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1. Introduction 

In the recent years many attempts have been made to 
calculate the properties of finite nuclei using the nucleon­
nucleon potentials, derived from the scattering properties 
of elementary particles II/. A number of such "semirea­
listic"'potentials depends on the local value of the nucleon 
density at the point where two particles collide. 

Density-dependent forces are particularly used in 
Hartree-Fock calculations to predict bulk properties of 
nuclei such as total binding energies, density distribu­
tions and mean square radii, see, e.g., 2 ·

1 Using the 
Migdal force ,!l :, Band et al. :t ' studies the influence 
of the density dependence on particle-hole excitations. 
With the same force Theis and Werner /5/ calculated the 
form factors for inelastic electron scattering from low­
lying states of 208 Pb . Recently, Sharp and Zamick ·10

·• 

demonstrated the possibility of using density-dependent 
interactions in nuclear structure studies based on the shell 
model to investigate single particle energies, effective 
nucleon charges for electromagnetic transition probabili­
ties and the excitation of simple configurations. Particular 
attention has been given to monopole excitations (breathing 
modes), which are mostly effected by density depen­
dence · 7 · 

There is much evidence from the microscopic descrip­
tion of direct inelastic nucleon scattering that together 
with the separation method of Scott and Moszkowski / 81 
realistic interactions such as the Hamada-Johnston poten­
tial can be used to reproduce measured angular distribu-
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tions as well as the absolute transition strength 191 . So it 
would be worthwhile to have information as to what extent 
the density-dependent forces fitted to ground state satura­
tion properties of nuclei can be used not only for investiga­
ting the bulk properties and the structure of low-lying 
excited states but also for nuclear reaction calculations. 

It is likely that the effects of density dependence should 
manifest themselves most clearly in direct reactions, 
which proceed preferably in the nuclear surface region 
where the nucleon density changes rapidly. We would like 
to mention that also from the exciton model of precom­
pound processes there is evidence on the density depen­
dence of intranuclear transition rates I 1 O/. 

The paper presents some DWBA calculations in a mic­
roscopic approach to direct inelastic proton scattering 
using different density-dependent effective interactions. 
The results have been given already partly in ref. III 1. 
The details of the formalism and expressions for the 
form factors used are described elsewhere I 121. For 
simplification, exchange terms and spin-flip processes 
were neglected. The optical parameters and the para­
meters for calculating bound single-particle wave functions 
may be found in refs. /9,12. 13/. In all cases a uniform . 
density distribution of the Woods-Saxon shape p(O)=D.l7 nuc­
leonsjfm :1 and geometrical parameters r =1.2fm,a==0.7fm, 
have been employed. It should be emphasized that in all 
calculations there is no consistency between the nuclear 
wave functions used and the density dependence of the 
force. 

In sect. 2 a brief discussion of density dependence of 
nucleon-nucleon forces is given. Sect. 3 contains investi­
gations of collective octupole excitations in the reac­
tion ll

6 Sn(p,p ') and monopole transitions in 28 Si (p,p ') 
using the Migdal force. The results with the finite range 
interaction of Sprung and Benerjee 1141 are summarized 
in sect. 4. Because the main aim was to test different 
forces, in most cases oversimplified nuclear wave.func­
tions have been used. So we have made only a rough 
comparison of calculated absolute transition strength with 
experimental data. 
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2. The Density Dependence of the Nucleon-Nucleon 
Force 

Here we discuss briefly the origin of the density 
dependence in the internucleon interaction and also the 
main features of such a dependence. This allows one to 
foresee some of the effects of the density dependence in 
the force on the inelastic scattering process. 

2.1. Fundamental properties of the 
interaction -the field theory 
effects 

The exchange of two rr mesons between three nucleons 
described by the diagram (a) of Fig. I where both mesons 

R 15 

N, Nz N3 N, Nz N3 

c 
_____ _. d 

Fig. I. Diagrams corresponding to some of the processes 
whose description brings the density dependence into 
the effective force. Explanation in the text. ' 
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are in the air at the same time can be regarded as a den­
sity-dependent renormalization of the interaction between 
each of the three pairs of nucleons 115/. The Compton 
range for the two " mesons is half of that for one meson 
and consequently the range of the interaction associated 
with this process should be very small. 

The resonances in the scattering of mesons on nucleons 
are associated with the contribution to the three-body 
forces by the graphs of type (b) in Fig. I /15/. The range 
of such a force must be of the order ( t Res : half-life) 

v 2 
R ='V ot = ~ SolQ__fm. 

