

обьвдинениыя ИНСТИTYT
 лдериых
 исслвдованй
 дубна

E4.83-858
D.N.Poenaru*, M.Ivaseu*, A.Sanduleseu

COMPARISON

OF SEMIEMPIRICAL FORMULAE
FOR ALPHA DECAY HALF-LIVES

Submitted to Яø

[^0]
1. INTRODUCTION

By using semiempirical relationships $/ 1-6 /$, the alpha decay partial half-lives, T, can be estimated if the kinetic energy of the emitted particle, E_{a}, is known. An up-to-date version of these formulae has been obtained $/ 7,8 /$ by changing their additive parameters $\left\{C_{k}\right\}$ in such a way that the absolute error $(1 / n) \sum_{i=1}^{n} \log \left(T_{i} / T_{i \exp }\right)$ - vanishes in each group of even-even (e-e), odd-even ($o-e$), even-odd ($e-o$), and odd-odd ($o-o$) nuclides.

In order to improve the description of data in the neighbourhood of the magic numbers, a new formula with six parameters $\left\{B_{k}\right\}$ has been derived /7-9/. The computer programme described in ref. $/ 8 /$ allows us to improve automatically the parameters $\left\{C_{k}\right\}$ and $\left\{B_{k}\right\}$, every time a better set of experimental data is available.

The purpose of this paper is to compare our calculations and different other estimations with the measured half-1ives (see ret. 'iv' and the interature quoted there).

2. SEMIEMPIRICAL RELATIONSHIPS

As the range of 1 ife-times of different nuclides extends over many orders of magnitude, it is more practical to use the decimal logarithm $\log \mathrm{T}$. The experimental values of T will be denoted by $\mathrm{T}_{\text {exp }}$. The formula given by Fröman /1/:

$$
\begin{align*}
\log T & =\left[139.8+1.83(Z-90)+0.012(Z-90)^{2}\right] / \sqrt{Q}- \tag{1}\\
& -0.3(Z-90)-0.001(Z-90)^{2}+C_{F}
\end{align*}
$$

is limited to the region of even-even nuclei with $\mathrm{Z} \geq 84$. Q-values are expressed in MeV ; and T , in seconds throughout this work.

Almost all parameters $\left\{C_{k}\right\}$ are negative. Hence the values C_{k} are given in Table l. These are the "new" parameters obtained from the condition that the mean value of the absolute error vanishes. All diagrams presented in this paper (except Fig. 6a) are computed by using these new values.

In Fig.la the half-1ives of the e-e nuclei calculated with eq. (1) are compared with the-experimental ones. To aid the

Table 1
Improved values of the parameters $\left(-\mathbf{C}_{\mathbf{k}}\right)$

"k"	e-e	$o-e$	e^{-o}	$0-o$
F	51.699	51.317	51.299	50.705
W	52.400	52.026	51.940	51.377
T	20.789	20.470	20.346	19.758
K	20.226	20.643	20.383	20.571
V	0.043	-0.196	-0.399	-0.962
H	20.347	20.051	19.922	19.355

eye the consecutive isotopes of a given element are connected with a segment of line; a dashed line is used if one or more isotopes of a sequence are missing. From $N=60$ to 82 there is a gap of stable nuclides toward alpha decay or emitters undiscovered yet. Up to now only a few components of the new island of alpha activity close to the double magic ${ }^{100} \mathrm{Sn}$ have been found.

One can see a very good agreement at $N \geq 128$, but for the new region of nuclei produced in heavy ion reactions, the errors as high as 5 orders of magnitude are obtained because -ч. $\{i ;$ was uvi uesignea ior iigncer nucıei.

A better overall result (Fig.lb), though the dispersion for heavy nuclei is larger, is given by a very simple relationship of Wapstra et al./27:
$\log T=(1.2 Z+34.9) / \sqrt{Q}+C_{w}$
also valid for e-e nuclei with $Z \geq 85$. This time the maximum error affects $Z=60$ nucleus, not $Z=52$ as in Fig. la.

In the range of N from 88 to 126 and Z from 74 to 90 , the mean value of these errors tends to have, in Fig. la, a negative slope, and in Fig. $1 b$ it is almost constant. After a steep rise from $N=126$ to $N=128$ this trend is changed: for $N \geq 128$ it is constant (Fig. la) and rises slowly (Fig. lb).

