentrated at the energy $E_{jjo} =$ 9.2 MeV. All states discussed above form a broad bump which was observed in the (p,t) reaction with 52 MeV protons^{4/4}. Increase in the proton beam energy for the (p,t) reaction and the use of the (a, ⁶He) reaction let us to search a fine structure of this bump^{40/4}. It is interesting to investigate excitation of the v-d configuration $\{1g_{9/2}, 1f_{7/2}\}$ in ⁸⁸Zr via the one-neutron transfer reactions.

4. CONCLUSION

The calculations and comparison with the experimental data show that within QPM one can correctly describe the two-quasiparticle strength distributions in a broad range of excitation energies. Our calculations enabled one to shed more light on the structures of bumps observed in the two-neutron transfer cross sections and predict their energy locations. Up to now there is a large uncertainty for the configuration strength observed experimentally. To solve this problem one has to compare the experimental cross sections with the theoretical ones.

REFERENCES

- 1. Crawley G.M. et al. Phys.Rev., 1981, C23, p.589.
- 2. Gales S. Nucl. Phys., 1981, A354, p.194.
- 3. Struble G.L. et al. Phys.Rev., 1981, C23, p.2447.
- 4. Nakagawa T. et al. Nucl. Phys., 1982, A376, p.513.
- 5. Gerlic E. et al. Phys.Lett., 1982, 117B, p.20.
- 6. Langevin-Joliot H. Preprint IPNO-DRE-83-36, Orsay, 1983.
- Soloviev V.G. Particle and Nucleus, 1978, 9, p.580; Malov L.A., Soloviev V.G. Particle and Nucleus, 1980, 11, p.301; Vdovin A.I., Soloviev V.G. Particles and Nucleus, 1983, 14, p.237; Voronov V.V., Soloviev V.G. Particles and Nucleus, 1983, 14, p.1381;
- Soloviev V.G., Stoyanova O., Voronov V.V. Nucl.Phys., 1981, A370,p.13.
- 9. Voronov V.V., Zhuravlev I.P. Yad.Fiz., 1983, 36, p.52.
- 10. Voronov V.V. J.Phys. G: Nucl.Phys., 1983, 9, p.L273.
- 11. Yoshida S. Nucl. Phys., 1962, 33, p.685.
- 12. Ponomarev V.Yu. et al. Nucl. Phys., 1979, A323, p.446.

9

- Ponomarev V.Yu., Stoyanov Ch., Stoyanova O. JINR, P4-81-704, Dubna, 1981.
- 14. Nomura M. Prog. Theor. Phys., 1978, 59, p.1771.
- Ishimatsu T. et al. Journal Phys. Soc. Jap., 1973, 35, p.1579.

Received by Publishing Department on May 29, 1984.

1

WILL YOU FILL BLANK SPACES IN YOUR LIBRARY?

You can receive by post the books listed below. Prices - in US \$,

including the packing and registered postage

D4-80-385	The Proceedings of the International School on Nuclear Structure. Alushta, 1980.	10.00
	Proceedings of the VII All-Union Conference on Charged Particle Accelerators. Dubna, 1980. 2 volumes.	25.00
D4-80-572	N.N.Kolesnikov et al. "The Energies and Half-Lives for the a - and β -Decays of Transfermium Elements"	10.00
D2-81-543	Proceedings of the VI International Conference on the Problems of Quantum Field Theory. Alushta, 1981	9.50
D10,11-81-622	Proceedings of the International Meeting on Problems of Mathematical Simulation in Nuclear Physics Researches. Dubna, 1980	9.00
D1,2-81-728	Proceedings of the VI International Seminar on High Energy Physics Problems. Dubna, 1981.	9.50
D17-81-758	Proceedings of the II International Symposium on Selected Problems in Statistical Mechanics. Dubna, 1981.	15.50
D1,2-82-27	Proceedings of the International Symposium on Polarization Phenomena in High Energy Physics. Dubna, 1981.	9.00
D2-82-568	Proceedings of the Meeting on Investiga- tions in the Field of Relativistic Nuc- lear Physics. Dubna, 1982	7.50
D9-82-664	Proceedings of the Symposium on the Problems of Collective Methods of Acce- leration. Dubna, 1982	9.20
D3,4-82-704	Proceedings of the IV International School on Neutron Physics. Dubna, 1982	12.00
D2,4-83-179	Proceedings of the XV International School on High-Energy Physics for Young Scientists. Dubna, 1982	10.00
	Proceedings of the VIII All-Union Conference on Charged Particle Accelerators. Protvino, 1982. 2 volumes.	25.00
D11-83-511	Proceedings of the Conference on Systems and Techniques of Analitical Computing and Their Applications in Theoretical Physics. Dubna,1982.	9.50
D7-83-644	Proceedings of the International School-Seminar on Heavy Ion Physics. Alushta, 1983.	11.30
D2,13-83-689	Proceedings of the Workshop on Radiation Problems and Gravitational Wave Detection. Dubna, 1983.	6.00

Orders for the above-mentioned books can be sent at the address: Publishing Department, JINR Head Post Office, P.O.Box 79 101000 Moscow, USSR

SUBJECT CATEGORIES OF THE JINR PUBLICATIONS

Inde	x Subject
1.	High energy experimental physics
2.	High energy theoretical physics
3.	Low energy experimental physics
4.	Low energy theoretical physics
5.	Mathematics
6.	Nuclear spectroscopy and radiochemistry
7.	Heavy ion physics
8.	Cryogenics
9.	Accelerators
10.	Automatization of data processing
11.	Computing mathematics and technique
12.	Chemistry
13.	Experimental techniques and methods
14.	Solid state physics. Liquids
15.	Experimental physics of nuclear reactions at low energies
16.	Health physics. Shieldings
17.	Theory of condenced matter
18.	Applied researches
19.	Biophysics

Воронов В.В. Е4-84-377 О фрагментации двухквазичастичных состояний в некоторых сферических ядрах

В рамках квазичастично-фононной модели исследовано распределение силы двухквазичастичных состояний в ряде сферических ядер, которые могут возбуждаться в реакциях двухнуклонных передач. Проведен анализ экспериментальных данных, полученных в реакциях (p, t) и (a, ⁶ Не). Показано, что наблюдаемые на эксперименте пики в сечениях соответствуют возбуждению валентно-дырочных и двухдырочных состояний.

Работа выполнена в Лаборатории теоретический физики ОИЯИ.

Сообщение Объединенного института ядерных исследования. Дубна 1984

Voronov V.V.

E4-84-377

On Fragmentation of Two-Quasiparticle States in Some Spherical Nuclei

Strength distributions of two-quasiparticle states which could be excited in two-neutron transfer reactions on some spherical nuclei is calculated within the quasiparticle-phonon model. The experimental data for (p,t) and (a, He) reactions are analysed. It is shown that bumps observed via these reactions are specified by excited valence-hole and hole-hole states.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1984

5