Res Res Res C f' (MeV) Res 
Especially important is the 1'1 33 resonance in the "- p 
scattering at 200 MeV with a width f'Res - 10 2 MeV. In 
nuclei the kinetic energy of colliding nucleons is smaller 
than the resonance energy and thus the effective value of 
·vR issmallerthan·v -c20.)112c. 

es nucleon lO 3 

Thus 
RRes < ::: 0.7fm 

The small range of the three-body force was used by 
Skyrme /16 I to approximate it by a local force propor­
tional to 8 -functions of two internucleon distances in the 
system of three colliding nucleons. This force is in some 
sense equivalent to the local binary force, acting between 
each of the three pairs, with the strength proportional 
to the density at the point where the nucleons collide. 

2.2. The semi-fundamental properties­
the nature of a smooth effective 
interaction 

In addition to the effects mentioned above there exist 
some others which also result in a density dependence of 
the force between two nucleons in nuclear matter. An 
additional density dependence appears in the nuclear theory 
as the price for reducing the basis used to construct the 
many-body wave functions for nuclei. The interaction in 
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the reduced basis simulating the effects of the realistic 
interaction working in a large basis is called an effective 
interaction and differs from the realistic interaction. It 
is not always easy to establish relations between the bases 
used in different nuclear models and this consideration 
brings to life many investigations (including the present 
one) where the effective interaction taken from one model 
is used to calculate the properties described by another 
model. Let us mention some procedures allowing to reduce 
the basis in the many-body problems. 

a) Exclusion of the short-range repulsion between the 
nucleons is the prime goal of the nuclear matter theory. 
Different techniques for doing this are known and the 
resultant effective force is like the force in the Scott­
Moszkowski separation method /S/, which is the long­
range part of the realistic force with a separation distance 
d increasing with the density of nuclear matter. 

b) The tensor force in the closure approximation is 
taken as the central part of an operator 

V (closure)- ·v E.v 
T - T e T 

with the operator P/e, excluding the occupied states and 
involving the energy denominator ,dependent on the density. 
This dependence lessens the attraction due to the tensor 
force at high densities. 

c) The simplest example of correlation effects is des­
cribed by the diagram (c) of Fig. 1 containing two external 
lines. This diagram introduces the state (and consequently 
density) renormalization of the first order matrix element 
of the interaction (part (d) of Fig. 1). Such renormalization 
turned out to be important for the spectrum of low-lying 
states and might also be important for the scattering 
process. 

d) In the local density approximation the effective 
interaction between a pair of nucleons in a certain · region 
of a finite nucleus is taken as the G -matrix for infinite 
nuclear matter of corresponding density, expressed as a 
local, momentum dependent two-body operator in coor­
dinate space. Averaging this G -matrix over the Fermi 
sphere as well as over angular momentum states J 
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L of the interacting pair one obtains a local central force 
for each spin (S)- isospin (T) subspace, which becomes 
density dependent because of the upper limit of integration 
over momentum. In this way various density-dependent 
forces are derived using different nucleon-nucleon poten­
tials or different procedures to connect the local two-bo<7 
forcewiththeelementsofthe G-matrix,e.g.,Negele 117 , 

Sprung and Benerjee /14/ or Nemeth and Ripka 118< 
A simple zero-range density-dependent force has been 
given by Migdal 13 /. 

2.3. The manifestation of the density 
dependence of the force 

The first motivation to use the density-dependent force 
gave the "I "-dependence of the isomer shifts and quad­
rupole moments. This dependence indicated that the inter­
nucleon attraction is the strongest just outside the nuclear 
surface /! 91. 

The Galilean invariance conditions relating the pro­
perties of the average (self-consistent) field and the 
interaction are strongly violated when the simple ( o -
type) effective interaction was used without the density 
dependence. These conditions are important when 
1- -states are described. They can be accounted for if 
one assumes that the nucleons interact only outside the 
nuclear matter /20/. 