As it can be seen from Figs. 4-6, the formula presented by Taagepera and Nurmia /3/
$\log T=1.61\left(Z_{d} / \sqrt{ } E_{\alpha}-Z_{d}^{2 / 3}\right)+C_{T}$,
where $Z_{d}=Z-2$ is the atomic number of the daughter nucleus, and C_{T} was allowed to vary in different groups of nuclei, remains one of the best; it is practically exceeded only by a new variant (Keller and Munzel/4/ see figs. 2b, 3b, 4b):

Fig.1. The error of life-time predictions with Fröman's (a) and Wapstra's et al. (b) formula for even-even nuclei.

$$
\begin{equation*}
\log T=H_{k}\left(Z_{d} / \sqrt{Q}-Z_{d}^{2 / 3}\right)+C_{k}, \tag{4}
\end{equation*}
$$

where $H_{k}=1.61$ for e-e, 1.65 for e-o, 1.66 for $0-e$, and 1.77 for o-o nuclei.

Fig. 2. The errors of life-time predictions with Taagepe-ra-Nurmis's (a), Keller-Münzel's (b), Viola-Seaborg's (c) and Hornsh申j's et al. (d) formula for even-even nuclei.

The equation presented by Viola and Seaborg ${ }^{/ 5 /}$ (Figs. 2c, 3c, 4c) is of the form
$\log \mathrm{T}=\left(\mathrm{a}_{1} \mathrm{Z}-\mathrm{a}_{2}\right) / \sqrt{\mathrm{Q}}-\mathrm{b}_{1} \mathrm{Z}-\mathrm{b}_{2}+\mathrm{C}_{\mathrm{V}}$,
where $\mathrm{a}_{1}{ }^{-}=2.42151 ; \mathrm{a}_{2}=62.3848 ; \mathrm{b}_{1}{ }^{-}=0.59015 ; \mathrm{b}_{2}=4.2109$ for $\mathrm{N}<126$ and $\mathrm{a}_{1}=2.11329 ; \mathrm{a}_{2}=43.9879 ; \mathrm{b}_{1}=0.39004 ; \mathrm{b}_{2}=16.9543$ for $\mathrm{N}>126, \mathrm{Z}>82$. It gives excellent agreement in the region of actinides with $\mathrm{N}>128$, but as it can be seen from Fig. 2c for e-e nuclei, it underestimates the lifetime of lighter nuclei in contrast with the overestimation of Eq. (1).

Hornsh ϕ j et al. ${ }^{6 /}$ have proposed (Figs. 2d, 3d, 4d) the formu1a
$\log T=0.80307\left(\frac{A_{d}^{4 / 3} Z_{d}}{A}\right)^{1 / 2}\left(\frac{\operatorname{arc} \cos \sqrt{X}}{\sqrt{X}}-\sqrt{1-x}\right)+C_{H}$
in which $x=0.538243 Q A_{d}^{1 / 3} / Z_{d}$ and C_{H} is not changed in various groups of nuclei, like C_{F} of eq. (1) and C_{w} of eq. (2).

In spite of the strong influence of the neutron shell effects in eqs. (1)-(6), mainly the Z dependence was stressed. From Figs. 1 and 2 (except the region of low Z up to 72 in Figs la, $1 \mathrm{~b}, 2 \mathrm{c}$), one can see that for $\mathrm{e}-\mathrm{e}$ nuclei in all equations a good enough dependence on Z was chosen, because at a given N tho cnrosd of tho roculte for varinus \quad is nnt vory lorgo. This fact allows us to see, as it was discussed above in connection with Fig.l, the trend of variation with N of the mean value or errors. It is similar with that of Fig.la for $\mathrm{N} \leq 126$. The jump of almost one order of magnitude at $N=128$ is followed again by a constant value in Fig. 2c.

The dispersion of results for o-e (Fig.3), e-o (Fig. 1 in ref. $/ 7 /$) and o-o (Fig. 4) nuclei is larger than that for e-e nuclei. In Fig. 4 there are very pronounced negative errors ($-5.6,-5.2,-6.4$, and -5.8 orders of magnitude) for $Z=83$, $N=127$. The fact that the neighbourhood of the magic number of nucleons is very badly described by all these formulae is attested by the presence of the negative peaks in Figs. 1-4.

Our formula ${ }^{/ 7-9 /}$ is written as
$\log \mathrm{T}=\chi^{\mathrm{K}_{s} / \ln 10-20.446, ~}$
where
$K_{g}=2.52956 \mathrm{Z}_{\mathrm{d}}\left(\mathrm{A}_{\mathrm{d}} / \Lambda \boldsymbol{Q}\right)^{1 / 2}(\arccos \sqrt{\mathrm{x}}-\sqrt{\mathrm{x}(1-\mathrm{x}})$,
$X=0.4253 Q\left(1.5874+A_{d}^{1 / 3}\right) / Z_{d}$.