The discrepancy between the calculation of the satu­
ration properties of nuclear matter and the empirical dJ~ttc-1 is also calling for some density dependence in the force . 
We discuss the saturation properties in some details to 
estimate the density dependence of the effective o -force. 
Most of effects of the density dependence are connected 
with the small distances and one may expect the effective 
o -force to be a reasonable approximation to the realistic 
case. Following Bochnacki, Holban and Mikhailov 121 1 we 
shall use the relation between the energy, potential and 
scattering amplitude from the Fermi- Uquid theory by 
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Landau. Let us assume that the potential energy of a nuc­
leus is given by the formula 

f == J d; e ( p (-;)) 
pot pot 

where p (;) is the local value of the particle density 
at a point r. We write also 

( ( -+)) a 2 b y+ 2 e p r =--p +--p 
pot 2 y+2 · 

The three constants a, b , y are positive if this formula 
describes saturation at the density Po with e ot (p

0
) < 0. 

The self-consistent potential and the force {scattering 
amplitude) are given by the variational derivatives of 
< P.ot in the density matrix. With <pot given above the 

self-consistent potential is local 
U (r} = -ap (C)+ bpy+i (-;) 

while the force operator is local and of the contact type: 
f = 0 ( t I - r 2) l- a + ( y + 1) b pY I 

The two constants a and b can be determined from the 
saturation conditions in nuclear matter. In ref. / 21 / the 
parameter y was taken arbitrarily to be equal to I. One 
can use the additional relation to fix y so that the self­
consistent potential would have the appropriate depth at 
the center of the nucleus. The conditions then are 

. e + e 
Mtn pot kin 

---------- = - e 
p 0 

pmin =po 

U( ~ )= Uo, 

(0) 
where e 0 , T F ,U 0 and p 0 denote the empirical values 
of the binding energy per nucleon, the kinetic energy at 
the Fermi surface, the depth of the potential in the inte­
rior of a nucleus and the saturation density, respectively. 
The third relation is reasonably well reproduced with 
y= 1 and we take this value in the following. The coeffi-
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cients 1 > and bp0 
(a= e 0 /T? ) 

are then given by the formula 

2 <o> I a=4(a+S)TF p
0 

1 (0) 
bp0 = 3(a+ 5 )T F I Po 

The most essential property of the density dependent 
force is its weakness in the interior regions of the 
nucleus. For example, the strength of the o -force inside 
the nucleus is proportional to 

1 (0) 
f. =-a+2bp0 =2(a--

5
)T lp

0
· 

mt F 

Taking a= 1/5 (which is close to the empirical data without 
corrections for the surface and Coulomb energy) we 
obtain f int = 0, i.e., there is no interaction between 
nucleons inside the nuclear matter. In this case the strength 
of the force in the exterior regions of the nucleus is equal 
~ 12 00) 

f out = -a= - T T F I p 0 

The practical implication of this is the small amount 
of correlations between nucleons inside the nucleus which 
appear in the nuclear models using the density dependent 
force. One may understand this as a result of the implicit 
description of various correlations in the approximation, 
where the effective density dependent force is taken to the 
lowest order and without exchange terms. The argument 
for this gives the formula for the energy e pot • The first 
term in this formula is expected for an arbitrary binary 
potential and for the uniform distribution of nuclear matter 
in the Hartree approximation. Then the second term may be 
interpreted as the correction to the approximation where no 
processes discussed at the beginning of this section are 
taken in~ account. We notice here that the quadratic 
dependence on the density in e pot is removed by the 
Pauli principle in the Hartree-Fock theory. Thus we may 
think that the effects of the exclusion principle are also 
simulated by the density dependence of the o -force. 
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3. Zero- Range Forces of the Migdal Type 

3.1. Collective excitations 

As an example, the excitation of the 3- , 2.27 MeV 
level of 116 Sn in the inelastic scattering of 16 MeV 
protons has been lfeated with the wave functions of Clement 
and Baranger 122 using a zero-range force with a term 
proportional to the density 

vi
0 

= c(a+b p (r i )I p0 )8 (r-+i -r
0

) 

() [l (r-R)/a]-1 
P r =Po +e 

Theoretical results are compared with experimental data 
of Makofske et al. 1231. 

The angular distribution of inelastically scattered par­
ticles is drastically changed by varying the force parameter 
b (Fig. 2). Weakening the attraction in the nuclear 
interior, the agreement between measured and calculated 
angular distributions is improved, in particular in the 
region of the minimum at about ec.m.:: 60° and after the 
maximum at about Oc.m . .., 90°. A reasonable fit up to 
ec.m.:: 120° is obtained for b ""~, i.e., for vanishing 
interaction in the centre of the nucleus. An appreciable 
repulsion in the inner region gives no acceptable results. 
This is in a good agreement with the arguments in Sect. 2 
and also in / 20/ obtained from the analysis of isomer 
shifts in Nd , Srn and Gd isotopes and from electro­
magnetic moments and transition probabilities in the 
lead region. A derivation of the force parameters from 
the condition of translational invariance gives similar 
results 1201. 