Fig.3. The same as Fig. 2 for odd-even nuclei.

The function

$$
\begin{equation*}
x=B_{1}^{-}+B_{2} y+B_{3} z+B_{4} y^{2}+B_{5} z y+B_{6} z^{2} \tag{9}
\end{equation*}
$$

has the reduced variables y and z, expressing the distance from the closest magic-plus-one number N_{i} (or Z_{i}):
$y=\left(N-N_{i}^{\prime}\right) /\left(N_{i+1}-N_{i}\right) ; N_{i}<N \leq N_{i+1}$,
$N=\ldots . .51,83,127,185, \ldots \ldots$.
$z=\left(Z-Z_{i}\right) /\left(Z_{i+1}-Z_{i}\right) ; Z_{i}<Z \leq Z_{i+1}$,
$Z=\ldots . ., 29,51,83,115, \ldots .$. .
The parameters $\left\{B_{i}\right\}$ given in Table 2 are obtained from the fit with our set ${ }^{10 /}$ of experimental data.

Table 2
Parameters $\mathrm{B}_{\mathbf{k}}$

Group of nuclei	$\mathrm{B}_{\mathbf{1}}$	$\mathrm{B}_{\mathbf{2}}$	$\mathrm{B}_{\mathbf{3}}$
e-e	0.987722	0.021227	0.017407
o-e	1.003660	0.021626	0.034805
e-o	1.014620	-0.119094	0.030606
o-o	1.008070	-0.184468	0.259041
	$\mathrm{~B}_{\mathbf{4}}$	$\mathrm{B}_{\mathbf{5}}$	$\mathrm{B}_{\mathbf{6}}$
e-e	0.023342	0.001546	-0.016509
o-e	0.000870	0.039190	-0.066147
e-o	0.156507	0.228848	-0.109130
o-o	0.231988	0.326171	-0.406200

We have tried also ${ }^{/ 7 /}$ a first order polynomial or a constant approximation for x.

The capacity of our formula to describe the experimental data can be appreciated from Fig.5a, b, c, d (see also ref. /11/). The increased error in the vicinity of the magic number of neutrons $\mathrm{N}=126$ which is present for all known formulae (see Fig. 1-4) is practically smoothed out (Fig.5a). This performance is only partly achieved for o-e (Fig.5b), e-o (Fig.5c) and o-o (Fig. 5d) nuclei. In any case a comparison with Figs. 1-4 demonstrates the advantage of using our formula. Even the very large errors of 5-6 orders of magnitude obtained for $Z=83$, $N=127$ in Fig. 4 are greatly reduced below 0.4 order

An overall estimation of how well various formulae can describe experimental data could be quantitatively obtained by introducing the standard rms deviation of $\log \mathrm{T}$ values:
$\sigma=\left\{\sum_{\mathrm{i}=1}^{\mathrm{n}} \log \left(\mathrm{T}_{\mathrm{i}} / \mathrm{T}_{\mathrm{i} \exp }\right)^{2} /(\mathrm{n}-1)\right\}^{\mathrm{i} / 2}$.

Fig. 5. The errors of life-time prediction with our formula when X is approximated with a second order polynomial of two varialbles for even-even (a), odd-even (b), even-odd (c), and odd-odd nuclei (d).

This quantity was displayed in Fig. 6 a for the original and in Fig. 6 b for the improved additive coefficients in each of the four groups of nuclei. Only for some particular cases (hatched area at the top of the column): the Viola-Seaborg and Hornshbj et al. formulae for e-e nuclei, Viola-Seaborg formula for o-o nuclei, and Keller-Münzel equation for all group of nuclei, the reduction of σ is not larger than 0.02 . This is a property of the experimental data used by various authors in comparison with our set of data.

Even the constant x approximation of our formula has σ somewhat lower than the best of the known relationships/b/. Of course

Fig.6. The standard deviation of various formulae in each group of nuclei for both old (a) and new (b) values of the additive parameters.
the second order polynomial approximation leads to smaller standard deviations.