The cross section is reduced by decreasing the contri­
bution from the inner part of the nucleus. To reproduce 
the observed transition strength at b "' -a a depth para­
meter c "' 700 MeV is necessary which is higher than 
the estimates c "" 386 MeV and c "' 320 MeV given 
in ref./:DI and ref. /21~ Such deviations are not unexpec-
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Fig. 2. Angular distribution for the reaction II
6 Sn(p,p'). 

Theoretical curves are calculated for the Migdal force 
with different f2f§tr._ of param~ters (a , b ) . Experimental 
data from ref. . - - - (-2.0) · · . • (-2; 1.7) --(-2.2) 
-· -·- (-2, 2.3). 
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ted because the results are very sensitive to the wave 
functions and to the magnitude of parameters r and 
a in p (?) . The change in these parameters to r == 
"" 1.25 fm, a "" 0.65 fm reduces the cross section at 
b.,- a by a factor of two without alterinf the angular 

distribution. We mention here the result of I II according 
to which the precise values of r and a in the expres­
sion of the force are somewhat different than those 
reproducing the charge and mass distribution. 

3.2. Monopole excitations 

All attempts to calculate the excitation of o+ states 
in a shell model description with phenomenological Gaus­
sian or Yukawa potentials failed in two respects: (i) Fitting 
the strength of the effective interaction to •L,b 0 excita­
tions the cross section for L ,.,o transitions is overesti­
mated by about one order of magnitude. (ii) The angular 
distribution observed in the experiment is more pronounced 
in structure than the DWBA curve. 

Because the monopole component of the interactions 
commonly used gives a form factor with a strong peak 
in the nuclear interior, the density dependence should 
greatly influence monopole transitions. Thi~ effect has 
been investigated quantitatively in the reaction 8 Si(p, p '), 
Q = -4.97 MeV at E P == 17 MeV. In alp lh -model the 
excitation was restricted to the breathing mode 1 0>-+ 
-+ 1 (lpl}2 2p 112)0·>. The peak of the form factor inside the 
nucleus depends strongly on the force parameter (Fig. 3). 
Taking into account a density-dependent term one gets 
a rapidly oscillating angular distribution (Fig. 4). For the 
parameter set a,., -2 , b=2 the cross section in forward 
direction is diminished by two orders of magnitude as 
compared with the case a"" - 2 , b "" 0 . 

24 In a recent paper, Davies and Satchler 1 1 reported 
on calculations with the Skyrme force. They investigated 
the excitation of the lowest 3- and 5- states of 4° Ca by 
inelastic proton scattering of 17 MeV and 30 MeV incident 
enErgy. The transition density was constructed from par-
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ticle-hole wave functions in the random phase approxi­
mation renormalized to reproduce experimental H( .E 2) 
values. The calculated cross section was too large in 
the first peak. The theoretical angular distribution is too 
pronounced in structure and has too large cross section 
in the backward region. 

4. Finite Range Forces 

A density- dependent force of finite range has been 
given by Sprung and Benerjee /I 4/. The interaction was 
calculated at four densities p/p0 = 0.13, 0.5, 1.0 and 1.96 
and expressed as a sum over five Gaussian potentials 
with different range parameters b. In its radial depen­
dence the force is qualitatively fitted to the Negele in­
teraction, that means to the OPEP at large distances. 

·v ( ) _ ~ (ST1k ) -(r.
0

/b )2 
ST r .0 - ~ c ·t e 1 n 

1 n==l n F 

bn = 0.5, 0.95, 1.70, 2.85 and 5.0 fm 
The density dependence is parametrized according to 

c(ST)(k )=a(ST)+b(ST).k,\ (r r) 
n F n n F i'O 

with three different values of ,\': ,\ == 0.5, 1.0, 3.0. The 
three forces are denoted as GO, Gland G3. The coefficients 
an , b n are chosen to reproduce the diagonal G -matrix 
element in the Fermi-sea using the Reid potential These 
matrix elements are required to calculate binding energies 
of nuclear matter. Partial waves up to J =2 have been 
taken into account exactly. 

The GO force is the most successful one in reproducing 
the saturation curve. This interaction is also prefered in 
Hartree-Fock calculations. A good overall description 
of binding energies, density distributions and electron 
scattering data was obtained for doubly magic nuclei (0, He/ 21 
as well as for even tin isotopes 1251. 

In order to make a multipole expansion of the inter­
action one has to define the dependence of k F on the 
pos~tion of the interacting pair. For our purpose it is most 
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convenient to use the geometric mean of the densities 
at the radial positions r i and r 0 , because k f. is fac­
torized then in the coordinates of the projectile and the 
target nucleon. 

A 3 I / 3 I /3 A/2 
k F ( r i , r 

0
) = [ ( T rr ~ (r i )) ( -}rr2 p (r 0 )) ] 

Other possibilities are to use the arithmetic mean k F"" 
= -! ( k ( i) + kF ( 0) ) or to take the density at the centre of 
mass of the pair. 

As an example we have investigated the reaction 
90 Zr(p,p') atE =18.8 MeV treatingthetransitionas 
a recoupling of ufe two-proton configuration (lg 912 ).

2 

Neglecting odd-state forces, the singlet-even component 
is taken as the effective interaction for inelastic proton 
scattering from a proton configuration. The calculated 
differential cross sections are compared with the results 
for the Hamada-Johnston potential with cut-off (from 
ref. 191 ) as well as for the realistic Gaussian potential 
(b"' 1.78 fm, VSE "'32.5 MeV /26/ ). 

Apart from a minor shift of the peak position near the 
nuclear radius, the form factor calculated with the Sprung­
Benerjee force has a shape very similar to the corres­
ponding curve with the Gaussian potential-Density-depen­
dent effects are smeared out because of the radial integ­
ration containing the multipole components of an interaction 
the range of which is comparable with the range in which 
the density is varying. Therefore, the results do not 
depend strongly on the strength of the density dependence 
given by the exponent A • One obtaines identical angular 
distributions with the forces GO, Gl and G3. The mag­
nitude of the cross section calculated with G3 is reduced 
by about 10% as compared with the cross section for 
GO. The angular distributions calculated with the Sprung­
Benerjee forces are in a good agreement with the curves 
for the Hamada-Johnston potential or the Gaussian poten­
tial (Fig. 4). The Migdal force produces an angular 
distribution too large in the backward region. 

Including exchange effects, Love and Satchler 19
1 

have found, that the Gaussian potential for different mul­
tipole transitions gives the cross section which is larger 
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by 25-50% than the H- J potential with a cut-off at 
d = 1.0 fm. The differential cross section in forward 
direction is by about 16% (for L,2 ) and 26% (for 'L=4 ) 
larger for the Gaussian potential than for the GO force. 
With the Sprung-Benerjee force one obtains very similar 
absolute transition strength as with the Hamada-Johnston 
potential: a(HJ)/a(G3)=="0.78 for·L=2 , a(HJ)/a(G3)"" 0.94 
for L = 4 . To reproduce the absolute transition strength 
given by the G3 interaction one needs normalization con­
stants c "" 300 MeV and c"' 140 MeV of the Migdal force 
for L ,.,2 and ·L=4, respectively. 

Introducing a cut-off at d = 1.25 fm, the cross section 
for the G3 force is reduced by about 20%. 

One may conclude that in comparison with the Migdal 
force the finite range density-dependent forces give 
smaller differential cross sections at backward angles 
and a smaller enhancement of higher multipole transitions 
over lower multipole orders connected with rising interac­
tion in the outer region. 

5. Concluding Remarks 

Central density-dependent forces of zero or finite 
range may be used in inelastic scattering calculations as 
successfully as other more complicated realistic effective 
interactions. The main effect of the density dependence 
consists in the modification of the ratio of inner and surface 
contributions to the direct reaction. In this way, the 
diffraction pattern of the angular distribution, the absolute 
transitions strength and the cross section ratio for 
different multipole excitations can be changed. Monopole 
transitions should be altered appreciably. 

Some improvements are possible. Sprung and Benerjee 
renormalized the coefficients of the shortest range Gaus­
sians in the even states so that saturation is achieved for 
kF= 1.35 fm-I, with B/A = 16.5 MeV per particles. 
Moreover, a starting energy dependence was introduced 
represented by a zero -range force which contains a large 
part of the density dependence. For constructing the 
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transition density one should use single particle wave 
functions corresponding to a mean potential which follows 
the nuclear density distribution consistent with the density 
dependence of the nucleon-nucleon force. 

The assistance of Mrs. H.Ludwig in performing the 
numerical calculations is gratefully acknowledged. 
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