CONCLUSIONS

A relatively reliable estimate of alpha decay partial halflives can be made by using the semiempirical relationships. After changing the additive parameters of the examined formulae in such a way that the mean value of the errors $(1 / n) \sum_{i=1}^{n} \log \left(T_{i} / T_{i}\right.$ exp $)$
vanishes in each group of the nuclei, the standard deviation, σ, of $\log \mathrm{T}$ values is usually reduced. The reduction is not significant in the following cases: the Viola-Seaborg formula for e-e and o-o nuclei, Hornsh \boldsymbol{o}^{2} et al. for e-e nuclei and KellerMünzel for all groups of nuclei, showing that our data have similar properties with those of the cited authors.

For three of these equations (Hornsh ϕj et al.; TaageperaNurmia and Kelier-Münzel)the lowest errors are obtained in case of e-e nuclei; then follow o-e, e-o and o-o nuclei. Deviations from this rule are encountered with Fröman's and Wapstra's et al. formulae giving a lower σ for o-o nuclei. Our second order polynomial approximation for x leads also to a reduced σ for o-o nuclei in comparison with that of e-o nuclei.

Keller-Münzel's relationship is the best of all formulae, but even this has an increased error in the vicinity of the magic number of neutrons $N=126$.

Thic ic nractically amnothod hy nur formita fnr o-o numbi due to the explicit consideration of the dependence on the reduced variables expressing the relative distance of neutron and proton from the closest magic-plus-one numbers. In this way, one can obtain the smallest errors in all groups of nuclei.

In the future when a better set of experimental data (more accurate or more complete) will be available, the parameters $\left\{\mathrm{B}_{\mathrm{k}}\right\}$ and $\left\{\mathrm{C}_{\mathrm{k}}\right\}$ could be automatically improved by a computer program $/ 8$ /.

REFERENCES

1. Fröman P.O. Mat. Fys. Sk. Dan. Vid.Selsk., 1957, 1, p.3.
2. Wapstra A.H., Nijgh C.J., Van Lieshout R. In: Nuclear Spectroscopy Tables, Amsterdam, North-Holland, 1959.
3. Taagepera R., Nurmia M. Ann.Acad,Sci, Fennicae Ser. A Physica Nr. 78, 1961.
4. Keller K.A., Münze1 H. Z. Physik, 1972, 255, p. 419.
5. Viola V.E., Seaborg G.T. J.Inorg. Chem., 1966, 28, p. 741.
6. Hornsh ϕ j P. et al. Nuc1. Phys., 1974, A230, p. 365.
7. Poenaru D.N., Ivascu M. J. Physique, 1983, 44, p. 791.
8. Poenaru D.N., Ivascu M., Mazilu D. Comput.Phys.Communication, 1982, 25, p. 297.
9. Poenaru D.N., Ivascu M., Mazilu D. J.Physique Lett., 1980, 41, L-590.
10. Poenaru D.N., Ivascu M. Rev.Roum.Phys., 1983, 28, p. 309.
11. Rurarz E. Inst. of Nucl.Res. Warszawa, report INR 1950/IA PL/A, 1983.

Познару Д.Н., Иватку М., Сэндулеску А.

Сравнение полуэмпирических формул для периодов апьфа-распада
Сравниваются полуэмлирические соотношения, данные Фрёманом, Вапстрой и др., Хорнтойей и др., Таагепарои и Нумриен, Теплером и Мюнцелем, Виолой и Сиборгом для периодов альфа-распада, с экспериментальными данными и новыми формулами, выведенными авторами из теории давления применительно $х$ альфа-распаду для четно-четных, нечетно-четных, четно-нечетных и нечетно-нечетны ядер. Принимая во внимание оболочечные эффекты, можно с помощью новых формул получить наилучшее согласие с экспериментальными данными даже вблизи магических чисел.

Работа выполнена в Лаборатории теоретической физики оияи.

Препринт Объединенного института ядерных исследопаний. Дубна
Poenaru D.N., Ivascu M., Sandulescu A. E4-83-858 Comparison of Semiempirical Formulae for Alpha Decay HalfLives

The semiempirical relationships given by Fröman, Wapstra et al., Viola and Seaborg, Hornsh ϕj et al., Taagepera and Nurmia, Keller and Münzel for alpha decay half-lives are compared with experimental results and with a new formula derived by the authors from the fission theory of alpha decay in eveneven, odd-even, even-odd and odd-odd nuclei. By taking into consideration the shell effects, the new formula allows one to obtain a better agreement with experimental data, even in the neighbourhood of the magic numbers.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1983

[^0]: * Institute for Physics and Nuclear Engineering, Bucharest

